Bernhard Riemann Emilio Ferral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017. -
The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc. -
Early History of the Riemann Hypothesis in Positive Characteristic
The Legacy of Bernhard Riemann c Higher Education Press After One Hundred and Fifty Years and International Press ALM 35, pp. 595–631 Beijing–Boston Early History of the Riemann Hypothesis in Positive Characteristic Frans Oort∗ , Norbert Schappacher† Abstract The classical Riemann Hypothesis RH is among the most prominent unsolved prob- lems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe the history of this topic essentially between 1920 and 1940. This includes the proof of the ana- logue of the Riemann Hyothesis for elliptic curves over a finite field, and various ideas about how to generalize this to curves of higher genus. The 1930ies were also a period of conflicting views about the right method to approach this problem. The later history, from the proof by Weil of the Riemann Hypothesis in charac- teristic p for all algebraic curves over a finite field, to the Weil conjectures, proofs by Grothendieck, Deligne and many others, as well as developments up to now are described in the second part of this diptych: [44]. 2000 Mathematics Subject Classification: 14G15, 11M99, 14H52. Keywords and Phrases: Riemann Hypothesis, rational points over a finite field. Contents 1 From Richard Dedekind to Emil Artin 597 2 Some formulas for zeta functions. The Riemann Hypothesis in characteristic p 600 3 F.K. Schmidt 603 ∗Department of Mathematics, Utrecht University, Princetonplein 5, 3584 CC -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
A Rc H Iv Eof Th E B E Rlin
Archive of the Berlin-Brandenburg Academy of Sciences and Humanities KARL WEIERSTRASS (1815-1897) EL PADRE DEL ANÁLISIS MATEMÁTICO Mª Rosa Massa Esteve Un día cualquiera de 1873, en la Universidad de Berlín, do que no quería estudiar esa carrera. Sin embargo, los estudiantes se apuraban para llegar puntuales a las en Bonn había empezado a leer obras de matemáticas siempre motivadoras clases del profesor Karl Weiers- como el Traité de Mécanique celeste (1799-1825) de trass (1815-1897), considerado como el padre del aná- Pierre Simon Laplace (1749-1827) que le impresiona- lisis matemático. Muchos teoremas fundamentales de ron. También leyó la obra de Carl Gustav Jakob Jacobi las ramas del análisis llevan su nombre, ya sea porque (1804-1851), Fundamenta nova theoriae functionum él los descubrió o por haber sido el primero en darles ellipticarum (1829), aunque le resultó demasiado com- una demostración completa y rigurosa. Sin embargo, si plicada. Entonces decidió leer una obra anterior de su aportación a la matemática es relevante no es menos Adrien-Marie Legendre (1752-1833), Traité des fonc- interesante su vertiente humana y su contribución a la tions elliptiques (1825), y apuntes de las clases sobre creación de los seminarios universitarios donde se ori- funciones elípticas del que sería posteriormente su ginaron gran parte de los logros científicos del siglo XX. maestro, Christoff Gudermann (1798-1852). Estas lecturas, así como la carta de Niels Henrik Abel a Legendre del año 1830 en la revista Journal de ■ LOS AÑOS DE ESTUDIANTE DE WEIERSTRASS Crelle, le decidieron a estudiar matemáticas. Weiers- Karl Weierstrass nació el 31 de octubre de 1815 en trass lo explica más tarde, en una carta al matemático Ostenfelde, distrito de Warendorf (Prusia, actualmen- Marius Sophus Lie (1842-1899), el 10 de abril de 1882: te Alemania). -
Simply-Riemann-1588263529. Print
Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones. -
Riemann's Contribution to Differential Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques. -
Euclid's Error: Non-Euclidean Geometries Present in Nature And
International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 1, Issue 4, December 2010 Euclid’s Error: Non-Euclidean Geometries Present in Nature and Art, Absent in Non-Higher and Higher Education Cristina Alexandra Sousa Universidade Portucalense Infante D. Henrique, Portugal Abstract This analysis begins with an historical view of surfaces, we are faced with the impossibility of Geometry. One presents the evolution of Geometry solving problems through the same geometry. (commonly known as Euclidean Geometry) since its Unlike what happens with the initial four beginning until Euclid’s Postulates. Next, new postulates of Euclid, the Fifth Postulate, the famous geometric worlds beyond the Fifth Postulate are Parallel Postulate, revealed a lack intuitive appeal, presented, discovered by the forerunners of the Non- and several were the mathematicians who, Euclidean Geometries, as a result of the flaw that throughout history, tried to show it. Many retreated many mathematicians encountered when they before the findings that this would be untrue, some attempted to prove Euclid’s Fifth Postulate (the had the courage and determination to make such a Parallel Postulate). Unlike what happens with the falsehood, thus opening new doors to Geometry. initial four Postulates of Euclid, the Fifth Postulate One puts up, then, two questions. Where can be revealed a lack of intuitive appeal, and several were found the clear concepts of such Geometries? And the mathematicians who, throughout history, tried to how important is the knowledge and study of show it. Geometries, beyond the Euclidean, to a better understanding of the world around us? The study, After this brief perspective, a reflection is made now developed, seeks to answer these questions. -
Sebastian's Space and Forms
GENERAL ARTICLE Sebastian’s Space and Forms Michele eMMer A strong message that mathematics revealed in the late nineteenth and non-Euclidean hyperbolic geometry) “imaginary geometry,” the early twentieth centuries is that geometry and space can be the because it was in such strong contrast with common sense. realm of freedom and imagination, abstraction and rigor. An example For some years non-Euclidean geometry remained marginal of this message lies in the infi nite variety of forms of mathematical AbStrAct inspiration that the Mexican sculptor Sebastian invented, rediscovered to the fi eld, a sort of unusual and curious genre, until it was and used throughout all his artistic activity. incorporated into and became an integral part of mathema- tics through the general ideas of G.F.B. Riemann (1826–1866). Riemann described a global vision of geometry as the study of intellectUAl ScAndAl varieties of any dimension in any kind of space. According to At the beginning of the twentieth century, Robert Musil re- Riemann, geometry had to deal not necessarily with points or fl ected on the role of mathematics in his short essay “Th e space in the traditional sense but with sets of ordered n-ples. Mathematical Man,” writing that mathematics is an ideal in- Th e erlangen Program of Felix Klein (1849–1925) descri- tellectual apparatus whose task is to anticipate every possible bed geometry as the study of the properties of fi gures that case. Only when one looks not toward its possible utility, were invariant with respect to a particular group of transfor- but within mathematics itself one sees the real face of this mations. -
Riemann and Partial Differential Equations. a Road to Geometry and Physics
Riemann and Partial Differential Equations. A road to Geometry and Physics Juan Luis Vazquez´ Departamento de Matematicas´ Universidad Autonoma´ de Madrid “Jornada Riemann”, Barcelona, February 2008 “Jornada Riemann”, Barcelona, February 20081 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20082 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20083 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Origins of differential calculus Differential Equations. The Origins The Differential World, i.e, the world of derivatives, was invented / discovered in the XVII century, almost at the same time that Modern Science (then called Natural Philosophy), was born. We owe it to the great Founding Fathers, Galileo, Descartes, Leibnitz and Newton. Motivation came from the desire to understand Motion, Mechanics and Geometry. Newton formulated Mechanics in terms of ODEs, by concentrating on the movement of particles. The main magic formula is d2x dx m = F(t; x; ) dt2 dt though he would write dots and not derivatives Leibnitz style. -
From One to Many Geometries Transcript
From One to Many Geometries Transcript Date: Tuesday, 11 December 2012 - 1:00PM Location: Museum of London 11 December 2012 From One to Many Geometries Professor Raymond Flood Thank you for coming to the third lecture this academic year in my series on shaping modern mathematics. Last time I considered algebra. This month it is going to be geometry, and I want to discuss one of the most exciting and important developments in mathematics – the development of non–Euclidean geometries. I will start with Greek mathematics and consider its most important aspect - the idea of rigorously proving things. This idea took its most dramatic form in Euclid’s Elements, the most influential mathematics book of all time, which developed and codified what came to be known as Euclidean geometry. We will see that Euclid set out some underlying premises or postulates or axioms which were used to prove the results, the propositions or theorems, in the Elements. Most of these underlying premises or postulates or axioms were thought obvious except one – the parallel postulate – which has been called a blot on Euclid. This is because many thought that the parallel postulate should be able to be derived from the other premises, axioms or postulates, in other words, that it was a theorem. We will follow some of these attempts over the centuries until in the nineteenth century two mathematicians János Bolyai and Nikolai Lobachevsky showed, independently, that the Parallel Postulate did not follow from the other assumptions and that there was a geometry in which all of Euclid’s assumptions, apart from the Parallel Postulate, were true. -
Turning Points in the Conception of Mathematics, by Detlef Laugwitz
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 4, Pages 477{480 S 0273-0979(00)00876-4 Article electronically published on June 27, 2000 Bernhard Riemann, 1826{1866: Turning points in the conception of mathematics, by Detlef Laugwitz (translated by Abe Shenitzer), Birkh¨auser, Boston, 1999, xvi + 357 pp., $79.50, ISBN 0-8176-4040-1 1. Introduction The work of Riemann is a source of perennial fascination for mathematicians, physicists, and historians and philosophers of these subjects. He lived at a time when a considerable body of knowledge had been established, and his work changed forever the way mathematicians and physicists thought about their subjects. To tell this story and get it right, describing what came before Riemann, what came after, and the extent to which he was responsible for the difference between the two, is a task that the author rightly describes as both tempting and daunting. Fortunately he has succeeded admirably in this task, stating the technical details clearly and correctly while writing an engaging and readable account of Riemann's life and work. The word \engaging" is used very deliberately here. Any reader of this book with even a passing interest in the history or philosophy of mathematics is certain to become engaged in a mental conversation with the author, as the reviewer was. The temptation to join in the debate is so strong that it apparently also lured the translator, whose sensitive use of language has once again shown why he is much in demand as a translator of mathematical works.