Computational Biophysics: Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Computational Biophysics: Introduction Bert de Groot, Jochen Hub, Helmut Grubmüller Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen Tel.: 201-2308 / 2314 / 2301 / 2300 (Secr.) Email: [email protected] [email protected] [email protected] www.mpibpc.mpg.de/grubmueller/ Chloroplasten, Tylakoid-Membran From: X. Hu et al., PNAS 95 (1998) 5935 Primary steps in photosynthesis F-ATP Synthase 20 nm F1-ATP(synth)ase ATP hydrolysis drives rotation of γ subunit and attached actin filament F1-ATP(synth)ase NO INERTIA! Proteins are Molecular Nano-Machines ! Elementary steps: Conformational motions Overview: Computational Biophysics: Introduction L1/P1: Introduction, protein structure and function, molecular dynamics, approximations, numerical integration, argon L2/P2: Tertiary structure, force field contributions, efficient algorithms, electrostatics methods, protonation, periodic boundaries, solvent, ions, NVT/NPT ensembles, analysis L3/P3: Protein data bank, structure determination by NMR / x-ray; refinement L4/P4: Monte Carlo, normal mode analysis, principal components L5/P5: Bioinformatics: sequence alignment, Structure prediction, homology modelling L6/P6: Charge transfer & photosynthesis, electrostatics methods L7/P7: Aquaporin / ATPase: two examples from current research Overview: Computational Biophysics: Concepts & Methods L08/P08: MD Simulation & Markov Theory: Molecular Machines L09/P09: Free energy calculations: Molecular recognition L10/P10: Non-equilibrium thermodynamics: Molecular driving forces L11/P11: Quantum mechanics methods: Enzymatic catalysis L12/P12: Hartree-Fock, density functional theory L13/P13: Rate theory: Biomolecular efficiency a water molecule an ethanol molecule a water droplet a water droplet water vapor a salt crystal (NaCl) bovine pancreatic trypsin inhibitor (BPTI) 20 different amino acids Threonine Asparagine Glutamate Alanine Proline Histidine Isoleucine Arginine Valine Lysine Glycine Serine Phenylalanine Aspartate Leucine Glutamine Methionine Tyrosine Tryptophane Cysteine hexa-peptide alpha-helix beta sheet bovine pancreatic trypsin inhibitor (BPTI) myoglobin antibody IGG domain porin bacteriorhodopsin Four different nucleotides encode amino acids (à Uracil) ? hemagglutinin (influenza virus) hemagglutinin (influenza virus) Molecular Dynamics Simulations Interatomic interactions Molecular Dynamics Simulation Molecule: (classical) N-particle system Newtonian equations of motion: with Integrate numerically via the „leapfrog“ scheme: with Δt ≈ 1fs! (equivalent to the Verlet algorithm) MD-Experiments with Argon Gas Radial distribution function distance 300 K 70 K 10 K Molecular Dynamics Simulations Schrödinger equation i~@t (r, R)=H (r, R) Born-Oppenheimer approximation He e(r; R)=Ee(R) e(r; R) Nucleic motion described classically Empirical Force field 1 Molecular dynamics-(MD) simulations of Biopolymers • Motions of nuclei are described classically, • Potential function Eel describes the electronic influence on motions of the nuclei and is approximated empirically à „classical MD“: Covalent bonds Non-bonded interactions bond Ei approximated exact = K T { B R= ν0 |R| Molecular Dynamics Simulation Molecule: (classical) N-particle system Newtonian equations of motion: with Integrate numerically via the „leapfrog“ scheme: with Δt ≈ 1fs! (equivalent to the Verlet algorithm) „Force- Field“ Computational task: Solve the Newtonian equations of motion: BPTI: Molecular Dynamics (300K) 8 4 nm Molecular dynamics simulation, 1s = ^ 2 ·10 -11s.