<<

Computational : Introduction

Bert de Groot, Jochen Hub, Helmut Grubmüller

Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen

Tel.: 201-2308 / 2314 / 2301 / 2300 (Secr.)

Email: [email protected] [email protected] [email protected] www.mpibpc.mpg.de/grubmueller/ Chloroplasten, Tylakoid-Membran From: X. Hu et al., PNAS 95 (1998) 5935

Primary steps in photosynthesis F-ATP Synthase

20 nm

F1-ATP(synth)ase ATP hydrolysis drives rotation of γ subunit and attached filament F1-ATP(synth)ase

NO INERTIA! are Molecular Nano-Machines ! Elementary steps: Conformational Overview: Computational Biophysics: Introduction

L1/P1: Introduction, structure and function, molecular , approximations, ,

L2/P2: Tertiary structure, field contributions, efficient algorithms, methods, protonation, periodic boundaries, solvent, ions, NVT/NPT ensembles, analysis

L3/P3: Protein data bank, structure determination by NMR / x-ray; refinement

L4/P4: Monte Carlo, normal mode analysis, principal components

L5/P5: Bioinformatics: sequence alignment, Structure prediction, homology modelling

L6/P6: Charge transfer & photosynthesis, electrostatics methods

L7/P7: Aquaporin / ATPase: two examples from current research Overview: Computational Biophysics: Concepts & Methods

L08/P08: MD & Markov Theory: Molecular Machines

L09/P09: Free energy calculations: Molecular recognition

L10/P10: Non-equilibrium : Molecular driving

L11/P11: methods: Enzymatic catalysis

L12/P12: Hartree-Fock, density functional theory

L13/P13: Rate theory: Biomolecular efficiency a water an ethanol molecule a water droplet a water droplet water vapor a salt (NaCl) bovine pancreatic trypsin inhibitor (BPTI) 20 different amino acids

Threonine Asparagine Glutamate

Alanine Proline

Histidine Isoleucine Arginine Valine

Lysine Glycine Serine Phenylalanine Aspartate

Leucine Glutamine Methionine Tyrosine Tryptophane Cysteine hexa- alpha-helix beta sheet bovine pancreatic trypsin inhibitor (BPTI) myoglobin antibody IGG domain porin bacteriorhodopsin

Four different nucleotides encode amino acids

(à Uracil)

? hemagglutinin (influenza ) hemagglutinin (influenza virus) Molecular Dynamics

Interatomic interactions Molecular Dynamics Simulation

Molecule: (classical) N-particle system

Newtonian equations of :

with

Integrate numerically via the „leapfrog“ scheme:

with Δt ≈ 1fs!

(equivalent to the Verlet algorithm) MD-Experiments with Argon Gas Radial distribution function

distance

300 K 70 K 10 K Molecular Dynamics Simulations

Schrödinger equation

i~@t (r, R)=H (r, R) Born-Oppenheimer approximation

He e(r; R)=Ee(R) e(r; R)

Nucleic motion described classically

Empirical

1 Molecular dynamics-(MD) simulations of Biopolymers

• Motions of nuclei are described classically,

• Potential function Eel describes the electronic influence on motions of the nuclei and is approximated empirically à „classical MD“:

Covalent bonds Non-bonded interactions

bond Ei approximated

exact = K T { B R= ν0 |R| Molecular Dynamics Simulation

Molecule: (classical) N-particle system

Newtonian equations of motion:

with

Integrate numerically via the „leapfrog“ scheme:

with Δt ≈ 1fs!

(equivalent to the Verlet algorithm) „Force- Field“ Computational task:

Solve the Newtonian equations of motion: BPTI: Molecular Dynamics (300K)

8 4 nm

Molecular dynamics simulation, 1s = ^ 2 ·10 -11s