Isolation and Identification of Streptomyces Spp. from Desert And

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Identification of Streptomyces Spp. from Desert And International Journal of Environmental Research and Public Health Communication Isolation and Identification of Streptomyces spp. from Desert and Savanna Soils in Sudan Mohamed E. Hamid 1,2,* , Adil Mahgoub 2,3, Abdulrhman J. O. Babiker 4, Hussein A. E. Babiker 5, Mohammed A. I. Holie 3, Mogahid M. Elhassan 6 and Martin R. P. Joseph 1 1 Department of Clinical Microbiology and Parasitology, College of Medicine, King Khalid University, P.O. Box 641, Abha 61314, Saudi Arabia; [email protected] 2 Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North 13314, Sudan; [email protected] 3 Department of Microbiology, College of Medical Laboratory Science, Alzeim Alazhari University, Khartoum North 12217, Sudan; [email protected] 4 Al-Amal National Hospital, Khartoum North 23622, Sudan; [email protected] 5 Department of Clinical Science, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; [email protected] 6 Department of Clinical Laboratory Science, College of Applied Medical Science, Taibah University, Al-Madinah 13215, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +966-5-0977-3687 Received: 20 September 2020; Accepted: 12 November 2020; Published: 25 November 2020 Abstract: The purpose of this study was to investigate streptomycete populations in desert and savanna ecozones in Sudan and to identify species based on 16S rRNA gene sequences. A total of 49 different Streptomyces phenotypes (22 from sites representing the desert and semi-desert ecozone; 27 representing the savanna ecozone) have been included in the study. The isolates were characterized phenotypically and confirmed using 16S rRNA gene sequence analysis. The two ecozones showed both similarities and uniqueness in the types of isolates. The shared species were in cluster 1 (Streptomyces (S.) werraensis), cluster 2 (Streptomyces sp.), cluster 3 (S. griseomycini-like), and cluster 7 (S. rochei). The desert ecozone revealed unique species in cluster 9 (Streptomyces sp.) and cluster 10 (S. griseomycini). Whereas, the savanna ecozone revealed unique species in cluster 4 (Streptomyces sp.), cluster 5 (S. albogriseolus/ S. griseoincarnatus), cluster 6 (S. djakartensis), and cluster 8 (Streptomyces sp.). Streptomycetes are widely distributed in both desert and the savanna ecozones and many of these require full descriptions. Extending knowledge on Streptomyces communities and their dynamics in different ecological zones and their potential antibiotic production is needed. Keywords: actinomycetes; ecosystem; biodiversity; phenotypic identification; 16S rRNA gene 1. Introduction The phylum Actinobacteria (order Actinomycetales) hosts diverse high G+C, Gram-positive bacteria including members of the genus Streptomyces (S.) Streptomycetes are Gram-positive spore-forming bacteria which include more than 900 species (https://www.ncbi.nlm.nih.gov/Taxonomy/ Browser/wwwtax.cgi?id=1883). Streptomyces represents the largest taxonomic group within the Bacteria Domain which is ubiquitously distributed in both aquatic and terrestrial ecosystems [1,2]. They are found in a wide range of habitats but are particularly abundant in soil, representing around 1 to 20% of the total viable count [2,3] and are known to prefer the characteristic earthy smell (geosmin) [4]. Streptomycetes are chemoheteroorganotrophs and are distinguished by their tough, leathery colonies and filamentous growth. They have an important ecological role in the turnover of organic material and Int. J. Environ. Res. Public Health 2020, 17, 8749; doi:10.3390/ijerph17238749 www.mdpi.com/journal/ijerph Int. J. Environ. Res. Public Health 2020, 17, 8749 2 of 10 are capable of using complex organic materials such as carbon and energy sources in the breakdown of theseInt. products J. Environ. inRes. the Public soil Health [5]. 2020, 17, x 2 of 10 The microbial communities including streptomycetes are affected by biotic and abiotic factors, notablyecological vegetation, role in the type turnover of soil, of organic and climate material [6 and] Actinomycetes’ are capable of using diversity, complex and organic particularly materials that of streptomycetes,such as carbon and is widelyenergy sources documented in the br foreakdown various of these reasons products including in the soil the [5]. continued generation of environmentalThe microbial isolates communities for pharmaceutical, including streptomycetes biodegradative, are affected and by biotic biotechnological and abiotic factors, screening. Actinomycetesnotably vegetation, isolated type from of soil soil, and and related climate substrates [6] Actinomycetes’ show primary diversity, biodegradative and particularly activity that of [5 ]. streptomycetes, is widely documented for various reasons including the continued generation of Exploring new habitats around the globe is increasingly becoming the focus for discovering new environmental isolates for pharmaceutical, biodegradative, and biotechnological screening. taxa of Actinobacteria, namely streptomycetes, for potential antibacterial, antitumoral, and antifungal Actinomycetes isolated from soil and related substrates show primary biodegradative activity [5]. activitiesExploring [7,8]. The new habitat habitats of Sudanaround hasthe globe remained is incr virtuallyeasingly becoming untouched the focus except for fordiscovering very few new studies. Sometaxa areas of Actinobacteria, in Sudan were namely found streptomycetes, to be rich sources for potential of microbial antibacterial, biodiversity, antitumoral, holding and antifungal withinthem immenseactivities novelty [7,8]. and The potentiality habitat of Sudan of identifying has remained new isolatesvirtually for untouched the production except for of life-savingvery few studies. drugs such as amphotericinSome areas in A. Sudan Marine were habitats found of to Sudan be rich were source founds of microbial to be a promising biodiversity, source holding for Streptomyceswithin them spp. diversityimmense and novelty a potential and potentiality source of of productionidentifying new of secondaryisolates for the metabolites production [of9]. life-saving Two actinomycin drugs D-producingsuch as amphotericin streptomycetes A. Marine from habitats Sudanese of Sudan soil have were been found characterized to be a promising and weresource found for Streptomyces to be diff erent fromspp. previous diversity actinomycin-producing and a potential source of species producti [10on]. of The secondary finding metabolites of distinct [9] phylogenetic Two actinomycin lineages D- and producing streptomycetes from Sudanese soil have been characterized and were found to be different the variation in the spatial distribution of clones suggests that selection pressures may vary over the from previous actinomycin-producing species [10]. The finding of distinct phylogenetic lineages and soil landscape [11]. the variation in the spatial distribution of clones suggests that selection pressures may vary over the Thissoil landscape study aimed [11]. to isolate and identify streptomycetes from desert and savanna ecozones in Sudan andThis to findstudy out aimed the to species isolate diversity and identify in the strept twoomycetes ecozones from using desert 16S and rRNA savanna gene ecozones analysis. in Sudan and to find out the species diversity in the two ecozones using 16S rRNA gene analysis. 2. Materials and Methods 2. Materials and Methods 2.1. Study Samples and Geographical Locations 2.1. Study Samples and Geographical Locations Soil samples were collected from different sites in two ecozones: (1) a desert and semi-desert ecozone,Soil and samples (2) a low were rainfall collected woodland from different savanna sites ecozone in two ecozones: (Figure 1(1)), accordinga desert and to semi-desert the ecological classificationecozone, byand Harrison (2) a low and rainfall Jackson woodland [12]. The savanna soil samples ecozone were(Figure collected 1), according during to the the dry ecological season from the surfaceclassification as well by as Harrison from 5–10 and Jackson cm deep. [12]. From The soil five samples sections, were 10 collected g within during each sitethe dry were season collected from with the surface as well as from 5–10 cm deep. From five sections, 10 g within each site were collected with a sterilized spatula. Soils were then merged, sieved, and thoroughly mixed. The composite sample a sterilized spatula. Soils were then merged, sieved, and thoroughly mixed. The composite sample was was transferred into sterile plastic bags, labeled, transported to the laboratory, and stored at 4 C transferred into sterile plastic bags, labeled, transported to the laboratory, and stored at 4 °C awaiting ◦ awaitinganalysis. analysis. FigureFigure 1. Map 1. Map of Sudan of Sudan showing showing soil soil collection collection sites and and ecological ecological zones zones (modified (modified from from the World the World ConservationConservation Union Union (IUCN) (IUCN) (http: (http://www.catsg.or//www.catsg.orgg/cheetah/04_country-information/North-African-/cheetah/04_country-information/North-African- regionsregions/sudan/sudan-sat2.jpg)./sudan/sudan-sat2.jpg). Int. J. Environ. Res. Public Health 2020, 17, 8749 3 of 10 2.2. Pretreatment of Soil Samples The Higher Nitrogen Content (HNC) medium [13] was used as a pretreatment method to assist the extraction and isolation of streptomycetes from soil. HNC medium was prepared and stored at 4 ◦C. After collection,
Recommended publications
  • Evaluation of Antimicrobial and Antiproliferative Activities of Actinobacteria Isolated from the Saline Lagoons of Northwest
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 EVALUATION OF ANTIMICROBIAL AND ANTIPROLIFERATIVE ACTIVITIES 2 OF ACTINOBACTERIA ISOLATED FROM THE SALINE LAGOONS OF 3 NORTHWEST PERU. 4 5 Rene Flores Clavo1,2,8, Nataly Ruiz Quiñones1,2,7, Álvaro Tasca Hernandez3¶, Ana Lucia 6 Tasca Gois Ruiz4, Lucia Elaine de Oliveira Braga4, Zhandra Lizeth Arce Gil6¶, Luis 7 Miguel Serquen Lopez7,8¶, Jonas Henrique Costa5, Taícia Pacheco Fill5, Marcos José 8 Salvador3¶, Fabiana Fantinatti Garboggini2. 9 10 1 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of 11 Campinas (UNICAMP), Campinas, SP, Brazil. 12 2 Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), 13 University of Campinas (UNICAMP), Paulínia, SP, Brazil. 14 3 University of Campinas, Department of plant Biology Bioactive Products, Institute of 15 Biology Campinas, Sao Paulo, Brazil. 16 4 University of Campinas, Faculty Pharmaceutical Sciences, Campinas, Sao Paulo, Brazil. 17 5 University of Campinas, Institute of Chemistry, Campinas, Sao Paulo, Brazil. 18 6 Private University Santo Toribio of Mogrovejo, Facultity of Human Medicine, Chiclayo, 19 Lambayeque Perú. 20 7 Direction of Investigation Hospital Regional Lambayeque, Chiclayo, Lambayeque, Perú. 21 8 Research Center and Innovation and Sciences Actives Multidisciplinary (CIICAM), 22 Department of Biotechnology, Chiclayo, Lambayeque, Perú. 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020.
    [Show full text]
  • Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing
    Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing Cytodifferentiation and Antibiotic Biosynthesis in Some Streptomyces Species Nikolaus Andres, Heinz Wolf*, and Hans Zähner Institut für Biologie II, Lehrstuhl für Mikrobiologie I der Universität, Auf der Morgenstelle 28, D-7400 Tübingen, Bundesrepublik Deutschland Z. Naturforsch. 45c, 851-855 (1990); received April 10, 1990 Streptomyces, Signal Metabolite, Hormaomycin, Cytodifferentiation, Antibiotic Overproduc­ tion, Antibiotic Activity Hormaomycin is a novel signal metabolite from Streptomyces griseoflavus W-384 with aerial mycelium-inducing activity. The compound has been identified as an unusual peptide lactone. Hormaomycin displays three biological activities: First, it initiates the development of aerial mycelia in some Streptomyces strains. The mechanism responsible for this activity is unknown. Secondly, hormaomycin is effective in stimulating antibiotic production in different Strepto­ myces species. Thus, it is possible to get overproduction of a variety of antibiotics by the use of hormaomycin in fermentation processes. Thirdly, it inhibits the growth of some bacteria. The sensitive bacteria are restricted to coryneform taxa such as Arthrobacter and Corynebacterium which are closely related to Streptomyces. Introduction tones, few other kinds of regulatory compounds Bacteria of the genus Streptomyces have evolved were investigated. B-factor, a derivative of adeno­ complicated differentiation mechanisms that in­ sine, stimulates rifamycin production in Nocardia clude not only changes in metabolism but also sp. [8], C-factor is a 34.5 kDa-protein that induces sporulation in Streptomyces griseus [9]. The changes in cellular structure. The streptomycete life cycle involves the formation of a substrate macrodiolide pamamycin stimulates aerial mycelia mycelium which, after a period of vegetative formation in Streptomyces alboniger[ 10, 11].
    [Show full text]
  • The Isolation of a Novel Streptomyces Sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil That Inhibits Multiresistant Pathogens and Yeasts
    applied sciences Article The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts Gerry A. Quinn 1,* , Alyaa M. Abdelhameed 2, Nada K. Alharbi 3, Diego Cobice 1 , Simms A. Adu 1 , Martin T. Swain 4, Helena Carla Castro 5, Paul D. Facey 6, Hamid A. Bakshi 7 , Murtaza M. Tambuwala 7 and Ibrahim M. Banat 1 1 School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (D.C.); [email protected] (S.A.A.); [email protected] (I.M.B.) 2 Department of Biotechnology, University of Diyala, Baqubah 32001, Iraq; [email protected] 3 Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11568, Saudi Arabia; [email protected] 4 Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Ab-erystwyth, Wales SY23 3EE, UK; [email protected] 5 Instituto de Biologia, Rua Outeiro de São João Batista, s/nº Campus do Valonguinho, Universidade Federal Fluminense, Niterói 24210-130, Brazil; [email protected] 6 Institute of Life Science, Medical School, Swansea University, Swansea, Wales SA2 8PP, UK; [email protected] 7 School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (H.A.B.); [email protected] (M.M.T.) * Correspondence: [email protected] Abstract: The World Health Organization recently stated that new sources of antibiotics are urgently Citation: Quinn, G.A.; Abdelhameed, required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative A.M.; Alharbi, N.K.; Cobice, D.; Adu, bacteria.
    [Show full text]
  • Anticancer Drug Discovery from Microbial Sources: the Unique Mangrove Streptomycetes
    molecules Review Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes Jodi Woan-Fei Law 1, Lydia Ngiik-Shiew Law 2, Vengadesh Letchumanan 1 , Loh Teng-Hern Tan 1, Sunny Hei Wong 3, Kok-Gan Chan 4,5,* , Nurul-Syakima Ab Mutalib 6,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; [email protected] (J.W.-F.L.); [email protected] (V.L.); [email protected] (L.T.-H.T.) 2 Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia; [email protected] 3 Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 5 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 6 UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (N.-S.A.M.); [email protected] (L.-H.L.) Academic Editor: Owen M. McDougal Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals.
    [Show full text]
  • Resistance‐Guided Isolation and Characterization of Antibiotic‐Producing Bacteria from River Sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md
    Arefa et al. BMC Microbiology (2021) 21:116 https://doi.org/10.1186/s12866-021-02175-5 RESEARCH ARTICLE Open Access Resistance‐guided isolation and characterization of antibiotic‐producing bacteria from river sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md. Ajijur Rahman1* Abstract Background: To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. Results: The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus,andBacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level.
    [Show full text]
  • Isolation and Characterization of Antagonistic Streptomyces Spp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Indian Journal of Geo-Marine Sciences Vol. 44(1), November 2015, pp. ------ Isolation and characterization of antagonistic Streptomyces spp. from marine sediments along the southwest coast of India # Rekha Devi Chakraborty*† , Kajal Chakraborty# & Bini Thilakan *Crustacean Fisheries Division, # Marine Biotechnology Division, Central Marine Fisheries Research Institute, Kochi - 682018, India. [E.Mail:[email protected] ] Received ; revised Antagonistic Streptomyces spp. were isolated from marine and mangrove sediment samples collected off Cochin, along the southwest coast of India. Sediment samples were pre-treated and following the soil dilution technique, samples were surface plated on starch casein agar and actinomycetes isolation agar. In the primary screening, 7.4% of presumptive actinomycetes (135 isolates) showed antibacterial activity against one or more bacterial fish pathogens and 3.7% of these cultures showed broad spectrum activity against the tested pathogens. Morphologically white powdery colonies with chalky white /grey appearance were selected as presumptive Streptomyces cultures. Isolates subjected to biochemical, physiological and 16S rDNA characters revealed the presence of three species of Streptomyces dominated by Streptomyces tanashiensis followed by S. viridobrunneus and S. bacillaris. Isolates characterized by 16S rDNA indicated the presence of 650 bp band in Streptomyces spp. Primary screening for activity against selected fish pathogens was done by a cross streak method using modified nutrient agar medium. Prominent isolates showing high zone of activity against the fish pathogens ranged 17-35 mm by the paper disc method. Enriched broth of selected isolates showing high antagonistic activity was screened for pharmacologically active agents revealed ethyl acetate fractions to be active against selected microbial pathogens.
    [Show full text]
  • Isolation and Identification of Actinomycetes Strains from Switzerland and Their Biotechnological Potential
    382 CHIMIA 2020, 74, No. 5 BUILDING BRIDGES BETWEEN BIOTECHNOLOGY AND CHEMISTRY – IN MEMORIAM ORESTE GHISALBA doi:10.2533/chimia.2020.382 Chimia 74 (2020) 382–390 © F. Arn, D. Frasson, I. Kroslakova, F. Rezzonico, J. F. Pothier, R. Riedl, M. Sievers Isolation and Identification of Actinomycetes Strains from Switzerland and their Biotechnological Potential Fabienne Arna§, David Frassonb§, Ivana Kroslakovab, Fabio Rezzonicoc, Joël F. Pothierc, Rainer Riedla, and Martin Sieversb* Abstract: Actinomycetes strains isolated from different habitats in Switzerland were investigated for production of antibacterial and antitumoral compounds. Based on partial 16S rRNA gene sequences, the isolated strains were identified to genus level. Streptomyces as the largest genus of Actinobacteria was isolated the most frequently. A screening assay using the OmniLog instrument was established to facilitate the detection of active compounds from actinomycetes. Extracts prepared from the cultivated strains able to inhibit Staphylococcus aureus and Escherichia coli were further analysed by HPLC and MALDI-TOF MS to identify the produced antibiotics. In this study, the bioactive compound echinomycin was identified from two isolated Streptomyces strains. Natural compounds similar to TPU-0037-C, azalomycin F4a 2-ethylpentyl ester, a derivative of bafilomycin A1, milbe- mycin-α8 and dihydropicromycin were detected from different isolated Streptomyces strains. Milbemycin-α8 showed cytotoxic activity against HT-29 colon cancer cells. The rare actinomycete, Micromonospora sp. Stup16_ C148 produced a compound that matches with the antibiotic bottromycin A2. The draft genome sequence from Actinokineospora strain B136.1 was determined using Illumina and nanopore-based technologies. The isolated strain was not able to produce antibacterial compounds under standard cultivation conditions.
    [Show full text]
  • Isolation and Screening of Antibiotic Producing Actinomycetes from Garden Soil of Sathyabama University, Chennai
    Vol 8, Issue 6, 2015 ISSN - 0974-2441 Research Article ISOLATION AND SCREENING OF ANTIBIOTIC PRODUCING ACTINOMYCETES FROM GARDEN SOIL OF SATHYABAMA UNIVERSITY, CHENNAI SUDHA SRI KESAVAN S*, HEMALATHA R Department of Biotechnology, Sathyabama University, Chennai - 600 119, Tamil Nadu, India. Email: [email protected] Received: 03 July 2015, Revised and Accepted: 24 August 2015 ABSTRACT Objectives: To isolate and screen actinomycetes with antibacterial and antifungal activity from garden soil samples of Sathyabama University, Chennai. Methods: Six soil samples were collected, serially diluted and plated on starch casein agar supplemented with nalidixic acid and cyclohexamide for inhibition of bacteria and fungi, respectively. Primary screening of actinomycetes isolates was done by following cross streak method against test organisms. Submerged fermentation was followed for the production of crude antibiotics. Agar well diffusion method was done to determine the antimicrobial activity of the crude extract. The minimum inhibitory concentrations (MIC) also quantified for the crude extract by microtiter plate assay. The promising isolate was characterized by conventional methods. Results: On primary screening, 13 out of 22 actinomycete isolates (59%) showed potential antimicrobial activity against one or more test bacteria and/or fungus. The isolate BN8 shows antagonistic activity against all the tested bacteria and fungi, isolates BN5 and BN16 were active against only bacteria not fungi, and isolate BN2 was active against all tested fungi. The zone of inhibition was measured by using the crude extracts of all the four isolates. The crude extract produced by isolate BN8 showed zone on inhibition against all the tested bacterium in 100 μg/ml against Pseudomonas aeruginosa (22 mm), Klebsiella pneumonia (25 mm), Bacillus cereus (20 mm), Staphylococcus aureus (22 mm), Escherichia coli (15 mm), Aspergillus flavus (14 mm), Aspergillus niger (20 mm), Aspergillus fumigatus (10 mm), respectively.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences In-vitro studies on biocontrol of Alternaria solani and Botrytis fabae. Mohamed E. Osman1, Amany A. Abo Elnasr1, Walla S.M. Abd El All2, and Eslam T. Mohamed1*. 1Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt. 2National Organization for Drug Control and Research (NODCAR), Giza, Egypt. ABSTRACT Thirty-two isolates of actinomycetes were isolated from tomato field infected with early blight disease at Giza Governorate, Egypt. The isolates were screened for the production of antifungal compounds against Alternaria solani and Botrytis fabae using Agar plug diffusion method. Three Streptomyces strains were the most potent for active metabolites production on starch nitrate medium. They were identified to be Streptomyces recifensis, Streptomyces gelaticus and Streptomyces nodosus. Streptomyces nodosus was the most potent antimicrobial producer strain. Highly active metabolites were extracted from Streptomyces nodosus. The active metabolite has been identified according to physicochemical characteristics. Elemental analysis (C, H, N, O & S), spectroscopic characteristics (UV absorbance, HPLC, FT-IR, 1H NMR and Mass spectrum), melting point, solubility and color have been investigated. These analyses indicate a suggested empirical formula of C47H73NO17. The purified antifungal agent shows high level of identity to the known antibiotic amphotericin B. The minimum inhibition concentrations of the purified antifungal agent were also determined. Keywords: Antifungal, Actinomycetes, Streptomyces nodosus, Alternaria solani, Botrytis fabae. https://doi.org/10.33887/rjpbcs/2020.11.2.12 *Corresponding author March – April 2020 RJPBCS 11(2) Page No. 93 ISSN: 0975-8585 INTRODUCTION One of the world's most popular cultivated crops is tomatoes (Solanum lycopersicum L., syn.
    [Show full text]
  • Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R.
    [Show full text]
  • (12) Patent Application Publication (10) Pub
    US 2003O181495A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0181495 A1 Lai et al. (43) Pub. Date: Sep. 25, 2003 (54) THERAPEUTIC METHODS EMPLOYING Division of application No. 09/565,665, filed on May DSULFIDE DERVATIVES OF 5, 2000, now Pat. No. 6,589,991. DTHIOCARBAMATES AND Division of application No. 09/103,639, filed on Jun. COMPOSITIONS USEFUL THEREFOR 23, 1998, now Pat. No. 6,093,743. (75) Inventors: Ching-San Lai, Carlsbad, CA (US); Publication Classification Vassil P. Vassilev, San Diego, CA (US) (51) Int. Cl." ..................... A61K 31/426; A61K 31/325; Correspondence Address: A61K 31/55; A61K 31/4545; FOLEY & LARDNER A61K 31/4025 P.O. BOX 80278 (52) U.S. Cl. .................... 514/369; 514/476; 514/217.03; SAN DIEGO, CA 92138-0278 (US) 514/316; 514/422 (57) ABSTRACT Assignee: Medinox, Inc. (73) The present invention provides novel combinations of (21) Appl. No.: 10/394,794 dithiocarbamate disulfide dimers with other active agents. In one method, the disulfide derivative of a dithiocarbamate is (22) Filed: Mar. 21, 2003 coadministered with a thiazolidinedione for the treatment of diabetes. In another embodiment, In another embodiment, invention combinations further comprise additional active Related U.S. Application Data agents Such as, for example, metformin, insulin, Sulfony lureas, and the like. In another embodiment, the present (60) Continuation-in-part of application No. 10/044,096, invention relates to compositions and formulations useful in filed on Jan. 11, 2002, now Pat. No. 6,596,770. Such therapeutic methods. Patent Application Publication Sep. 25, 2003 Sheet 1 of 6 US 2003/0181495 A1 90 Wavelength 340 - Fig.
    [Show full text]
  • Enzyme Profiles and Antimicrobial Activities of Bacteria Isolated from the Kadiini Cave, Alanya, Turkey
    Nihal Doğruöz-Güngör, Begüm Çandıroğlu, and Gülşen Altuğ. Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, v. 82, no. 2, p. 106-115. DOI:10.4311/2019MB0107 ENZYME PROFILES AND ANTIMICROBIAL ACTIVITIES OF BACTERIA ISOLATED FROM THE KADIINI CAVE, ALANYA, TURKEY Nihal Doğruöz-Güngör1,C, Begüm Çandıroğlu2, and Gülşen Altuğ3 Abstract Cave ecosystems are exposed to specific environmental conditions and offer unique opportunities for bacteriological studies. In this study, the Kadıini Cave located in the southeastern district of Antalya, Turkey, was investigated to doc- ument the levels of heterotrophic bacteria, bacterial metabolic avtivity, and cultivable bacterial diversity to determine bacterial enzyme profiles and antimicrobial activities. Aerobic heterotrophic bacteria were quantified using spread plates. Bacterial metabolic activity was investigated using DAPI staining, and the metabolical responses of the isolates against substrates were tested using VITEK 2 Compact 30 automated micro identification system. The phylogenic di- versity of fourty-five bacterial isolates was examined by 16S rRNA gene sequencing analyses. Bacterial communities were dominated by members of Firmicutes (86 %), Proteobacteria (12 %) and Actinobacteria (2 %). The most abundant genera were Bacillus, Staphylococcus and Pseudomonas. The majority of the cave isolates displayed positive proteo- lytic enzyme activities. Frequency of the antibacterial activity of the isolates was 15.5 % against standard strains of Bacillus subtilis, Staphylococcus epidermidis, S.aureus, and methicillin-resistant S.aureus. The findings obtained from this study contributed data on bacteriological composition, frequency of antibacterial activity, and enzymatic abilities regarding possible biotechnological uses of the bacteria isolated from cave ecosytems.
    [Show full text]