Hydrogenobacter Thermophilus Type Strain (TK-6T)

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogenobacter Thermophilus Type Strain (TK-6T) Standards in Genomic Sciences (2011) 4:131-143 DOI:10.4056/sigs.1463589 Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T) Ahmet Zeytun1,3, Johannes Sikorski2, Matt Nolan1, Alla Lapidus1, Susan Lucas1, James Han1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Galina Ovchinnikova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Olivier D. Ngatchou-Djao5, Miriam Land1,6, Loren Hauser1,6, Cynthia D. Jeffries1,6, Cliff Han1,3, John C. Detter1,3, Susanne Übler7, Manfred Rohde5, Brian J. Tindall2, Markus Göker2, Reinhard Wirth7, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz4, Philip Hugenholtz1,9, Hans-Peter Klenk2, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 Archaea Centre - University of Regensburg, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA 9 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia *Corresponding author: Nikos C. Kyrpides Keywords: strictly thermophilic, obligately chemolithoautotrophic, Gram-negative, aerobic, hydrogen-oxidizing, nonmotile, non sporeforming, rod shaped, Aquificaceae, Aquificae, GE- BA Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydro- genobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually effi- cient hydrogen-oxidizing ability of this strain, which results in a faster generation time com- pared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain de- rived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. Introduction Strain TK-6T (= DSM 6534 = JCM 7687 = NBRC based on page priority, a later heterotypic synonym 102181) is the type strain of Hydrogenobacter of Hydrogenobacter Kawasumi et al. 1984 [3], be- thermophilus, which in turn is the type species of cause of similar genetic, phenotypic and biochemical the genus Hydrogenobacter [1]. Currently, there are properties between the type strains of H. thermophi- four species in the genus Hydrogenobacter, one of lus and Calderobacterium hydrogenophilum. De- which has subsequently been reclassified as Hydro- spite the relatively high degree of 16S rRNA gene genobaculum acidophilum. Strain TK-6T was pre- sequence similarity between the two species, DNA- viously isolated by Kawasumi in 1980 [2]. The ge- DNA hybridization [4] indicates that they may be nus name Calderobacterium Kryukov et al. 1984 is, considered to be different species within the genus The Genomic Standards Consortium Hydrogenobacter thermophilus type strain (TK-6T) Hydrogenobacter [3]. The genus name Hydrogeno- yielded hits were 'hot' (6.5%), 'yellowstone' (5.8%), bacter is derived from the Latin words hydroge- 'spring' (5.6%), 'national/park' (5.4%) and num, meaning ‘that which produces water’ and bac- 'microbial' (3.9%). These keywords corroborate ter, referring to a rod that forms water when ex- with what is known from the ecology and physiology posed to oxygen. The species epithet thermophilus of strain TK-6T [1,2]. The two most frequent key- derives from the Greek words therme, heat, and words within the labels of environmental samples philus, loving, meaning a heat-loving organism. which yielded hits of a higher score than the highest Strain TK-6T was isolated from hot springs located scoring species were 'aquificales' (34.1%) and on the Izu peninsula in Japan [1]. Some strains of H. 'hot/spring' (32.9%). thermophilus were also isolated from a geothermal Figure 1 shows the phylogenetic neighborhood of spring in Tuscany, Italy [5,6]. Other strains similar H. thermophilus TK-6T in a 16S rRNA based tree. to H. thermophilus have been isolated from differ- The sequence of the single 16S rRNA gene in the ent environments, including a saline hot spring in genome differs by one nucleotide from the pre- Japan for 'H. halophilus' [7], and a volcanic area in viously published 16S rRNA sequence (Z30214), Iceland for Hydrogenobacter strain H-1 [8], strains which contains 31 ambiguous base calls. T3, T13 and T171 [5]. Until 1985, H. thermophilus Cells of strain TK-6T are Gram-negative, nonmotile was the only obligate autotroph among all aerobic straight rods of 0.3 to 0.5 µm by 2.0 to 3.0 µm oc- hydrogen-oxidizing bacteria reported so far [9,10]. curring singly or in pairs [1] (Figure 2 and Table 1). The activities of enzymes such as NADH:ferredoxin Molecular oxygen is used as an electron acceptor reductase (EC 1.18.1.3) and NAD-reducing hydro- for respiratory metabolism [1]. However, strain genase (EC 1.12.1.2) were studied extensively in TK-6T can grow anaerobically on nitrate as an elec- strain TK-6T [11]. Another genome sequence of a tron acceptor when molecular hydrogen is used as strain derived from the original isolate, presumably an energy source [33]. Strain TK-6T does not form held in the lab of one of the co-authors, has been colonies on agar plates, but does form colonies on published recently without much metadata [12]. plates solidified with GELRITE, a polysaccharide Here we present a summary classification and a set produced by Pseudomonas species [34]. The optim- of features for H. thermophilus strain TK-6T, togeth- al temperature for autotrophic growth on H -O - er with the description of the complete genomic 2 2 CO was between 70ºC and 75°C, no growth being sequencing and annotation. 2 observed at 37°C or 80°C [1]. A neutral pH 7.2 was suitable for growth of the strain TK-6T [1]. One im- Classification and features portant feature of the strain TK-6T is a generation The 16S rRNA gene sequence of the strain TK-6T time that is faster by about 1h compared to other (Z30214) shows the highest degree of sequence autotrophs, suggesting that this strain has an effi- identity, 97%, to the type strain of H. hydrogenophi- cient hydrogen-oxidizing ability [35]. No spore lus [6]. Further analysis shows 96% 16S rRNA gene formation was observed [1]. Strain TK-6T assimi- sequence identity with an uncultured Aquificales lates carbon dioxide via the reductive tricarboxylic bacterium clone pKA (AF453505) from a near- acid cycle [10,36,37]. This is also true when the neutral thermal spring in Kamchatka, Russia. The strain TK-6T grows anaerobically on nitrate [10]. single genomic 16S rRNA sequence of H. thermophi- Cytochromes b and c were found in strain TK-6T lus was compared with the most recent release of [1]. Interestingly, cytochrome C552 of H. thermophi- the Greengenes database [13] using NCBI BLAST lus TK-6T is extremely thermostable and can re- under default values and the relative frequencies of store its conformation even after being autoclaved taxa and keywords, weighted by BLAST scores, were for 10 minutes at 121ºC [30]. One of the denitrifica- determined. The five most frequent genera were tion enzymes of the strain TK-6T, cytochrome cd1 Hydrogenobacter (52.4%), Thermocrinis (18.8%), nitrite reductase has been isolated and analyzed Aquifex (10.3%), Sulfurihydrogenibium (6.2%) and [38]. Optimum temperature for the activity of this Hydrogenivirga (5.7%). Regarding hits to sequences enzyme was found to range between 70ºC-75ºC from other members of the genus, the average iden- [38]. Moreover, this enzyme was found to be of the tity within HSPs (high-scoring segment pairs) was heme cd1-type [33]. Ammonium and nitrate were 96.1%, whereas the average coverage by HSPs was utilized as nitrogen sources [1,33], but not urea and 93.5%. The species yielding the highest score was H. N2. Growth was inhibited by nitrite [1]. Nitrate re- hydrogenophilus. The five most frequent keywords duction and peroxidase were positive, while urease within the labels of environmental samples which 132 Standards in Genomic Sciences Zeytun et al. was negative [1]. Strain TK-6T could not utilize any in the genome. These metabolic deficits were con- of the following as sole sources of energy or carbon: sidered to be partially responsible for the obligate glucose, fructose, galactose, maltose, sucrose, xylose, autotrophy of the strain TK-6T [44]. Activities of raffinose, L-rhamnose, D-mannose, D-trehalose, phosphoenolpyruvate synthetase and pyruvate mannitol, starch, formate, acetate, propionate, pyru- carboxylase were also detected [10]. The reverse vate, succinate, malate, citrate, fumarate, maleate, reactions (dehydrogenase reacti - glycolate, gluconate, DL- -ketoglutarate, p- ketoglutarate synthase and pyruvate synthase hydroxybenzoate, DL-polyhydroxybutyrate, betaine, could be detected by using methyl viologenons) of as anα methanol, ethanol, methylamine,lactate, α dimethylamine, electron acceptor [10]. Cloning experiments of the trimethylamine, glycine, L-glutamate, L-aspartate, L- hydrogenase genes from the strain TK-6T revealed serine, L-leucine, L-valine, L-tryptophan, L-histidine, that this strain has at least four clusters of hydro- L-alanine, L-lysine, L-proline, L-arginine, nutrient genase genes [35]. Strain TK-6T assimilates ammo- broth, yeast extract-malt extract medium, and brain nium using glutamine synthetase (GS type I) [45].
Recommended publications
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Qiuyuan Huang Candidate for the Degree: Doctor of Philosophy _______________________________________ Hailiang Dong, Director ________________________________________ Yildirim Dilek, Reader ________________________________________ Jonathan Levy, Reader ______________________________________ Chuanlun Zhang, External examiner ______________________________________ Annette Bollmann, Graduate School Representative ABSTRACT GEOMICROBIAL INVESTIGATIONS ON EXTREME ENVIRONMENTS: LINKING GEOCHEMISTRY TO MICROBIAL ECOLOGY IN TERRESTRIAL HOT SPRINGS AND SALINE LAKES by Qiuyuan Huang Terrestrial hot springs and saline lakes represent two extreme environments for microbial life and constitute an important part of global ecosystems that affect the biogeochemical cycling of life-essential elements. Despite the advances in our understanding of microbial ecology in the past decade, important questions remain regarding the link between microbial diversity and geochemical factors under these extreme conditions. This dissertation first investigates a series of hot springs with wide ranges of temperature (26-92oC) and pH (3.72-8.2) from the Tibetan Plateau in China and the Philippines. Within each region, microbial diversity and geochemical conditions were studied using an integrated approach with 16S rRNA molecular phylogeny and a suite of geochemical analyses. In Tibetan springs, the microbial community was dominated by archaeal phylum Thaumarchaeota
    [Show full text]
  • BEING Aquifex Aeolicus: UNTANGLING a HYPERTHERMOPHILE‘S CHECKERED PAST
    BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST by Robert J.M. Eveleigh Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia December 2011 © Copyright by Robert J.M. Eveleigh, 2011 DALHOUSIE UNIVERSITY DEPARTMENT OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled ―BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST‖ by Robert J.M. Eveleigh in partial fulfillment of the requirements for the degree of Master of Science. Dated: December 13, 2011 Co-Supervisors: _________________________________ _________________________________ Readers: _________________________________ ii DALHOUSIE UNIVERSITY DATE: December 13, 2011 AUTHOR: Robert J.M. Eveleigh TITLE: BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST DEPARTMENT OR SCHOOL: Department of Computational Biology and Bioinformatics DEGREE: MSc CONVOCATION: May YEAR: 2012 Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author‘s written permission. The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged. _______________________________ Signature of Author iii TABLE OF CONTENTS List of Tables ....................................................................................................................
    [Show full text]
  • A Method for Achieving Complete Microbial Genomes and Improving Bins from Metagenomics Data
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.979740; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A method for achieving complete microbial genomes and improving 2 bins from metagenomics data 3 4 Authors: 5 Lauren M. Lui1, Torben N. Nielsen1, Adam P. Arkin1,2,3* 6 7 Affiliations: 8 1Environmental Genomics and Systems Biology Division, Lawrence Berkeley National 9 Laboratory, Berkeley, CA, USA. 10 2Department of Bioengineering, University of California, Berkeley, CA, USA 11 3Innovative Genomics Institute, Berkeley, CA, USA 12 13 *Correspondence: [email protected] 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.979740; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 22 Abstract 23 Metagenomics facilitates the study of the genetic information from uncultured microbes 24 and complex microbial communities. Assembling complete microbial genomes (i.e., 25 circular with no misassemblies) from metagenomics data is difficult because most 26 samples have high organismal complexity and strain diversity. Less than 100 27 circularized bacterial and archaeal genomes have been assembled from metagenomics 28 data despite the thousands of datasets that are available.
    [Show full text]
  • Extremophiles 90C
    Limits of Life on Earth Archaea and bacteria can thrive in extreme environment (heat, cold, acidity, high pressure) and can use unusual energy source Distinguish between growth and survival (e.g., seeds, spores) Analogs for extraterrestrial environments Origin of life in extreme environments? Origin of Yellowstone National Park pH scale pH 3 Temperature 60 C Rich in sulfur Nymph Creek Hydrogenobacter gets energy by reacting oxygen from the air with hydrogen gas and/or sulfide in the water. It uses the energy to make carbohydrate (sugar) from atmospheric carbon dioxide and hydrogen in the water: CO2 + 2 H2 = CH2O + H2O (where CH2O is part of a carbohydrate). Nymph Creek flowing into Nymph Lake, Yellowstone National Park; green mat of Cyanidium (pH 3, 40 to 45oC) Nymph Lake Hydrogenobacter acidocaldarius Hyperthermophile (T > 80 C), pH ≈ 3 H2 metabolism, low nutrient tolerant Hot springs in YNP, New Zealand & Australia + oil wells “Boiling Lake” Grand Prismatic 70 C Filled with thermophiles Sulphobus: optimum T~80C Orange “mats” of pigmented Minimum 60 C, maaximum extremophiles 90C. Lives by oxidizing sulfur (carotenoids) which is abundant near hot springs Adaptations of Thermophilies Similar to “ordinary” archaea and bacteria (DNA, same amino acids) Subtle differences: Cell membranes are made of lipids that are more stable to high temperature Additional enzyme (reverse DNA gyrase) causes DNA to fold up in a way that is more stable against heat The absolute maximum temperature is around 150 C--- DNA breaks up very readily above this temperature Slow growth of bacteria in thermafrost down to -20C YNP-Octopus Spring (White Creek area) Microbial mat.
    [Show full text]
  • Thermocrinis Jamiesonii Sp. Nov., a Thiosulfate-Oxidizing, Autotropic Thermophile Isolated from a Geothermal Spring Jeremy A
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 4769–4775 DOI 10.1099/ijsem.0.000647 Thermocrinis jamiesonii sp. nov., a thiosulfate-oxidizing, autotropic thermophile isolated from a geothermal spring Jeremy A. Dodsworth,1,2 John C. Ong,2 Amanda J. Williams,23 Alice C. Dohnalkova3 and Brian P. Hedlund2 Correspondence 1Department of Biology, California State University, San Bernardino, CA 92407, USA Jeremy A. Dodsworth 2School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA [email protected] 3Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70–85 8C with an optimum at 80 8C, at pH 6.50–7.75 with an optimum at pH 7.25, with 0.5–8 % oxygen with an optimum at 1–2 % and with j200 mM NaCl. The doubling time under optimal growth 2 conditions was 1.3 h, with a final mean cell density of 6.2¡0.56107 cells ml 1. Non-motile, rod-shaped cells 1.4–2.460.4–0.6 mm in size occurred singly or in pairs. The major cellular fatty acids (.5 % of the total) were C20 : 1v9c,C18 : 0,C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity (j97.10 %) and in silico estimated DNA–DNA hybridization values (j18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species.
    [Show full text]
  • Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Revea
    ORIGINAL RESEARCH ARTICLE published: 29 May 2013 doi: 10.3389/fmicb.2013.00084 Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three Aquificales lineages CristinaTakacs-Vesbach1*,William P.Inskeep 2*, Zackary J. Jay 2, Markus J. Herrgard 3, Douglas B. Rusch4, Susannah G.Tringe 5, Mark A. Kozubal 2, Natsuko Hamamura6, Richard E. Macur 2, Bruce W. Fouke 7, Anna-Louise Reysenbach8,Timothy R. McDermott 2, Ryan deM. Jennings 2, Nicolas W. Hengartner 9 and Gary Xie 10 1 Department of Biology, University of New Mexico, Albuquerque, NM, USA 2 Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University, Bozeman, MT, USA 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 4 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 5 Department of Energy-Joint Genome Institute, Walnut Creek, CA, USA 6 Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan 7 Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA 8 Department of Biology, Portland State University, Portland, OR, USA 9 Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA 10 Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA Edited by: The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems world- Martin G. Klotz, University of North wide and are considered one of the earliest lineages of the domain Bacteria. We analyzed Carolina at Charlotte, USA metagenome sequence obtained from six thermal “filamentous streamer” communities Reviewed by: Olivia Mason, Florida State University, (s40 Mbp per site), which targeted three different groups of Aquificales found in Yellow- USA stone National Park (YNP).
    [Show full text]
  • Thermostable Rnase P Rnas Lacking P18 Identified in the Aquificales
    JOBNAME: RNA 12#11 2006 PAGE: 1 OUTPUT: Wednesday September 27 16:21:46 2006 csh/RNA/125782/rna2428 Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Thermostable RNase P RNAs lacking P18 identified in the Aquificales MICHAL MARSZALKOWSKI,1 JAN-HENDRIK TEUNE,2 GERHARD STEGER,2 ROLAND K. HARTMANN,1 and DAGMAR K. WILLKOMM1 1Philipps-Universita¨t Marburg, Institut fu¨r Pharmazeutische Chemie, D-35037 Marburg, Germany 2Heinrich-Heine-Universita¨tDu¨sseldorf, Institut fu¨r Physikalische Biologie, D-40225 Du¨sseldorf, Germany ABSTRACT The RNase P RNA (rnpB) and protein (rnpA) genes were identified in the two Aquificales Sulfurihydrogenibium azorense and Persephonella marina. In contrast, neither of the two genes has been found in the sequenced genome of their close relative, Aquifex aeolicus. As in most bacteria, the rnpA genes of S. azorense and P. marina are preceded by the rpmH gene coding for ribosomal protein L34. This genetic region, including several genes up- and downstream of rpmH, is uniquely conserved among all three Aquificales strains, except that rnpA is missing in A. aeolicus. The RNase P RNAs (P RNAs) of S. azorense and P. marina are active catalysts that can be activated by heterologous bacterial P proteins at low salt. Although the two P RNAs lack helix P18 and thus one of the three major interdomain tertiary contacts, they are more thermostable than Escherichia coli P RNA and require higher temperatures for proper folding. Related to their thermostability, both RNAs include a subset of structural idiosyncrasies in their S domains, which were recently demonstrated to determine the folding properties of the thermostable S domain of Thermus thermophilus P RNA.
    [Show full text]
  • Exploring the Taxonomical and Functional Profile of As Burgas Hot Spring Focusing on Thermostable Β-Galactosidases
    www.nature.com/scientificreports OPEN Exploring the taxonomical and functional profle of As Burgas hot spring focusing on thermostable β‑galactosidases María‑Eugenia DeCastro1, Michael P. Doane2,4, Elizabeth Ann Dinsdale2,3, Esther Rodríguez‑Belmonte1 & María‑Isabel González‑Siso1* In the present study we investigate the microbial community inhabiting As Burgas geothermal spring, located in Ourense (Galicia, Spain). The approximately 23 Gbp of Illumina sequences generated for each replicate revealed a complex microbial community dominated by Bacteria in which Proteobacteria and Aquifcae were the two prevalent phyla. An association between the two most prevalent genera, Thermus and Hydrogenobacter, was suggested by the relationship of their metabolism. The high relative abundance of sequences involved in the Calvin–Benson cycle and the reductive TCA cycle unveils the dominance of an autotrophic population. Important pathways from the nitrogen and sulfur cycle are potentially taking place in As Burgas hot spring. In the assembled reads, two complete ORFs matching GH2 beta‑galactosidases were found. To assess their functional characterization, the two ORFs were cloned and overexpressed in E. coli. The pTsbg enzyme had activity towards o‑Nitrophenyl‑β‑d‑galactopyranoside (ONPG) and p‑Nitrophenyl‑ β‑d‑fucopyranoside, with high thermal stability and showing maximal activity at 85 °C and pH 6, nevertheless the enzyme failed to hydrolyze lactose. The other enzyme, Tsbg, was unable to hydrolyze even ONPG or lactose. This fnding highlights the challenge of fnding novel active enzymes based only on their sequence. Termophiles, growing optimally at temperatures over 55 °C, are found in hot environments such as fumaroles, hydrothermal vents, hot springs, or deserts1–4.
    [Show full text]
  • Widespread Distribution of Archaeal Reverse Gyrase in Thermophilic Bacteria Suggests a Complex History of Vertical Inheritance and Lateral Gene Transfers
    Archaea 2, 83–93 © 2006 Heron Publishing—Victoria, Canada Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers CÉLINE BROCHIER-ARMANET1,3 and PATRICK FORTERRE2,4 1 EA 3781 EGEE (Evolution Génome Environnement), Université de Provence Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo 13331, Marseille Cedex 3, France 2 Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France 3 Corresponding author ([email protected]) 4 Unité Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Received September 21, 2005; accepted May 26, 2006; published online August 18, 2006 Summary Reverse gyrase, an enzyme of uncertain funtion, Introduction is present in all hyperthermophilic archaea and bacteria. Previ- Reverse gyrase, an enzyme first discovered in the hyper- ous phylogenetic studies have suggested that the gene for re- thermophilic archaeon Sulfolobus acidocaldarius, is formed verse gyrase has an archaeal origin and was transferred later- by the combination of an N-terminal helicase module and a ally (LGT) to the ancestors of the two bacterial hyperther- C-terminal topoisomerase module (see Declais et al. 2000 for mophilic phyla, Thermotogales and Aquificales. Here, we per- a review). Comparative genomic analysis performed 4 years formed an in-depth analysis of the evolutionary history of ago showed that reverse gyrase was at that time the only pro- reverse gyrase in light of genomic progress. We found genes tein specific for hyperthermophiles (i.e., present in all hyper- coding for reverse gyrase in the genomes of several ther- thermophiles and absent in all non-hyperthermophiles) (For- mophilic bacteria that belong to phyla other than Aquificales and Thermotogales.
    [Show full text]
  • Novel Nitrite Reductase Domain Structure Suggests a Chimeric
    Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi Sarah Schwartz1, Lily Momper1, L. Thiberio Rangel1, Cara Magnabosco2, Jan Amend3, and Gregory Fournier1 1Massachusetts Institute of Technology 2ETH Zurich 3University of Southern California June 11, 2021 Abstract Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of Phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported nitric oxide reductase subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported. RESEARCH PAPER TITLE: Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi SHORT TITLE: Novel Denitrification Architecture in Chloroflexi Sarah L. Schwartz1,2*, Lily M. Momper2,3, L. Thiberio Rangel2, Cara Magnabosco4, Jan P. Amend5,6, and Gregory P. Fournier2 1. Microbiology Graduate Program, Massachusetts Institute of Technology 2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology 3. Exponent, Inc., Pasadena, CA 4. Department of Earth Sciences, ETH Zurich 5. Department of Earth Sciences, University of Southern California 6. Department of Biological Sciences, University of Southern California *Correspondence: [email protected], +1 (415) 497-1747 SUMMARY Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from ma- rine and terrestrial ecosystems.
    [Show full text]
  • Metagenome-Assembled Genomes Provide New Insight Into The
    www.nature.com/scientificreports Corrected: Author Correction OPEN Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal Received: 17 August 2018 Accepted: 17 January 2019 pools in Kamchatka, Russia Published online: 28 February 2019 Laetitia G. E. Wilkins1,2, Cassandra L. Ettinger 2, Guillaume Jospin2 & Jonathan A. Eisen 2,3,4 Culture-independent methods have contributed substantially to our understanding of global microbial diversity. Recently developed algorithms to construct whole genomes from environmental samples have further refned, corrected and revolutionized understanding of the tree of life. Here, we assembled draft metagenome-assembled genomes (MAGs) from environmental DNA extracted from two hot springs within an active volcanic ecosystem on the Kamchatka peninsula, Russia. This hydrothermal system has been intensively studied previously with regard to geochemistry, chemoautotrophy, microbial isolation, and microbial diversity. We assembled genomes of bacteria and archaea using DNA that had previously been characterized via 16S rRNA gene clone libraries. We recovered 36 MAGs, 29 of medium to high quality, and inferred their placement in a phylogenetic tree consisting of 3,240 publicly available microbial genomes. We highlight MAGs that were taxonomically assigned to groups previously underrepresented in available genome data. This includes several archaea (Korarchaeota, Bathyarchaeota and Aciduliprofundum) and one potentially new species within the bacterial genus Sulfurihydrogenibium. Putative functions in both pools were compared and are discussed in the context of their diverging geochemistry. This study adds comprehensive information about phylogenetic diversity and functional potential within two hot springs in the caldera of Kamchatka. Terrestrial hydrothermal systems are of great interest to the general public and to scientists alike due to their unique and extreme conditions.
    [Show full text]