Evidence for Cooperative Mineralization of Diuron by Arthrobacter Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arthrobacter Paludis Sp. Nov., Isolated from a Marsh
TAXONOMIC DESCRIPTION Zhang et al., Int J Syst Evol Microbiol 2018;68:47–51 DOI 10.1099/ijsem.0.002426 Arthrobacter paludis sp. nov., isolated from a marsh Qi Zhang,1 Mihee Oh,1 Jong-Hwa Kim,1 Rungravee Kanjanasuntree,1 Maytiya Konkit,1 Ampaitip Sukhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A novel Gram-stain-positive, strictly aerobic, non-endospore-forming bacterium, designated CAU 9143T, was isolated from a hydric soil sample collected from Seogmo Island in the Republic of Korea. Strain CAU 9143T grew optimally at 30 C, at pH 7.0 and in the presence of 1 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain CAU 9143T belonged to the genus Arthrobacter and was closely related to Arthrobacter ginkgonis SYP-A7299T (97.1 % T similarity). Strain CAU 9143 contained menaquinone MK-9 (H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two glycolipids and two unidentified phospholipids as the major polar lipids. The whole-cell sugars were glucose and galactose. The peptidoglycan type was A4a (L-Lys–D-Glu2) and the major cellular fatty T acid was anteiso-C15 : 0. The DNA G+C content was 64.4 mol% and the level of DNA–DNA relatedness between CAU 9143 and the most closely related strain, A. ginkgonis SYP-A7299T, was 22.3 %. Based on phenotypic, chemotaxonomic and genetic data, strain CAU 9143T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter paludis sp. nov. is proposed. The type strain is CAU 9143T (=KCTC 13958T,=CECT 8917T). -
S41598-018-29442-2 1
www.nature.com/scientificreports OPEN Actinobacteria associated with Chinaberry tree are diverse and show antimicrobial activity Received: 28 February 2018 Ke Zhao1, Jing Li1, Meiling Shen1, Qiang Chen1, Maoke Liu2, Xiaolin Ao1, Decong Liao1, Accepted: 10 July 2018 Yunfu Gu1, Kaiwei Xu1, Menggen Ma1, Xiumei Yu1, Quanju Xiang1, Ji Chen1, Xiaoping Zhang1 & Published: xx xx xxxx Petri Penttinen 3,4 Many actinobacteria produce secondary metabolites that include antimicrobial compounds. Since most of the actinobacteria cannot be cultivated, their antimicrobial potential awaits to be revealed. We hypothesized that the actinobacterial endophyte communities inside Melia toosendan (Chinaberry) tree are diverse, include strains with antimicrobial activity, and that antimicrobial activity can be detected using a cultivation independent approach and co-occurrence analysis. We isolated and identifed actinobacteria from Chinaberry, tested their antimicrobial activities, and characterized the communities using amplicon sequencing and denaturing gradient gel electrophoresis as cultivation independent methods. Most of the isolates were identifed as Streptomyces spp., whereas based on amplicon sequencing the most abundant OTU was assigned to Rhodococcus, and Tomitella was the most diverse genus. Out of the 135 isolates, 113 inhibited the growth of at least one indicator organism. Six out of the 7577 operational taxonomic units (OTUs) matched 46 cultivated isolates. Only three OTUs, Streptomyces OTU4, OTU11, and OTU26, and their corresponding isolate groups were available for comparing co-occurrences and antimicrobial activity. Streptomyces OTU4 correlated negatively with a high number of OTUs, and the isolates corresponding to Streptomyces OTU4 had high antimicrobial activity. However, for the other two OTUs and their corresponding isolate groups there was no clear relation between the numbers of negative correlations and antimicrobial activity. -
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated. -
Tales of Diversity: Genomic and Morphological Characteristics of Forty-Six Arthrobacter Phages
RESEARCH ARTICLE Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages Karen K. Klyczek1☯, J. Alfred Bonilla1☯, Deborah Jacobs-Sera2☯, Tamarah L. Adair3, Patricia Afram4, Katherine G. Allen5, Megan L. Archambault1, Rahat M. Aziz6, Filippa G. Bagnasco3, Sarah L. Ball7, Natalie A. Barrett8, Robert C. Benjamin6, Christopher J. Blasi9, Katherine Borst10, Mary A. Braun10, Haley Broomell4, Conner B. Brown5, Zachary S. Brynell3, Ashley B. Bue1, Sydney O. Burke3, William Casazza10, Julia A. Cautela8, Kevin Chen10, Nitish S. Chimalakonda3, Dylan Chudoff4, Jade A. Connor3, Trevor S. Cross4, Kyra N. Curtis3, Jessica A. Dahlke1, Bethany M. Deaton3, Sarah J. Degroote1, Danielle M. DeNigris8, Katherine C. DeRuff9, Milan Dolan5, David Dunbar4, Marisa a1111111111 S. Egan8, Daniel R. Evans10, Abby K. Fahnestock3, Amal Farooq6, Garrett Finn1, a1111111111 Christopher R. Fratus3, Bobby L. Gaffney5, Rebecca A. Garlena2, Kelly E. Garrigan8, Bryan 3 5 2 4 a1111111111 C. Gibbon , Michael A. Goedde , Carlos A. Guerrero Bustamante , Melinda Harrison , 8 11 10 6 a1111111111 Megan C. Hartwell , Emily L. Heckman , Jennifer Huang , Lee E. Hughes , Kathryn 8 8 10 3 a1111111111 M. Hyduchak , Aswathi E. Jacob , Machika Kaku , Allen W. Karstens , Margaret A. Kenna11, Susheel Khetarpal10, Rodney A. King5, Amanda L. Kobokovich9, Hannah Kolev10, Sai A. Konde3, Elizabeth Kriese1, Morgan E. Lamey8, Carter N. Lantz3, Jonathan S. Lapin2, Temiloluwa O. Lawson1, In Young Lee2, Scott M. Lee3, Julia Y. Lee- Soety8, Emily M. Lehmann1, Shawn C. London8, A. Javier Lopez10, Kelly C. Lynch5, Catherine M. Mageeney11, Tetyana Martynyuk8, Kevin J. Mathew6, Travis N. Mavrich2, OPEN ACCESS Christopher M. McDaniel5, Hannah McDonald10, C. Joel McManus10, Jessica E. -
GRAS Notice 624: D-Allulose 3-Epimerase from Arthrobacter
GRAS Notice (GRN) No. 624 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION Mo•·gan Lewis Morgan, Lewis & Bockius LLP 111 1 Pennsylvania Aven ue, NW G- RN ooo&~Y Washington, DC 20004 Tel. +1.202.739.3000 Fax : +1.202.739.3001 www. morganl ewis. com Gary L. Yingling Senior Co unsel +1 .202 .739.5610 JAN ~ 8 : ·s gyingling@morgan lewis.com OFFICE OF FOOD ADDITIVE SAFETY January 19, 2016 VIA FEDERAL EXPRESS Dr. Antonia Mattia Director Division ofBiotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 51 00 Paint Branch Parkway College Park, MD 20740-3835 Re: GRAS Notification forD-allulose 3-epimerase from Arthrobacter globi(ormis M30 expressed in Escherichia coli K-12 W3110 Dear Dr. Mattia: On behalf of Matsutani Chemical Industry Co. Ltd (" MCI"), we are submitting under cover of this letter three paper copies and one eCopy ofMCI's generally recognized as safe (" GRAS") notification for its D-allulose 3-epimerase from Arthrobacter globiformis M30 expressed in Escherichia coli K-12 W311 0. The electronic copy is provided on a virus-free CD , and is an exact copy of the paper submission. MCI has determined through scientific procedures that its D allulose 3-epimerase enzyme preparation is GRAS for use as a processing aid in the production of D-allulose. The Escherichia coli K -12 W311 0 D-allulose 3 -epimerase preparation is intended to be used in the production of D-allulose and other keto sugars . -
A Genome Compendium Reveals Diverse Metabolic Adaptations of Antarctic Soil Microorganisms
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239558; this version posted August 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. August 3, 2020 A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms Maximiliano Ortiz1 #, Pok Man Leung2 # *, Guy Shelley3, Marc W. Van Goethem1,4, Sean K. Bay2, Karen Jordaan1,5, Surendra Vikram1, Ian D. Hogg1,7,8, Thulani P. Makhalanyane1, Steven L. Chown6, Rhys Grinter2, Don A. Cowan1 *, Chris Greening2,3 * 1 Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0002, South Africa 2 Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia 3 School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia 4 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 6 Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia 7 School of Science, University of Waikato, Hamilton 3240, New Zealand 8 Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay, NU X0B 0C0, Canada # These authors contributed equally to this work. * Correspondence may be addressed to: A/Prof Chris Greening ([email protected]) Prof Don A. Cowan ([email protected]) Pok Man Leung ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239558; this version posted August 6, 2020. -
2018-02-20-A.Globiforum FSAR-EN
Final Screening Assessment for Arthrobacter globiformis strain ATCC 8010 Environment and Climate Change Canada Health Canada February 2018 Cat. No.: En14-312/2018E-PDF ISBN 978-0-660-24723-6 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français ii Synopsis Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of Arthrobacter globiformis (A. globiformis) strain ATCC 8010. A. globiformis strain ATCC 8010 is a soil bacterium that has characteristics in common with other strains of the species. -
Computer Assisted Classification and Identification of Actinomycetes
Computer Assisted Classification and Identification of Actinomycetes Jongsik Chun (B.Sc. Microbiology, Seoul National University, Seoul, Korea) NEWCASTLE UNIVERSITY LIERARY 094 52496 3 Thesis submitted in accordance with the requirements of the University of Newcastle upon Tyne for the Degree of Doctor of Philosophy Department of Microbiology The Medical School Newcastle upon Tyne England-UK July 1995 ABSTRACT Three computer software packages were written in the C++ language for the analysis of numerical phenetic, 16S rRNA sequence and pyrolysis mass spectrometric data. The X program, which provides routines for editing binary data, for calculating test error, for estimating cluster overlap and for selecting diagnostic and selective tests, was evaluated using phenotypic data held on streptomycetes. The AL16S program has routines for editing 16S rRNA sequences, for determining secondary structure, for finding signature nucleotides and for comparative sequence analysis; it was used to analyse 16S rRNA sequences of mycolic acid-containing actinomycetes. The ANN program was used to generate backpropagation-artificial neural networks using pyrolysis mass spectra as input data. Almost complete 1 6S rDNA sequences of the type strains of all of the validly described species of the genera Nocardia and Tsukamurel!a were determined following isolation and cloning of the amplified genes. The resultant nucleotide sequences were aligned with those of representatives of the genera Corynebacterium, Gordona, Mycobacterium, Rhodococcus and Turicella and phylogenetic trees inferred by using the neighbor-joining, least squares, maximum likelihood and maximum parsimony methods. The mycolic acid-containing actinomycetes formed a monophyletic line within the evolutionary radiation encompassing actinomycetes. The "mycolic acid" lineage was divided into two clades which were equated with the families Coiynebacteriaceae and Mycobacteriaceae. -
Complete Genome Sequence of Drought Tolerant Plant Growth
Korean Journal of Microbiology (2019) Vol. 55, No. 3, pp. 300-302 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.9087 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408 Susmita Das Nishu, Hye Rim Hyun, and Tae Kwon Lee* Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea 내건성 식물생장 촉진 균주인 Glutamicibacter halophytocola DR408의 유전체 분석 수스미타 다스 니슈 ・ 현혜림 ・ 이태권* 연세대학교 환경공학부 (Received August 9, 2019; Revised September 5, 2019; Accepted September 5, 2019) Glutamicibacter halophytocola DR408 isolated from the rhi- spheric soil of the soybean (Glycine max) exposed to periodic zospheric soil of soybean plant at Jecheon showed drought drought in Jecheon, Republic of Korea. Phylogenetic analysis tolerance and plant growth promotion capacity. The complete of its 16S rRNA gene sequence revealed that the strain DR408 genome of strain DR408 comprises 3,770,186 bp, 60.2% GC- closed to genus Glutamicibacter and had the highest similarity content, which include 3,352 protein-coding genes, 64 tRNAs, to Glutamicibacter halophytocola KCTC 39692 (99%) (Feng 19 rRNA, and 3 ncRNA. The genome analysis revealed gene et al. clusters encoding osmolyte synthesis and plant growth pro- , 2017). Unexpectedly, only one complete genome se- motion enzymes, which are known to contribute to improve quence belonging to this species are available in public drought tolerance of the plant. database (NZ_CP012750). Here, we describe the complete Glutamicibacter halo- Keywords: Glutamicibacter halophytocola, complete genome, genome sequence and annotation of drought tolerance, plant growth promotion phytocola DR408. -
Arthrobacter Pokkalii Sp Nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India
RESEARCH ARTICLE Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India Ramya Krishnan1¤, Rahul Ravikumar Menon1, Naoto Tanaka2, Hans-Jürgen Busse3, Srinivasan Krishnamurthi4, Natarajan Rameshkumar1¤* 1 Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India, 2 NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan, 3 Institute of Microbiology, Veterinary University Vienna, A-1210, Vienna, Austria, 4 Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, 160036, India ¤ Current address: Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 001, India * [email protected] OPEN ACCESS Citation: Krishnan R, Menon RR, Tanaka N, Busse Abstract H-J, Krishnamurthi S, Rameshkumar N (2016) Arthrobacter pokkalii sp nov, a Novel Plant A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice Associated Actinobacterium with Plant Beneficial rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS ONE 11(3): e0150322. beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abili- doi:10.1371/journal.pone.0150322 ties to promote plant growth -
Genome-Based Taxonomic Classification of the Phylum
ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences -
Diversity of Thermophilic Bacteria in Hot Springs and Desert Soil of Pakistan and Identification of Some Novel Species of Bacteria
Diversity of Thermophilic Bacteria in Hot Springs and Desert Soil of Pakistan and Identification of Some Novel Species of Bacteria By By ARSHIA AMIN BUTT Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2017 Diversity of Thermophilic Bacteria in Hot Springs and Desert Soil of Pakistan and Identification of Some Novel Species of Bacteria By ARSHIA AMIN BUTT Thesis Submitted to Department of Microbiology Quaid-i-Azam University, Islamabad In the partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology Department of Microbiology Quaid-i-Azam University Islamabad, Pakistan 2017 ii IN THE NAME OF ALLAH, THE MOST COMPASSIONATE, THE MOST MERCIFUL, “And in the earth are tracts and (Diverse though) neighboring, gardens of vines and fields sown with corn and palm trees growing out of single roots or otherwise: Watered with the same water. Yet some of them We make more excellent than others to eat. No doubt, in that are signs for wise people.” (Sura Al Ra’d, Ayat 4) iii Author’s Declaration I Arshia Amin Butt hereby state that my PhD thesis titled A “Diversity of Thermophilic Bacteria in Hot Springs and Deserts Soil of Pakistan and Identification of Some Novel Species of Bacteria” is my own work and has not been submitted previously by me for taking any degree from this University (Name of University) Quaid-e-Azam University Islamabad. Or anywhere else in the country/world. At any time if my statement is found to be incorrect even after my Graduate the university has the right to withdraw my PhD degree.