Medical Consequences of Doping with Anabolic Androgenic Steroids: Effects on Reproductive Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple Toxicological Analysis of Anabolic Steroid Preparations from the Black Market
Ann Toxicol Anal. 2012; 24(2): 67-72 Available online at: c Société Française de Toxicologie Analytique 2012 www.ata-journal.org DOI: 10.1051/ata/2012011 Original article / Article original A simple toxicological analysis of anabolic steroid preparations from the black market Analyse toxicologique simple de stéroïdiens anabolisants provenant de marchés parallèles Manuela Pellegrini, Maria Concetta Rotolo, Rita Di Giovannadrea, Roberta Pacifici, Simona Pichini Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Via le Regina Elena 299, 00161 Rome, Italy Abstract – Objectives: A simple and rapid gas chromatography (GC) method with mass spectrometry (MS) detection was developed for the identification and quantification of anabolic steroids in pharmaceutical preparations from the black market. Material and Methods: After a liquid-liquid extraction of pharmaceutical products at acidic, neutral and basic pH with chloroform-isopropanol (9:1, v/v), the different steroids were separated by fused silica capillary column and detected by electron impact (EI)-MS in positive ionization mode. Results and Conclusion: The assay was validated in the range from 10 mg to 250 mg/g powder preparations and 0.02 mg to 200 mg/mL liquid preparations with good determination coefficients (r2 0.99) for the calibration curves. At three concentrations spanning the linear dynamic ranges of the calibration curves, mean recoveries were always higher than 90% and intra-assay and inter-assay precision and accuracy were always better than 15%. This method was successfully applied to the analysis of 15 pharmaceutical preparations sold by illegal sources. In only two cases the content was the one reported on the labels. -
Download PDF File
Ginekologia Polska 2019, vol. 90, no. 9, 520–526 Copyright © 2019 Via Medica ORIGINAL PAPER / GYNECologY ISSN 0017–0011 DOI: 10.5603/GP.2019.0091 Anti-androgenic therapy in young patients and its impact on intensity of hirsutism, acne, menstrual pain intensity and sexuality — a preliminary study Anna Fuchs, Aleksandra Matonog, Paulina Sieradzka, Joanna Pilarska, Aleksandra Hauzer, Iwona Czech, Agnieszka Drosdzol-Cop Department of Pregnancy Pathology, Department of Woman’s Health, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland ABSTRACT Objectives: Using anti-androgenic contraception is one of the methods of birth control. It also has a significant, non-con- traceptive impact on women’s body. These drugs can be used in various endocrinological disorders, because of their ability to reduce the level of male hormones. The aim of our study is to establish a correlation between taking different types of anti-androgenic drugs and intensity of hirsutism, acne, menstrual pain intensity and sexuality . Material and methods: 570 women in childbearing age that had been using oral contraception for at least three months took part in our research. We examined women and asked them about quality of life, health, direct causes and effects of that treatment, intensity of acne and menstrual pain before and after. Our research group has been divided according to the type of gestagen contained in the contraceptive pill: dienogest, cyproterone, chlormadynone and drospirenone. Ad- ditionally, the control group consisted of women taking oral contraceptives without antiandrogenic component. Results: The mean age of the studied group was 23 years ± 3.23. 225 of 570 women complained of hirsutism. -
Steroids 78 (2013) 44–52
Steroids 78 (2013) 44–52 Contents lists available at SciVerse ScienceDirect Steroids journal homepage: www.elsevier.com/locate/steroids Alternative long-term markers for the detection of methyltestosterone misuse ⇑ C. Gómez a,b, O.J. Pozo a, J. Marcos a,b, J. Segura a,b, R. Ventura a,b, a Bioanalysis Research Group, IMIM-Hospital del Mar, Barcelona, Spain b Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain article info abstract Article history: Methyltestosterone (MT) is one of the most frequently detected anabolic androgenic steroids in doping Received 21 May 2012 control analysis. MT misuse is commonly detected by the identification of its two main metabolites Received in revised form 28 September excreted as glucuronide conjugates, 17a-methyl-5a-androstan-3a,17b-diol and 17a-methyl-5b-andro- 2012 stan-3a,17b-diol. The detection of these metabolites is normally performed by gas chromatography–mass Accepted 10 October 2012 spectrometry, after previous hydrolysis with b-glucuronidase enzymes, extraction and derivatization Available online 2 November 2012 steps. The aim of the present work was to study the sulphate fraction of MT and to evaluate their potential to improve the detection of the misuse of the drug in sports. MT was administered to healthy volunteers Keywords: and urine samples were collected up to 30 days after administration. After an extraction with ethyl ace- Methyltestosterone Sulphate tate, urine extracts were analysed by liquid chromatography tandem mass spectrometry using electro- Metabolism spray ionisation in negative mode by monitoring the transition m/z 385 to m/z 97. Three diol sulphate LC–MS/MS metabolites (S1, S2 and S3) were detected. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Download Product Insert (PDF)
Product Information Boldenone Cypionate Item No. 15158 CAS Registry No.: 106505-90-2 O Formal Name: 17β-hydroxy-androsta-1,4-dien-3-one O cyclopentanepropionate MF: C27H38O3 FW: 410.6 H Purity: ≥95% Stability: ≥2 years at -20°C H H Supplied as: A crystalline solid λ O UV/Vis.: max: 244 nm Laboratory Procedures For long term storage, we suggest that boldenone cypionate be stored as supplied at -20°C. It should be stable for at least two years. Boldenone cypionate is supplied as a crystalline solid. A stock solution may be made by dissolving the boldenone cypionate in the solvent of choice. Boldenone cypionate is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of boldenone cypionate in these solvents is approximately 15, 5, and 25 mg/ml, respectively. Boldenone cypionate is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, boldenone cypionate should first be dissolved in ethanol and then diluted with the aqueous buffer of choice. Boldenone cypionate has a solubility of approximately 0.3 mg/ml in a 1:2 solution of ethanol:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Boldenone is an anabolic androgenic steroid and synthetic derivative of testosterone that was originally developed for veterinary use.1 It can increase nitrogen retention, protein synthesis, and appetite, and also stimulates the release of erythropoietin in the kidneys.1 Boldenone cypionate was synthesized as an ester of boldenone in an attempt to alter boldenone’s very long half-life.2 Anabolic androgenic steroid compounds such as boldenone cypionate have been used illicitly by bodybuilders and other athletes.3 This compound is intended for forensic and research purposes only. -
Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment. -
Fluoxymesterone-Dea Schedule Iii Androfluorene
Cat. No. F7751 FLUOXYMESTERONE--DEA SCHEDULE III ANDROFLUORENE Androgen. OH Mol. Formula: C20H29FO3 HO H3C CH3 Mol. Wt.: 336.45 (anhyd.) F H3C m.p.: 288-290°C CAS Registry No.: 76-43-7 O Chemical Name: 4-Androsten-9a-fluoro-17a-methyl-11b,17b-diol-3-one 22 Physical Properties: White photosensitive solid. [a] D = +102.34° (c = 0.47, EtOH). Caution: Due care should be exercised to prevent skin contact, ingestion or inhalation of this compound. Storage: Store tightly sealed at room temperature, protected from exposure to light. Solubility: Soluble in ethanol (7.3 mg/ml) or water (< 0.5 mg/ml). Solubility in 45% aqueous (w/v) 2-hydroxypropyl-b- cyclodextrin (Cat. No. H-107): 6.4 mg/ml. Disposal: Dissolve or mix the compound with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. This product is controlled by the Drug Enforcement Administration. Appropriate security must be maintained until the substance is destroyed. Records must be kept which detail the ultimate disposition of the material. References: 1. Merck Index 11th Ed., No. 4113. 2. Saborido, A., Vila, J., Molano, F., Megias, A. “Effect of steroids on mitochondria and sarcotubular system of skeletal muscle.” J. Appl. Physiol. 70(3), 1038 (1991). 3. Fernandez, L., Chirino, R., Boada, L.D., Navarro, D., Cabrera, N., del Rio, I., Diaz-Chico, B.N. “Stanozolol and danazol, unlike natural androgens, interact with the low affinity glucocorticoid-binding sites from male rat liver microsomes.” Endocrinology 134(3), 1401 (1994). CONTROLLED SUBSTANCE - DEA LICENSE REQUIRED (III) Rev. -
Estradiol-17Β Pharmacokinetics and Histological Assessment Of
animals Article Estradiol-17β Pharmacokinetics and Histological Assessment of the Ovaries and Uterine Horns following Intramuscular Administration of Estradiol Cypionate in Feral Cats Timothy H. Hyndman 1,* , Kelly L. Algar 1, Andrew P. Woodward 2, Flaminia Coiacetto 1 , Jordan O. Hampton 1,2 , Donald Nickels 3, Neil Hamilton 4, Anne Barnes 1 and David Algar 4 1 School of Veterinary Medicine, Murdoch University, Murdoch 6150, Australia; [email protected] (K.L.A.); [email protected] (F.C.); [email protected] (J.O.H.); [email protected] (A.B.) 2 Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne 3030, Australia; [email protected] 3 Lancelin Veterinary Hospital, Lancelin 6044, Australia; [email protected] 4 Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre 6983, Australia; [email protected] (N.H.); [email protected] (D.A.) * Correspondence: [email protected] Received: 7 September 2020; Accepted: 17 September 2020; Published: 21 September 2020 Simple Summary: Feral cats (Felis catus) have a devastating impact on Australian native fauna. Several programs exist to control their numbers through lethal removal, using tools such as baiting with toxins. Adult male cats are especially difficult to control. We hypothesized that one way to capture these male cats is to lure them using female cats. As female cats are seasonal breeders, a method is needed to artificially induce reproductive (estrous) behavior so that they could be used for this purpose year-round (i.e., regardless of season). -
How to Select Pharmacologic Treatments to Manage Recidivism Risk in Sex Off Enders
How to select pharmacologic treatments to manage recidivism risk in sex off enders Consider patient factors when choosing off -label hormonal and nonhormonal agents ® Dowden Healthex offenders Media traditionally are managed by the criminal justice system, but psychiatrists are fre- Squently called on to assess and treat these indi- CopyrightFor personalviduals. use Part only of the reason is the overlap of paraphilias (disorders of sexual preference) and sexual offending. Many sexual offenders do not meet DSM criteria for paraphilias,1 however, and individuals with paraphil- ias do not necessarily commit offenses or come into contact with the legal system. As clinicians, we may need to assess and treat a wide range of sexual issues, from persons with paraphilias who are self-referred and have no legal involvement, to recurrent sexual offenders who are at a high risk of repeat offending. Successfully managing sex offenders includes psychological and pharmacologic interven- 2009 © CORBIS / TIM PANNELL 2009 © CORBIS / tions and possibly incarceration and post-incarceration Bradley D. Booth, MD surveillance. This article focuses on pharmacologic in- Assistant professor terventions for male sexual offenders. Department of psychiatry Director of education Integrated Forensics Program University of Ottawa Reducing sexual drive Ottawa, ON, Canada Sex offending likely is the result of a complex inter- play of environment and psychological and biologic factors. The biology of sexual function provides nu- merous targets for pharmacologic intervention, in- cluding:2 • endocrine factors, such as testosterone • neurotransmitters, such as serotonin. The use of pharmacologic treatments for sex of- fenders is off-label, and evidence is limited. In general, Current Psychiatry 60 October 2009 pharmacologic treatments are geared toward reducing For mass reproduction, content licensing and permissions contact Dowden Health Media. -
Properties and Units in Clinical Pharmacology and Toxicology
Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. -
MICROCOMP Output File
108TH CONGRESS 2D SESSION S. 2195 AN ACT To amend the Controlled Substances Act to clarify the defini- tion of anabolic steroids and to provide for research and education activities relating to steroids and steroid precursors. 1 Be it enacted by the Senate and House of Representa- 2 tives of the United States of America in Congress assembled, 3 SECTION 1. SHORT TITLE. 4 This Act may be cited as the ‘‘Anabolic Steroid Con- 5 trol Act of 2004’’. 2 1 SEC. 2. AMENDMENTS TO THE CONTROLLED SUBSTANCES 2 ACT. 3 (a) DEFINITIONS.—Section 102 of the Controlled 4 Substances Act (21 U.S.C. 802) is amended— 5 (1) in paragraph (41)— 6 (A) by realigning the margin so as to align 7 with paragraph (40); and 8 (B) by striking subparagraph (A) and in- 9 serting the following: 10 ‘‘(A) The term ‘anabolic steroid’ means any drug or 11 hormonal substance, chemically and pharmacologically re- 12 lated to testosterone (other than estrogens, progestins, 13 corticosteroids, and dehydroepiandrosterone), and 14 includes— 15 ‘‘(i) androstanediol— 16 ‘‘(I) 3β,17β-dihydroxy-5α-androstane; and 17 ‘‘(II) 3α,17β-dihydroxy-5α-androstane; 18 ‘‘(ii) androstanedione (5α-androstan-3,17- 19 dione); 20 ‘‘(iii) androstenediol— 21 ‘‘(I) 1-androstenediol (3β,17β-dihydroxy- 22 5α-androst-1-ene); 23 ‘‘(II) 1-androstenediol (3α,17β-dihydroxy- 24 5α-androst-1-ene); 25 ‘‘(III) 4-androstenediol (3β,17β-dihydroxy- 26 androst-4-ene); and †S 2195 ES 3 1 ‘‘(IV) 5-androstenediol (3β,17β-dihydroxy- 2 androst-5-ene); 3 ‘‘(iv) androstenedione— 4 ‘‘(I) 1-androstenedione ([5α]-androst-1-en- 5 3,17-dione); -
Effects of Androgenic-Anabolic Steroids on Apolipoproteins and Lipoprotein (A) F Hartgens, G Rietjens, H a Keizer, H Kuipers, B H R Wolffenbuttel
253 Br J Sports Med: first published as 10.1136/bjsm.2003.000199 on 21 May 2004. Downloaded from ORIGINAL ARTICLE Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a) F Hartgens, G Rietjens, H A Keizer, H Kuipers, B H R Wolffenbuttel ............................................................................................................................... Br J Sports Med 2004;38:253–259. doi: 10.1136/bjsm.2003.000199 Objectives: To investigate the effects of two different regimens of androgenic-anabolic steroid (AAS) administration on serum lipid and lipoproteins, and recovery of these variables after drug cessation, as indicators of the risk for cardiovascular disease in healthy male strength athletes. Methods: In a non-blinded study (study 1) serum lipoproteins and lipids were assessed in 19 subjects who self administered AASs for eight or 14 weeks, and in 16 non-using volunteers. In a randomised double blind, placebo controlled design, the effects of intramuscular administration of nandrolone decanoate (200 mg/week) for eight weeks on the same variables in 16 bodybuilders were studied (study 2). Fasting serum concentrations of total cholesterol, triglycerides, HDL-cholesterol (HDL-C), HDL2-cholesterol (HDL2- C), HDL3-cholesterol (HDL3-C), apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), and lipoprotein (a) (Lp(a)) were determined. Results: In study 1 AAS administration led to decreases in serum concentrations of HDL-C (from 1.08 (0.30) to 0.43 (0.22) mmol/l), HDL2-C (from 0.21 (0.18) to 0.05 (0.03) mmol/l), HDL3-C (from 0.87 (0.24) to 0.40 (0.20) mmol/l, and Apo-A1 (from 1.41 (0.27) to 0.71 (0.34) g/l), whereas Apo-B increased from 0.96 (0.13) to 1.32 (0.28) g/l.