Chemical Resistance Reference Guide

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Resistance Reference Guide Thermo Scientific™ Nalgene™ Plastic Labware Chemical Resistance Reference Guide Labware Olefin Polymers Labware Fluoropolymers Other Labware Polymers O-Rings & Gaskets Tubing Chemical Resistance Key LDPE HDPE PP PPCO PMP FLPE FEP PFA ETFE PETG PC PSF PS PMMA RESMER™ TPE Silicone PVC Silicone PFA FEP PUR LLDPE PP Chemical, Concentration CAS No. 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 In the table at left, the first letter of each pair applies to conditions at 20°C and the second letter applies to conditions at 50°C. Example: 20°C ➔ E G ➔ ➔ at 50°C Acetaldehyde, 10% 75-07-0 G N E E E G E G - - E E E E E E E E - - F N F N N N - - G G G F E G - - E G E E E E - - - - E G Acetaldehyde, 100% 75-07-0 G N G F G N G N G N E G E E E E E G - - N N N N N N N N G G G F F F N N F F E E E E N N G N G N E – No damage after 30 days of constant exposure F – Some effect after 7 days of constant exposure Acetamide, pure 60-35-5 E E E E E G E E E E G G E E E E E E - - N N N N E E - - E E G F N N N N N N E E E E N N E E E G G – Little or no damage after 30 days of constant exposure N – Immediate damage may occur; not recommended for continuous use Acetic Acid, <5% 64-19-7 E E E E E E E E E E E E E E E E E E F N E G E E E G E G E E E G E G E G E G E E E E G F E E E E Acetic Acid, 20% 64-19-7 G F E G E E E E E E E G E E E E E E N N G F E E E G F N E G E G F F G N F F E E E E F N E E E E Acetic Acid, Glacial 64-19-7 G N E G E G E G E G E G E E E E E G N N N N G F F N N N F N G F N N N N N N E E E E N N E G E G Acetone, pure 67-64-1 G N F N F N N N E E E G E E E E E G NNNNFNNNNNFNNNNNNNNNEEEENNGGEG Acetonitrile, pure 75-05-8 E E E E E G F N F N E E E E E E E G - - N N N N N N N N F N N N N N N N N N E E E E N N E E E G Abbreviation Name Abbreviation Name Alconox™ detergent, pure N/A EEEEEEEEEEEEEEEEEEGFFNGFEGENEEGFEGEFEGEEEEGFEEEE Aluminum Chloride, Concentrated 7446-70-0 E E E E E E E E E E E E E E E E E E E G E G E G E E E E E E E G F F G G F F E E E E E G E E E E ETFE Ethylene Tetrafluoroethylene PP Polypropylene Aluminum Hydroxide Acetate, pure 142-03-0 E E E E E E E E E E E E E E E E E E E G E E E E E E E E E E E G N N G N N N E E E E E G E G E E FEP Fluorinated Ethylene Propylene PPCO Polypropylene Copolymer Aluminum Sulfate, 5% 10043-01-3 E E E E E E E E E E E E E E E E E E E G E E E E E E E E E E E E E E E G E E E E E E E G E E E E Ammonia, Aqueous Solution 7664-41-7 E E E E E E E E E E F F E E E E E G - - N N G F E G N N E G G F N N G F N N E E E E F N E E E E FLPE Fluorinated High Density Polyethylene PS Polystyrene Ammonium Acetate, Saturated 631-61-8 E E E E E E E E E E E E E E E E E E E G G G E E E E E E E E E G E G G N E G E E E E G F E E E E HDPE High Density Polyethylene PSF Polysulfone Ammonium Chloride, pure 12125-02-9 E E E E E E E E E E E E E E E E EEEGEGEEEEE-EEEGEGEGEGEEEEEGEEEE Ammonium Dihydrogen Phosphate, 1M 7722-76-1 E E E E E E E E E E E E E E E E E E E G E E E E E E G G E E G G E G E G E G E E E E G F E E E E LDPE Low Density Polyethylene PUR Thermoplastic Polyurethane Ammonium Fluoride, Saturated 12125-01-8 E E E E E E E E E E E E E E E E E E E G N N E E E E N N E E E G F F E G F F E E E E E G E E E E LLDPE Linear Low Density Polyethylene PVC Polyvinyl Chloride Ammonium Hydroxide, 10% 1336-21-6 E E E E E E E E E E F F E E E E E E F N N N E G E F E G E G E G E G G F E G E E E E G F E E E E ™ ™ Ammonium Hydroxide, Concentrated 1336-21-6 F F F F F F F F G F G G F F F F F F N N N N G G G G F G E G E G E G G F F G F F F F G N F G F G PC Polycarbonate ResMer ResMer Ammonium Phosphate, Monobasic, pure 7722-76-1 E E E E E E E E E E E E E E E E E E E G E E E E E E - - E E E G E G E G E G E E E E G F E E E E PETG Polyethylene terephthalate copolymer SILI-g Silicone - Gaskets Ammonium Sulfate, 77% 7783-20-2 E E E E E E E E E E E E E E E E E E E G E E E E E E - - E E E G E G E G E G E E E E G F E E E E Amyl Acetate, pure 628-63-7 G F E G G N G F G F E E E E E E E E - - N N N N N N N N - - F N N N N N N N E E E E N N G F G F PFA Perfluoroalkoxy SILI-t Silicone - Tubing Aqua Regia, pure 8007-56-5 N N N N N N N N N N N N E E E E EGNNNNNNNNNNNNNNNNNNNNEEEENNNNNN PMMA Polymethylmethacrylate TPE Thermoplastic Elastomer Ascorbic Acid, pure 50-81-7 E E E E E E E E - - E E E E E E E E - - E E E E E E - - - - - - E G - - E G E E E E - - - - E E Barium Hydroxide, pure 17194-00-2 E E E E E E E E E E E E E E E E E E E G E E E E E E E G E E E E E E E E E E E E E E E G E E E E PMP Polymethylpentene Benzalkonium Chloride, 0.03M 8001-54-5 E E E E E E E E E E E E E E E E E E E G E E E E E E E N E E F F E G E E E G E E E E F N E E E E Benzoic Acid, Saturated 65-85-0 E E E E E G E E E G E E E E E E E E - - E G E G G G E E G G G F F F E G F F E E E E N N E E E G Benzoyl Peroxide, pure 94-36-0 E G - - G G - - - - - - E E E E E G - - - - - - N N - - - - - - - - - - - - E E E E - - - - G G Benzyl Alcohol, 1% 100-51-6 E G E E E E E G E E E E E E E E E E G F N N G F N N F N F N G F E G F N E G E E E E F F N N N N Benzyl Alcohol, pure 100-51-6 N N F N G F N N - - E E E E E E E E - - N N N N N N N N F N G F F F F N F F E E E E N N N N N N Interpretation of Chemical Resistance Bromine, pure 7726-95-6 N N F N N N N N N N F N E E E E EENNFNFNNNFNNNNNNNNNNNEEEENNNNNN The Chemical Resistance Chart on this poster is a general guide and pertains to Thermo Scientific Nalgene products only.
Recommended publications
  • Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions
    AN ABSTRACT OF THE THESIS OF Paul John Dornath for the degree of Honors Baccalaureate of Science in Chemical Engineering presented on May 29, 2010. Title: Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions Abstract approved: ______________________________________________ Skip Rochefort There has been much controversy in recent years over the leaching of chemicals from plastic water bottles. In this study, two of the most common plastics used in water bottles, polyethylene terphthalate (PETE) and polycarbonate (PC) were studied. The leaching of the chemical bisphenol-A (BPA) from polycarbonate (Nalgene ™, Camelback ™) water bottles was studied to examine the validity of these claims by exposing polycarbonate bottles to various conditions and analyzing how much BPA leaches into water contained in the bottles. New polycarbonate bottles were filled with water and exposed to treatment conditions ranging from 65 to 120 ⁰C. A reverse-phase solid phase extraction process was developed to extract BPA from the water and concentrate it into an organic phase. GC/MS was used to analyze the organic extract. BPA was only found to leach in detectable amounts (< 10ppb) when the bottles were exposed to 120 ⁰C water for 2 hours. Polyethylene terephthalate bottles were also tested and were exposed to sunlight for three months during the summer. Small amounts of the plasticizer DEHP were found to leach after several months. A method for determining what chemicals would leach from BPA-Free Tritan™ copolyester was also developed but not tested due to time constraints. An analysis of internal stress due to high humidity and temperature was performed on these BPA-Free bottles.
    [Show full text]
  • Product Information Sodium Thiocyanate
    Product Information Sodium Thiocyanate 98% Product Description: Sodium thiocyanate 98% is an odorless, white solid. Produced from cyanide with sulfur. It is one of the main sources of the thiocyanate ion making it useful as a precursor to a lot of specialty chemicals. Applications: Sodium thiocyanate is used as a concrete hardener accelerator and can be used with other accelerators. It is used as a corrosion inhibitor, in synthetic fibre production, electroplating and pesticide. Chemical Formula: NaSCN CAS No. : 540-72-7 Specifications: Parameters (units) Specifications Sodium thiocyanate (%) ≥ 98 Chloride (%) ≤ 0.06 Sulfate (%) ≤ 0.2 Iron (%) ≤ 0.0005 Heavy metals (%) ≤ 0.001 Insolubles (%) ≤ 0.006 Moisture content (%) ≤ 1.0 pH 6.0 - 8.0 Bisley International LLC 1790 Hughes Landing Boulevard Suite 400 The Woodlands 77380 TX USA Phone number: +1 (281) 506 046 Emergency telephone number: +1 855 237 5573 bisleyinternational.com Copyright 2021 Bisley & Co. Pty Ltd. All rights reserved Packaging: Material is available in 25 kg bags and 950 kg bulk bags. Further packaging options may be available upon enquiry. Storage: Product should be stored in a dry place away from direct sunlight in sealed, original packaging. Safety: For further safety information refer to product SDS available from your Bisley International contact. Disclaimer: This document is for information purposes only. Customers are responsible for testing and confirming the suitability of this product in their application. To the extent permitted by law, no warranty as to merchantability or fitness of purpose, expressed or implied, is made. Global Headquarters Regional offices Sydney, Australia Jakarta, Indonesia Bangkok, Thailand Bisley & Company PT Bisindo Kencana Bisley Asia (Thailand) Co.
    [Show full text]
  • Microemulsion and Oil Soluble Gassing System
    Europaisches Patentamt (19) European Patent Office Office europeeneen des brevets £P 0 775 681 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) intci.6: C06B 23/00, C06B 47/14 28.05.1997 Bulletin 1997/22 (21) Application number: 96308223.5 (22) Date of filing: 14.11.1996 (84) Designated Contracting States: (72) Inventor: Chattopadhyay, Arun Kumar DE FR GB SE Quebec J4Z 3E6 (CA) (30) Priority: 24.11.1995 CA 2163682 (74) Representative: Ede, Eric Fitzpatricks, (71) Applicant: ICI Canada Inc. 4 West Regent Street North York Ontario M2N 6H2 (CA) Glasgow G2 1 RS, Scotland (GB) (54) Microemulsion and oil soluble gassing system (57) The present invention relates to a process for microemulsions of the present invention provides more preparing an emulsion explosive which has been sensi- complete mixing of the gas precursor with the constitu- tized by the in-situ gassing of a chemical gassing agent, ents of the emulsion explosives. The process thus pro- wherein the gassing agent is contained in a microemul- vides a more controllable reaction for the in-situ, chem- sion. The invention also relates to the microemulsions ical gassing of emulsions, and for the production of utilized in the practise of this process. The use of the chemically gassed emulsion explosives at lower tem- perature. FIGURE Density (g/cc) i 1.3 1.2 1.1 h 1.0 00 CO 30 Time (mins) lO Is- Is- o a. LU Printed by Jouve, 75001 PARIS (FR) EP 0 775 681 A1 Description Field of the Invention 5 This invention relates to an improved process for preparing an emulsion explosive and incorporation of a dispersed gaseous phase within the emulsion.
    [Show full text]
  • ISOPROPYL THIOCYANATE [Thiocyanic Acid, Isopropyl Ester]
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • FLEX™ Tubing Products
    ™ FLEX Tubing Products Contents Page The Right Tubing…at the Right Price Selection Guide for FLEX Tubing Products . 3 Tubing Conversion Chart . 3 Quality ClearFLEX 60 PVC Tubing . 4 Premium-quality FLEX tubing is made from the finest virgin resins, with no fillers or extenders. Our precision Crystal clear tubing that complies with USP Class VI, USDA and FDA CFR 21 extrusion process ensures close tol- requirements. Available in metric sizes as erances and excellent concentricity ClearFLEX M60 and vacuum-rated sizes for reliable, leakproof connections. as ClearFLEX V60. Adherence to the strict guide lines of our ISO 9001: 2000-registered ClearFLEX 70 PVC Tubing . 5 Quality Management System ensures consistent tubing – Crystal clear tubing that complies with lot after lot – with full traceability. USP Class VI, NSF 51, 3A, USDA and FDA CFR 21 requirements. Performance FLEX Tu b i ng Products are available in a variety of materi- als and sizes to meet virtually any fluid transfer need. And we offer a full range of regulatory compliance for food, FuelFLEX 65 PVC Fuel Tubing . 6 beverage, dairy, pharmaceutical, biotechnology and med- For intermittent use with petroleum-based ical applications. products such as gasoline, heating oils, cutting compounds and coolants. Service We support you with responsive, personalized service from your initial inquiry to the completion BraidFLEX 70N Braid-Reinforced PVC Tubing . 6 of your order. And our new website For higher-pressure applications, including allows you to check tubing specifications lab, food and beverage use. Complies and submit technical questions and with FDA CFR 21 for food packaging and inquiries at your convenience, 24 hours NSF-51.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Nalgene and Nunc Centrifuge Ware Catalog
    Nalgene and Nunc Centrifuge Ware Select the right vessel and spin with confidence Spin with confidence at virtually any scale The process of selecting a centrifuge and rotor can feel like the easy part when faced with choosing the tube or bottle that is the right fit for both the rotor and application. There are several factors to consider when selecting the correct vessel for each application: • Chemical compatibility • Volume • Temperature • Relative centrifugal force (RCF) required • Protocols to be used for loading and sample recovery • Cleaning and autoclaving steps Understanding your requirements before selecting a tube or bottle ensures you make the right choice. Whether your application includes the need for separations, large volume pelleting, protein purification or DNA isolation, the comprehensive selection of Thermo Scientific™ Nalgene™ and Thermo Scientific™ Nunc™ centrifuge ware offers a solution for virtually scales and is available in sizes from 10 mL to 2 L. Such a broad offering means a tube or bottle for many spins – from clinical and bioproduction, to processing bacteria, yeast, tissue, and viruses. Contents Centrifuge tubes 4 Centrifuge bottles 20 Closures and adaptors 31 Resources 36 Simplify performance at every turn with a reliable and safe approach to centrifugation Nalgene Conical-Bottom Centrifuge Tubes polypropylene copolymer Thermo Scientific™ Nalgene™ PPCO conical-bottom centrifuge tubes with molded-in graduations have excellent chemical resistance. Designed for low-speed centrifugation in refrigerated and non-refrigerated centrifuges details • Translucent PPCO is compatible with a wide range of lab reagents • Conical bottoms concentrate pellet in a small area for easy isolation and retrieval • Molded-in graduations last the life of the tube • Last longer than polycarbonate tubes under conditions of repeated Note: Centrifuge tubes must be filled at least 80% for proper performance.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/005250.6 A1 Abel Et Al
    US 2011 0052506A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/005250.6 A1 Abel et al. (43) Pub. Date: Mar. 3, 2011 (54) STABLE AEROSOL TOPICAL FOAMS Publication Classification COMPRISINGA HYPOCHLORITE SALT (51) Int. Cl. (75) Inventors: Douglas Abel, Sudbury, MA (US); st 94;O CR Ronald M. Gurge, Franklin, MA ( .01) (US); Mark W. Trumbore, A6IP3L/00 (2006.01) Westford, MA (US) (52) U.S. Cl. .......................................................... 424/45 (73) Assignee: Collegium Pharmaceutical, Inc., (57) ABSTRACT Cumberland, RI (US) Described herein are compositions useful in the treatment of atopic dermatitis and other skin conditions, which composi (21) Appl. No.: 12/872,566 tions exhibit enhanced stability. The compositions contain a 1-1. hypochlorite salt, useful for its antimicrobial properties, and (22) Filed: Aug. 31, 2010 are non-irritating when applied to the skin. The compositions O O also provide enhanced moisturizing properties. The compo Related U.S. Application Data sitions can be formulated into a topical aerosol foam with (60) Provisional application No. 61/238,439, filed on Aug. inert, non-flammable propellants, such as hydrofluoroal 31, 2009. kanes, and may be used in cosmetics or pharmaceuticals. US 2011/005250.6 A1 Mar. 3, 2011 STABLE AEROSOL TOPCAL FOAMS itch associated with atopic dermatitis; however, they can COMPRISINGA HYPOCHLORITE SALT cause sleepiness and may not help in all cases of atopic dermatitis. RELATED APPLICATION 0007 For mild cases of atopic dermatitis, an over-the counterformulation of coal taris often used. Coaltar has long 0001. This application claims benefit under 35 U.S.C. 119 been a treatment for a variety of skin conditions.
    [Show full text]
  • Rubber and Composite Hose Chemical Resistant Chart
    Rubber and Composite Hose Chemical Resistant Chart Cedar Rapids, IA Corporate Headquarters Phone: 319.365.0471 Toll Free: 800.553.5455 Fax: 319.365.2522 Website: www.apache-inc.com 99004032 rev032713 Chemical Resistance Information This Apache document provides essential information that will facilitate the safe use of rubber and composite type chemical hoses. Chemical hose users are cautioned that this Chemical Resistant has be developed from generallty accepted industry standards. The ratings listed beneath each Elastomer are the base ratings for the chemical listed. This rating is based on the application temperature not exceeding 70ºF (21.1ºC) unless otherwise specified. The degree an Elastomer will resist the effects of a of a specific chemical depends on several variables.It is recommended that a hose with the highest resistant tube to the chemical transferred be used in the application for safety. 1. Concentration of the chemical is very significant (some chemicals may react with an Elastomer differently based on the level of concentration). 2. Temperature - as the temperature increases the deteriorative effect of a chemical may greatly increase on an Elastomer. 3. Time - the longer the duration the chemical is in contact with the Elastomer, the greater the deteriorative effect. 4. Stability of the Chemical - Chemical solutions (combining of different chemicals) may increase the deteriorative effect. 5. Elastomer Grade - There are different grades of specific Elastomer used in hose. The grade of Elastomer used may effect the resistance level of the hose to a specific chemical. It is recommended that only hose listed for chemical service be use. 6. Safety a.
    [Show full text]
  • Plastics 101
    PLASTICS 101 INTRODUCTION The versatility of plastic allows it to be used in everything from car to doll parts, from soft drink bottles to the refrigerators in which they are stored. Name the product, and there is likely a plastic found in it. When recycling plastics, search for the number surrounded by the three chasing arrows recycling symbol. There are seven numbers found on plastic, reflecting the seven different types of plastics available in the market. The number is a resin identification code developed by the plastics industry to identify the type of plastic used in the product. These numbers are found on most of the 200 million tons of plastic produced annually. RECYCLING OF PLASTICS In North Castle and throughout Westchester County, plastics 1 through 7 are recycled. Styrofoam is not recycled at this time even though it has a recycling symbol on it. Symbol Name Recycle it? Common Recycled into Commonly Products Unmarked Materials PET or PETE Yes. Must Soda and water Food and Fiber for Polyethylene be empty bottles, beverage carpet, terephthalate and clean. mouthwash containers, fleece wear, bottles, peanut fleece wear, comforter butter and salad furniture and fill, film, dressing carpet, plastic food containers luggage and and non- polyester food containers HDPE Yes. Must Most plastic milk Bottles, Cereal box High density be empty containers, dish including liners, plastic polyethylene and clean. and detergent liquid laundry lumber for bottles, juice detergent, outdoor bottles, butter shampoo, decks, tubs, toiletries conditioner, fencing and Version 20120223 and shampoo vitamin and picnic tables, bottles motor oil pipe, floor bottles, pipes, tiles, buckets, buckets, crates, flower crates, pots, garden flower pots, edging, film, garden floor tiles, edging, film picnic tables, and recycling plastic lumber bins and fencing V or PVC Most PVC Food wrap, Traffic cones Mud flaps, Polyvinyl products bottles for and garden electrical chloride cannot be cooking oil, hoses boxes, recycled.
    [Show full text]
  • United States Patent Office Patented Apr
    3,509,255 United States Patent Office Patented Apr. 28, 1970 1. 2 biotics Annual, 1953-1954, pages 191-194, Medical En 3,509,255 cyclopedia, Inc., New York, N.Y. PROCESS FOR THE RECRYSTALLIZATION The recovery of nystatin by isopropanol extraction of OF NYSTATIN Harold Mendelsohn, Nanuet, N.Y., assignor to American the whole broth resulting from the fermentation of the Cyanamid Company, Stamford, Conn., a corporation of nystatin producing Streptomyces noursei is described in Maine U.S. Patent No. 2,786,781 to Vandeputte et al. The par No Drawing. Filed July 2, 1968, Ser. No. 741,912 tially purified product obtained by the Vandeputte et al. Int. Cl. A61k 21/00 process is a therapeutically useful product of about 65 U.S. C. 424-123 10 Claims 70% purity. At best, however it is only partially crystal line and for the most part is substantially non-crystalline or amorphous in character. The purification of nystatin ABSTRACT OF THE DISCLOSURE employing methanolic-calcium chloride is also described This disclosure describes a process for preparing highly in U.S. Patent No. 2,832,719 to Vandeputte and in U.S. purified crystalline nystatin by extracting crude nystatin Patent No. 2,865,807 to Dutcher et al. The product ob with acetone which is saturated with sodium iodide, 15 tained by the Vandeputte and Dutcher et al. processes is Sodium thiocyanate, potassium thiocyanate or ammonium a therapeutically useful highly refined product substan thiocyanate; and precipitating highly purified crystalline tially crystalline in character. nystatin from the extract by displacement of the acetone The processes described above produce crystalline ny with water.
    [Show full text]