Downloaded From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Ecological Study of Gunston Cove
An Ecological Study of Gunston Cove 2016 FINAL REPORT August 2017 by R. Christian Jones Professor Department of Environmental Science and Policy Director Potomac Environmental Research and Education Center George Mason University Kim de Mutsert Assistant Professor Department of Environmental Science and Policy Associate Director Potomac Environmental Research and Education Center George Mason University Amy Fowler Assistant Professor Department of Environmental Science and Policy Faculty Fellow Potomac Environmental Research and Education Center George Mason University to Department of Public Works and Environmental Services County of Fairfax, VA ii Back of Title Page iii Table of Contents Table of Contents ................................................................................................... iii Executive Summary ............................................................................................... iv List of Abbreviations ........................................................................................... xiii The Ongoing Aquatic Monitoring Program for the Gunston Cove Area ................1 Introduction ..................................................................................................2 Methods........................................................................................................3 A. Profiles and Plankton: Sampling Day .........................................3 B. Profiles and Plankton: Followup Analysis ..................................7 C. Adult and Juvenile Fish ...............................................................8 -
The Curious and Neglected Soft-Bodied Meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes)
Hydrobiologia (2020) 847:2613–2644 https://doi.org/10.1007/s10750-020-04287-x (0123456789().,-volV)( 0123456789().,-volV) MEIOFAUNA IN FRESHWATER ECOSYSTEMS Review Paper The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes) Maria Balsamo . Tom Artois . Julian P. S. Smith III . M. Antonio Todaro . Loretta Guidi . Brian S. Leander . Niels W. L. Van Steenkiste Received: 1 August 2019 / Revised: 25 April 2020 / Accepted: 4 May 2020 / Published online: 26 May 2020 Ó Springer Nature Switzerland AG 2020 Abstract Gastrotricha and Platyhelminthes form a meiofauna. As a result, rouphozoans are usually clade called Rouphozoa. Representatives of both taxa underestimated in conventional biodiversity surveys are main components of meiofaunal communities, but and ecological studies. Here, we give an updated their role in the trophic ecology of marine and outline of their diversity and taxonomy, with some freshwater communities is not sufficiently studied. phylogenetic considerations. We describe success- Traditional collection methods for meiofauna are fully tested techniques for their recovery and study, optimized for Ecdysozoa, and include the use of and emphasize current knowledge on the ecology, fixatives or flotation techniques that are unsuitable for distribution, and dispersal of freshwater gastrotrichs the preservation and identification of soft-bodied and microturbellarians. We also discuss the opportu- nities and pitfalls of (meta)barcoding studies as a means of overcoming the taxonomic impediment. Guest -
I FLATWORM PREDATION on JUVENILE FRESHWATER
FLATWORM PREDATION ON JUVENILE FRESHWATER MUSSELS A Thesis Presented to the Graduate College of Southwest Missouri State University In Partial Fulfillment of the Requirements for the Master of Science Degree By Angela Marie Delp July 2002 i FLATWORM PREDATION OF JUVENILE FRESHWATER MUSSELS Biology Department Southwest Missouri State University, July 27, 2002 Master of Science in Biology Angela Marie Delp ABSTRACT Free-living flatworms (Phylum Platyhelminthes, Class Turbellaria) are important predators on small aquatic invertebrates. Macrostomum tuba, a predominantly benthic species, feeds on juvenile freshwater mussels in fish hatcheries and mussel culture facilities. Laboratory experiments were performed to assess the predation rate of M. tuba on newly transformed juveniles of plain pocketbook mussel, Lampsilis cardium. Predation rate at 20 oC in dishes without substrate was 0.26 mussels·worm-1·h-1. Predation rate increased to 0.43 mussels·worm-1·h-1 when a substrate, polyurethane foam, was present. Substrate may have altered behavior of the predator and brought the flatworms in contact with the mussels more often. An alternative prey, the cladoceran Ceriodaphnia reticulata, was eaten at a higher rate than mussels when only one prey type was present, but at a similar rate when both were present. Finally, the effect of flatworm size (0.7- 2.2 mm long) on predation rate on mussels (0.2 mm) was tested. Predation rate increased with predator size. The slope of this relationship decreased with increasing predator size. Predation rate was near zero in 0.7 mm worms. Juvenile mussels grow rapidly and can escape flatworm predation by exceeding the size of these tiny predators. -
Platyhelminthes: Macrostomorpha)
bioRxiv preprint doi: https://doi.org/10.1101/381459; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Atherton, Schärer & Jondelius Microstomidae !1(67! ) Sarah Atherton1, Lukas Schärer2, Ulf Jondelius1 A Taxonomic Review and Revisions of Microstomidae (Platyhelminthes: Macrostomorpha) 1. Department of Zoology, Naturhistoriska riksmuseet Box 50007, SE-104 05 Stockholm 2. bioRxiv preprint doi: https://doi.org/10.1101/381459; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Atherton, Schärer & Jondelius Microstomidae !2(67! ) Abstract Microstomidae (Platyhelminthes: Macrostomorpha) diversity has been almost entirely ignored within recent years, likely due to inconsistent and often old taxonomic literature and a general rarity of sexually mature collected specimens. Herein, we reconstruct the phylogenetic relationships of the group using both previously published and new 18S and CO1 gene sequences. We present some taxonomic revisions of Microstomidae and further describe 8 new species of Microstomum based on both molecular and morphological evidence. Finally, we brieYly review the morphological taxonomy of each species and provide a key to aid in future research and identiYication that is not dependent on reproductive morphology. Our goal is to clarify the taxonomy and facilitate future research into an otherwise very understudied group of tiny (but important) Ylatworms. -
Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your
Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof. -
R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available. -
The Regenerative Flatworm Macrostomum Lignano, a Model
Int. J. Dev. Biol. 62: 551-558 (2018) https://doi.org/10.1387/ijdb.180077eb www.intjdevbiol.com The regenerative flatwormMacrostomum lignano, a model organism with high experimental potential STIJN MOUTON#, JAKUB WUDARSKI#, MAGDA GRUDNIEWSKA and EUGENE BEREZIKOV* European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ABSTRACT Understanding the process of regeneration has been one of the longstanding sci- entific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macros- tomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell popula- tion, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes -
Potential of Macrostomum Lignano to Recover from Γ-Ray Irradiation
Cell Tissue Res (2010) 339:527–542 DOI 10.1007/s00441-009-0915-6 REGULAR ARTICLE Potential of Macrostomum lignano to recover from γ-ray irradiation Katrien De Mulder & Georg Kuales & Daniela Pfister & Bernhard Egger & Thomas Seppi & Paul Eichberger & Gaetan Borgonie & Peter Ladurner Received: 14 July 2009 /Accepted: 10 December 2009 /Published online: 2 February 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Stem cells are the only proliferating cells in irradiation. During recovery, stem cells did not cross the flatworms and can be eliminated by irradiation with no midline but were restricted within lateral compartments. An damage to differentiated cells. We investigated the effect of accumulated dose of 210 Gy resulted in a lethal phenotype. fractionated irradiation schemes on Macrostomum lignano, Our findings demonstrate that M. lignano represents a namely, on survival, gene expression, morphology and suitable model system for elucidating the effect of regeneration. Proliferating cells were almost undetectable irradiation on the stem cell system in flatworms and for during the first week post-treatment. Cell proliferation and improving our understanding of the recovery potential of gene expression were restored within 1 month in a dose- severely damaged stem-cell systems. dependent manner following exposure to up to 150 Gy Keywords Irradiation . Stem cells . Planaria . Flatworm . Macrostomum lignano (Platyhelminthes) This work was supported by a predoctoral FWO grant to K.D.M (Belgium) and FWF grant no. 18099 to P.L (Austria). Electronic supplementary material The online version of this article Introduction (doi:10.1007/s00441-009-0915-6) contains supplementary material, which is available to authorized users. -
Atp8 Is in the Ground Pattern of Flatworm Mitochondrial Genomes Bernhard Egger1* , Lutz Bachmann2 and Bastian Fromm3
Egger et al. BMC Genomics (2017) 18:414 DOI 10.1186/s12864-017-3807-2 RESEARCH ARTICLE Open Access Atp8 is in the ground pattern of flatworm mitochondrial genomes Bernhard Egger1* , Lutz Bachmann2 and Bastian Fromm3 Abstract Background: To date, mitochondrial genomes of more than one hundred flatworms (Platyhelminthes) have been sequenced. They show a high degree of similarity and a strong taxonomic bias towards parasitic lineages. The mitochondrial gene atp8 has not been confidently annotated in any flatworm sequenced to date. However, sampling of free-living flatworm lineages is incomplete. We addressed this by sequencing the mitochondrial genomes of the two small-bodied (about 1 mm in length) free-living flatworms Stenostomum sthenum and Macrostomum lignano as the first representatives of the earliest branching flatworm taxa Catenulida and Macrostomorpha respectively. Results: We have used high-throughput DNA and RNA sequence data and PCR to establish the mitochondrial genome sequences and gene orders of S. sthenum and M. lignano. The mitochondrial genome of S. sthenum is 16,944 bp long and includes a 1,884 bp long inverted repeat region containing the complete sequences of nad3, rrnS, and nine tRNA genes. The model flatworm M. lignano has the smallest known mitochondrial genome among free- living flatworms, with a length of 14,193 bp. The mitochondrial genome of M. lignano lacks duplicated genes, however, tandem repeats were detected in a non-coding region. Mitochondrial gene order is poorly conserved in flatworms, only a single pair of adjacent ribosomal or protein-coding genes – nad4l-nad4 – was found in S. sthenum and M. -
RNA-Seq of Three Free-Living Flatworm Species Suggests Rapid Evolution of Reproduction-Related Genes Jeremias N
Brand et al. BMC Genomics (2020) 21:462 https://doi.org/10.1186/s12864-020-06862-x RESEARCH ARTICLE Open Access RNA-Seq of three free-living flatworm species suggests rapid evolution of reproduction-related genes Jeremias N. Brand1* , R. Axel W. Wiberg1, Robert Pjeta2, Philip Bertemes2, Christian Beisel3, Peter Ladurner2 and Lukas Schärer1 Abstract Background: The genus Macrostomum consists of small free-living flatworms and contains Macrostomum lignano, which has been used in investigations of ageing, stem cell biology, bioadhesion, karyology, and sexual selection in hermaphrodites. Two types of mating behaviour occur within this genus. Some species, including M. lignano, mate via reciprocal copulation, where, in a single mating, both partners insert their male copulatory organ into the female storage organ and simultaneously donate and receive sperm. Other species mate via hypodermic insemination, where worms use a needle-like copulatory organ to inject sperm into the tissue of the partner. These contrasting mating behaviours are associated with striking differences in sperm and copulatory organ morphology. Here we expand the genomic resources within the genus to representatives of both behaviour types and investigate whether genes vary in their rate of evolution depending on their putative function. Results: We present de novo assembled transcriptomes of three Macrostomum species, namely M. hystrix,aclose relative of M. lignano that mates via hypodermic insemination, M. spirale, a more distantly related species that mates via reciprocal copulation, and finally M. pusillum, which represents a clade that is only distantly related to the other three species and also mates via hypodermic insemination. We infer 23,764 sets of homologous genes and annotate them using experimental evidence from M. -
Nuevas Aportaciones Al Conocimiento De Los Microturbelarios De La Península Ibérica
Graellsia, 51: 93-100 (1995) NUEVAS APORTACIONES AL CONOCIMIENTO DE LOS MICROTURBELARIOS DE LA PENÍNSULA IBÉRICA F. Farías (*), J. Gamo (*) y C. Noreña-Janssen (**) RESUMEN En el presente trabajo se citan por vez primera para la fauna ibérica siete especies de Microturbelarios pertenecientes a los Órdenes: Macrostomida (Macrostomum rostra- tum), Proseriata (Bothrioplana semperi) y Rhabdocoela (Castradella gladiata, Opis- tomum inmigrans, Phaenocora minima, Microdalyellia kupelweiseri y M. tenennsensis). Otras cinco especies se citan por segunda vez: Prorhynchus stagnalis (O. Lecithoepitheliata), Opisthocystis goettei, Castrella truncata, Mesostoma ehrenbergii y Rhynchomesostoma rostratum (O. Rhabdocoela). El material estudiado fue recogido en ocho localidades de las provincias de Avila, Cuenca, Guadalajara, Madrid y Segovia, ofreciéndose nuevos datos sobre la autoecología y distribución de estas especies. Palabras clave: Microturbelarios, Faunística, Península Ibérica. ABSTRACT New records of microturbelarians in the Iberian Peninsula. In this study, seven species of freshwater Microturbellaria are recorded for the first time from the Iberian fauna, belonging to the Orders: Macrostomida (Macrostomum ros- tratum), Proseriata (Bothrioplana semperi) and Rhabdocoela (Castradella gladiata, Opistomum inmigrans, Phaenocora minima, Microdalyellia kupelweiseri and M. tenennsensis). Other five species are recorded for the second time: Prorhynchus stagna- lis (O. Lecithoepitheliata), Opisthocystis goettei, Castrella truncata, Mesostoma ehren- bergii -
On the Origin of Cryptic Species: Insights from the Stygocapitella Species Complex
On the Origin of Cryptic Species: Insights from the Stygocapitella species complex José Cerca Thesis submitted for the degree of Philosophiae Doctor Natural History Museum Faculty of Mathematics and Natural Sciences University of Oslo 2019 "The beauty and brilliancy of this insect are indescribable, and none but a naturalist can understand the intense excitement I experienced when I at length captured it. On taking it out of my net and opening the glorious wings, my heart began to beat violently, the blood rushed to my head, and I felt much more like fainting than I have done when in apprehension of immediate death. I had a headache the rest of the day, so great was the excitement produced by what will appear to most people a very inadequate cause." Alfred Russel Wallace “Em cada esquina um amigo, em cada rosto igualdade.” (In each corner a friend, in each face equality) José Afonso – Zeca “Não sou nada. Nunca serei nada. Não posso querer ser nada. À parte disso, tenho em mim todos os sonhos do mundo.” (I am nobody. I will never be anything. I cannot desire to be anything. Other than this, I hold every dream in the world.) Fernando Pessoa Contents Acknowledgements Page 1 List of manuscripts and appendices included Page 5 Summary Page 7 Introduction Page 9 Methods and materials Page 13 Main findings and Discussion Page 21 References Page 46 Manuscripts and appendices Page 57 José Cerca – On the Origin of Cryptic Species: Insights from the Stygocapitella species complex Acknowledgments I belong to a lineage from Portugal’s rural interior.