1971AJ 76. . 14IT THE ASTRONOMICALJOURNALVOLUME76.NUMBER2MARCH1971 future paperinthisseries. Vesta, (6)Hebe,and(110)Lydia.Theresultson ness-phase functionsnearopposition;theyare(4) Vesta areinPaperI(Gehrels1967)andonLydia THREE asteroidswereobservedattheMcDonald the 91-cmreflector:18Octoberthrough17November They weremadeattheMcDonaldObservatory;with 208-cm reflector:20Novemberthrough2December this paper,whilewearepreparingthoseonHebefora 1958 andon11December1958;withtheOttoStruve hI Table Iliststhecircumstancesofobservations. Obs. date Obs. dateR.A.Dec.VB—V comp,readings 58.10.18 58.11.17 58.11.04 59.01.25 58.12.11 58.12.02 58.11.29 58.11.25 58.11.20 58.11.09 58.10.18 426?l+21°02' 69.03.16 58.11.04 416.22111 58.12.02 349.421 19 58.11.25 356.021 08 58.11.20 401.821 22 58.11.17 404.62122 58.11.09 411.82129 69.03.16 958.2+21 18 58.12.11 341.820 53 58.11.29 352.321 08 59.01.25 330.221 19 © American Astronomical Society • Provided by theNASA Astrophysics Data System U.T. U.T. 1950(mag) (mag) Remarks Observatory in1958-59specificallyforthebright- hm The synodicperiodis105536®24±0?04(p.e.).absolutemagnitudeB(1,0)=8.80,andthecolorsat clearly evident.AstrikingsimilaritywasfoundamongtheoppositioneffectsofVesta,Massalia,andLydia. zero phaseangleareB—V—+0.71andZ7—B=+0.29.Theoppositioneffectreddeningwith Observatory. Thelightcurvehasthreemaximaandminima,itshowsthatLydiaanirregularshape. Lydia wasobservedin1958-59attheMcDonaldObservatoryand1969KittPeakNational ± 0.02 - 8.83 -14? 95 + 3.57 + 2.37 - 0.56 - 3.24 - 6.70 +10.27 +19.66 + 7.50 - 1.79 Minor PlanetsandRelatedObjects.VI.(110)Lydia ±0.2 ±3 Phase angle I. OBSERVATIONS Lunar andPlanetaryLaboratory,TheUniversityofArizona,Tucson,Arizona from Sun ±0.0001 Distance (a.u.) 2.6687 2.6552 2.6798 2.6730 2.6915 2.6859 2.6823 2.6897 2.9445 2.7359 2.6990 R. C.Taylor,T.Gehrels,andA.B.Silvester Table II.Comparisonstarsandqualityofnights. ±0.006 ±0.005 from Earth 11.652 1.6870.008 11.802 0.9030.004 11.690 +0.777±0.005 12.504 0.7110.004 11.718 0.4080.010 11.972 0.9430.005 11.243 1.0300.008 13.492 +0.7820.009 ±0.0001 8.181 0.4670.007 Distance Table I.AspectdataforLydia. 9.486 1.5210.005 (Received 30November1970) (a.u.) 2.2275 2.0527 1.6986 1.6982 1.7147 1.7340 1.8419 1.7149 1.7073 1.6962 1.7565 141 Light time ±0.00001 made byGehrels.Anadditionalobservationwas by R.G.ThomaswiththeKittPeak41-cm“No.3” 0.01063 was madebySilvester,whileTaylorresponsible reflector on16March1969.Apartofthereductions and reductionsfollowedthemethodsdescribedin for thefinalreductionsandanalysis.Theobservations Paper I.O—Ccorrectionsin1958-59averaged+0+9 0.01186 in rightascensionand+6'declination. 1958 andon25January1959;theseobservationswere average deviationfromasmoothcurveofcomparison- Under “Scatterofcomp,readings”thetablegives magnitudesversustime. Table IIgivesvariousdataforthecomparisonstars. 1001 1287 1014 981 990 981 980 990 986 Scatter of ±0.01 h 4 15.4 4 3.3 4 11.0 425+3 3 29.4 3 40.4 3 48.8 3 55.3 4 0.1 3 51.2 9 58.6 R.A. ±0.2 1950 One- lightcurveonly Cloudy andhazymostofnight Some cirrus Excellent skyuntilstoppedbyclouds Equipment trouble +21 7 +21 11 +21 12 +21 12 +20 54 +21 5 +21 9 +21° 1' +21 12 +21 16 +21 0 Dec. 1950 ±1 ±0.03 144.40 long. lat. 62.96 61.12 62.23 64.73 65.74 59.62 60.18 67?98 55.27 57.68 1950 Ecliptic ±0.03 +0.43 +0.94 +0.73 +0.54 +0.11 — 0?64 +8.30 +2.24 +1.28 +0.91 -0.07 1971AJ 76. . 14IT 142 TAYLOR,GEHRELS,ANDSILVESTER observations weremadeusing theVfilterofastandard UBV photometer;eachpoint inthefiguresis Figures 1-10showthelightcurves. TheMcDonald © American Astronomical Society • Provided by theNASA Astrophysics Data System II. LIGHTCURVESANDPHASE FUNCTIONS using aGG13filterwithaverages offourintegrations 40 sec.Theshortlightcurve of9November1958is not included.TheKittPeak observationsweremade straight averageoffourintegrations eachlasting30to 1971AJ 76. . 14IT o of 30sec.Opencirclesareusedwhentheprobable error isgreaterthanabout3timesthatofthenightly metry andtheyareindicatedbyhorizontalthinlines average. “MeanF”linesweredeterminedbyplani- vertical barsonthetopofeachfigure.Lydiaappears to haveanirregularshape.Thethirdmaximum(near near 8°whilethedashedanddottedlinesareforabout on thelightcurves. 7:00) isquitepronounced. 1-9 weresuperimposedasindicatedbythelettered findings ofsteeperlightcurvesawayfromoppositionresults.Foreachnumberarelativeweightisestimated," shape ofthelightcurveisseenalthoughpreviousTableIIIcontainsnightlyaveragesUBV 2° phase;overthissmallrange,littlevariationinthe Fig. 5.McDonaldobservationsat—Iphase. (Gehrels 1956,1967)appearsconfirmed. Figure 11isacalculatedlightcurveforwhichFigs. The solidlineinFig.11isforanaveragephaseangle Fig. S.lMcDonaldobserva- © American Astronomical Society • Provided by theNASA Astrophysics Data System tions at+8°phase. Fig. 7.McDonaldobservationsat+4°phase. ASTEROID (110)LYDIA usually aboutsixtransfermeasurementsweremade Fig. 6.McDonaldobservationsat+2°phase. 143 1971AJ 76. . 14IT 144 per night.NoUBVtransfersweremadeforthelight- were assumed(onlythedatafromnightswithphase curve of1969. The straightlinesofFig.12showtheserelations(the angles greaterthan8°wereusedfortheVfilter).The different ordinatescalesshouldbenoted). tions oftheorbitalphaseangle.Theoppositioneffect results are: (viz. Sec.IV)andreddeningwithphaseareclearlyseen. Obs. dateOTl,«)){B-V)(U-B) 58.11.04 8.383 58.10.18 8.585 58.12.11 8.322 58.12.02 8.127 58.11.29 8.025 58.11.25 7.868 58.11.20 8.011 58.11.17 8.120 58.11.09 8.300 59.01.25 8.738 In calculatingthephasefunctions,linearrelations Figure 12showsthemagnitudesandcolorsasfunc- U.T. (mag)wt. © American Astronomical Society • Provided by theNASA Astrophysics Data System Table III.UBVobservationsofLydia. F (l,o:)=8.09+0.0321aI, 5 -F=+0.706+0.00161o:I, £/-£ =+0.287+0.00251o!I. 3 0.722 2 +0.719 1 0.730 1 0.682 1 0.707 1 0.697 1 0.700 1 0.722 1 0.713 1 0.747 TAYLOR, GEHRELS,ANDSILVESTER 4 0.318 3 0.2984 3 +0.3172 3 0.2752 2 0.3053 2 0.342 1 0.3223 1 0.2632 1 0.334 1 0.2513 hm Obs. date Nov. 932516.8873 Nov. 4921511.8796 Nov. 25758532.8221 Nov. 20747527.8145 Nov. 17318524.6277 Oct. 1813549540345 Nov. 291019536.9200 Dec. 2353539.6519 Jan. 25814593.8302 Dec. 11625548.7573 1958-9 ObservedJ.D.(c)Number 58.10.18 58.11.17 58.11.09 58.11.04 U.T. 2436000+IntervalofcyclesPn 69.03.16 59.01.25 58.12.11 58.12.02 58.11.29 58.11.25 58.11.20 8y Date Table IV.Observedepochsandsynodicperiods. Table V.CalculatedamplitudesofLydia. Fig.9. McDonaldobservationsat+20°phase. dbl ±0.0006 mean V Above 0.082 0.087 0.080 0.109 0.084 0.079 0.079 0.076 0.078 0.079 ±0.0005 45.0729 99282 1648451 3704455272 5.0076 11236 3.1868 7257 5.0077 11245 9.1054 20270 2.7319 6317 4.0979 9322 7.7404 17318 mean V Below 0.102 0.088 0.085 0.078 0.075 0.095 0.108 0.099 0.094 0.112 Amplitude (mag) 0.19 0.11 0.18 0.16 0.16 0.20 0.19 0.18 0.17 0.16 0.16 1971AJ 76. . 14IT © American Astronomical Society • Provided by theNASA Astrophysics Data System ASTEROID (110)LYDIA hm and theEarth;middlecurve, B—Vcolors;bottomcurve,the opposition. angle indegrees.Ordinates,topcurve: theobservedmagnitudes U—B colors.Opencirclesare before andfilledcirclesafter 69.03.16 59.01.25 58.12.11 58.12.02 58.11.29 58.11.25 58.11.20 58.11.09 (F ontheUBVsystem)reduced to unitdistancesfromtheSun 58.11.17 58.11.04 58.10.18 was 0.18magontheaverage,andit0.11in and orientationofthepoleusingphotometricastrom- adjacent lightcurvefitting.Theamplitudein1958-59 period of105536?24db0?04(p.e.). according tothenumberofcycles,givesasynodic for lighttime).Aleast-squaresroutine,withweights of light. of thesubearthpoint,subsolarandapparentcenter curves weredeterminedbylinearinterpolationand the heightanddepthofeachlightcurvewithreference to themeanVline.Amplitudesofincompletelight- “A” withthecorrespondingJulianDateaftercorrection was foundwhichmayindicatethatthelightcurveis 1969, whichindicatesacloserpolaraspectin1969. caused mostlybyshape. (marked inFigs.1-9bytheverticallineslabeled Fig.. 12.PhasefunctionsofLydia. Abscissas,theorbitalphase Table VI.Eclipticlongitudeandlatitude,asseenfromLydia An attemptwasmadetodeterminethetrueperiod Table Vgivestheamplitudesobtainedbyplotting Table IVcontainstheepochsofmaximumlight No colorchange(U—V)overthesurfaceofLydia 324.40 235.27 237.68 239.62 240.18 241.12 242.23 242.96 244.73 245.74 247?98 long. lat. Subearth III. THEPERIODOPROTATION -0.94 -8.30 -2.24 -1.28 +0?64 -0.91 -0.74 -0.54 -0.43 +0.07 -0.11 342.67 245.56 222?13 273.94 250.37 239.25 244.09 241.92 237.57 233.63 230.90 long. lat. Subsolar -0.37 +0?28 -3.53 -1.22 -0.51 -0.21 +0.03 -0.35 -0.29 -0.17 -0.04 324.75 236.69 237.89 240.20 239.66 241.12 242.21 242.93 245.45 244.56 247?16 long. lat. Lightcenter -8.12 -2.18 -1.26 -0.90 -0.54 +0.07 -0.94 -0.74 -0.43 -0.11 +0?62 145 1971AJ 76. . 14IT m 146 etry (PaperIandrefinedinSec.VIIofPaperIV),but is needed.TableVIgivesthepresenteclipticcoordinates a widerrangeofobservationslightcentercoordinates were appliedtoadjustforthedifferencesinbrightness. Lydia, ofVmagnitudeversusphaseangle;corrections about 8°phaseto0°phase,wasfoundfor(20)Massalia on Lydiaforafuturedeterminationofthepole. effect. Figure13isaplotforMassalia,Vesta,and There isastrikingsimilarityoftheoppositioneffect phase, forVestaaswellLydia,andthesecurves The oppositioneffectthereforeappearstobeinde- superpose towithintheprecisionofmeasurements. o products, aswellforthebrighteronesthatmayhave and satellitesatsmallphaseangles.Thisshouldbe pendent ofwavelength. done forfaintasteroidsthatpresumablyarecollision of thesethreeasteroids. 0.6 (Gehrels 1956).Lydiashowsthatsameopposition 0.8 0.4 0.2 I .2 1.0 A pronouncednonlinearincreaseinbrightnessfrom We plottedthevaluesofBand£/asafunction It wouldbeofinteresttoobserveadditionalasteroids Fig. 13.-phaserelationsofthreeasteroids. © American Astronomical Society • Provided by theNASA Astrophysics Data System 0° 5°10°15°20°PHASE “i i^m i IV. THEOPPOSITIONEFFECT .1 lIl... TAYLOR, GEHRELS,ANDSILVESTER ...I .1.11.i.1 ^ Lydia a Massalia o Vesta from photographicphotometry—thattheopposition originated byaccretion.InthePalomar-LeidenSurvey effect isthesameforfaintasbrightasteroids,while phase. WefoundthattheoppositioneffectofFig.13 the formerhaveasteeperphasefunctionbeyond8° is notthesameasthatofMoonorMars. and shadowingeffects,i.e.,theeffectisrelatedto that theoppositioneffectisduetointernalblocking has adetaileddiscussionoftheoppositioneffect.] ment bysmallparticles(andsolarwind).Iftheopposi- (Van Houtenetal.1970),anindicationwasfound— major axes,includingtheTrojans. The similarityofoppositioneffectsisthenexplained texture morethantocomposition.[Veverka(1970) different compositions,havehadthesamebombard- by thefactthatdifferentasteroids,whichmayhave bright andfaintasteroidsofvariousvaluesthesemi- from theSun,thiscouldbeanindicationofcometary opposition effectshould,therefore,beobservedfor rather thanasteroidaloriginofthesmallparticles.The tion effectcouldbeshowntoindependentofdistance National AeronauticsandSpaceAdministration. tory andKittPeakNationalObservatoryforthe .1967,Astron.J.72,929(PaperI). telescope assignments.Theworkwassupportedbythe Veverka, J.F.1970,Ph.D.dissertation,HarvardUniversity. Van Houten,C.J.,Houten-Groeneveld,I.,Herget,P.,and Gehrels, T.1956,Astrophys.J.123,331. Gehrels, T.,Roemer,E.,Taylor,R.C.,andZellner,B.H.1970, Laboratory studiesbyHapkeandothersindicate ibid. 75,186(PaperIV). Gehrels, T.1970,Astron.Astrophys.Suppl.2,339. We thanktheDirectorsofMcDonaldObserva- ACKNOWLEDGMENTS REFERENCES