How Do We Empathize with Someone Who Is Not Like Us? A Functional Magnetic Resonance Imaging Study

Claus Lamm1, Andrew N. Meltzoff2, and Jean Decety1

Abstract & Previous research on the neural underpinnings of control (right inferior frontal cortex). In addition, effective has been limited to affective situations experienced in a simi- connectivity between the latter and areas implicated in af- lar way by an observer and a target individual. In daily life we fective processing was enhanced. This suggests that inferring also interact with people whose responses to affective stimuli the affective state of someone who is not like us can rely can be very different from our own. How do we understand upon the same neural structures as empathy for someone the affective states of these individuals? We used functional who is similar to us. When strong emotional response ten- magnetic resonance imaging to assess how participants em- dencies exist though, these tendencies have to be overcome by pathize with the feelings of patients who reacted with no pain executive functions. Our results demonstrate that the fronto- to surgical procedures but with pain to a soft touch. Empathy cortical attention network is crucially involved in this pro- for pain of these patients activated the same areas (insula, cess, corroborating that empathy is a flexible phenomenon medial/anterior cingulate cortex) as empathy for persons who which involves both automatic and controlled cognitive mecha- responded to painful stimuli in the same way as the observer. nisms. Our findings have important implications for the un- Empathy in a situation that was aversive only for the observer derstanding and promotion of empathy, demonstrating that but neutral for the patient recruited areas involved in self– regulation of one’s egocentric perspective is crucial for under- other distinction (dorsomedial prefrontal cortex) and cognitive standing others. &

INTRODUCTION pins processes such as emotional contagion (Preston & A growing number of studies document a de Waal, 2002). striking overlap in the neural underpinnings of the first- An important gap in the neuroscientific investigation hand experience of pain and its perception in others of empathy is that previous work exclusively created af- (see Jackson, Rainville, & Decety, 2006, for a review). fective situations that could have been experienced in This overlap is most consistent in areas coding affective– a similar or identical way by both the observer and the motivational aspects of pain, such as the anterior and afflicted person (the target). Therefore, our knowledge mid-cingulate cortex and anterior insula (AI) (e.g., Lamm, about how we empathize with people who are not like Batson, & Decety, 2007; Singer et al., 2004). In addition, us is limited. This question is of high ecological validity, areas processing the sensory-discriminative aspect of as many everyday situations require understanding pain also seem to be activated by the perception of pain others whose experiences, attitudes, and response ten- in others (e.g., Cheng et al., 2007, 2008; Bufalari, Aprile, dencies are different from our own. The question of how Avenanti, Di Russo, & Aglioti, 2007; Lamm, Nusbaum, we empathize with dissimilar others is also interesting Meltzoff, & Decety, 2007; Moriguchi et al., 2007). These on a theoretical level because it stresses the cognitive com- findings lend credence to the idea that empathy draws ponent of empathy. This component is perhaps unique upon automatic somatic and somatosensory resonance to humans and possibly apes (De Waal, 2006; Decety & between other and self, offering a possible (yet only par- Lamm, 2006), and crucially relies upon the awareness of tial) route to understanding the mental states of others self–other distinction and executive functions—including (Decety & Meyer, 2008; Decety & Gre`zes, 2006; Decety controlled attention for activating relevant represe