Thixotropy and Flow Properties of Fine Grained Soils Ackermann, E

Total Page:16

File Type:pdf, Size:1020Kb

Thixotropy and Flow Properties of Fine Grained Soils Ackermann, E NRC Publications Archive Archives des publications du CNRC Thixotropy and flow properties of fine grained soils Ackermann, E. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/20331616 Translation (National Research Council of Canada), 1950-04-01 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=6d6165a8-b9a3-410e-860c-9020e1c2e635 https://publications-cnrc.canada.ca/fra/voir/objet/?id=6d6165a8-b9a3-410e-860c-9020e1c2e635 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. NATIONAL RESEARCH COUNCIL OF CANADA TRANSLATION TT - 150 THIXOTROPY AND FLOW PROPERTIES OF FIW GRAINED SOILS (Thixotropie und Fliesseigenschaf ten feinkbrniger Bbden) 3r. Ernst Ackerrnann GLI t t ingen Reprint from "Geologische ~undschau" VO~.36, 1948. Translated by H. A. G. Nathan This is the Tenth of the Series of Translations Prepared for the Division of Building Research 0ttawa April, 1950 PREFACE The soils of Canada include a large proportion of fine-grained sediments, the deposition of which was as- sociated with glacial action. Some of these soils have most peculiar properties which have already caused a great deal of trouble in the use of the soils, even indirectly, for engineering purposes. They are, therefore, under detailed study by the Division of Building Research which has been privileged to use the soils exposed in the bed of Steep Rock Lake, Ontario (in iron-mining operations) for this purpose . The somewhat strange phenomenon of thixotropy is one soil characteristic which has already attracted the at- tention of those working on this problem. The literature dealing with the thixotropic properties of soils is meagre to a degree, but despite this, the work of Dr. Ernst Acker- inann of GBttingen, was known to be outstanding. Dr. Ackermann kindly agreed to the writer's request that his most recent paper in this field might be translated into English by the Council in order to make it more generally available. The Division ig therefore pleased to have been able to arrange for this translation by Mr. Nathan; it looks forward to following up, with Canadian soils, some of the interesting work herein described by Dr. Ackermann. Robert F. Legget, Director, 9th August, 1950, Division of Building Research. Ottawa. THIXOTROPY AND FLOW PROPERTIES OF FINE GRAINED SOILS .;:- ) Thixotropic Phenomena in Laboratory Experiments If clay is stirred up with approximately an equal amount of water in a test tube and the latter then slowly turned upside down, the clay paste sticks to the bottom of the tube. If, how- ever, the tube in this position is jolted, pushed or shaken by tapping, the clay paste flows down. After a short rest period, the suspension stiffens again so that on turning the tube right- side up the suspension no longer flows. The process may be re- peated as often as desired. Such isothermal, reversible vis- cosity changes of concentrated suspensions of very fine particles 3: ) Presented at the meetin of the fellows of the "Geologische Vereinigung", April, 19 7. (Draft received by the editor, spring, 1947. ) 3;-<:- ) Thixotropy, which was discovered in 1923 by colloido- chemical research of Szegvari and Schaleck (l),up to the present has scarcely been taken into account in soil physics and geology. Differences in strength between undisturbed and remoulded clays were for the first time described in 1922 by the Geotechnical Commission of the Swedish State Railway (2). In 1937 Hvorslev identified these differences as thixotropic phenomena. In Switzerland certain changes in the properties of freshwater limestones were defined as thixotropic phenomena by R. Kaefeli (3), v. h!oos (4)and R. F. Rutsch (5). In 1945 Ackermann (6a) proved thixotropy of Norwegian clays (known in N3rway as "kvikkleir"). The dependence of their strength on the electrolyte content was shown by I. Th. Rosenquist (7). fl detailed explanation of the various problems associated with thixotropy is hardly possible within the limited scope of this paper. It was therefore necessary to omit some ex- amples which might have served to clarify the geological aspects of thixotropy to readers not very familiar with the subject. The present report on flow properties and their de- pendence on geologically important factors is based chiefly on the study of postglacial clays in Norway with special reference to their behaviour in the natural state. are caJled thixotropy. The experiment described is a particularly clear example of thixotropy as it was observed when the phenomena was discovered. The tern "thixotropy" has since been extended to include reversible viscosity changes in mechanically dis- turbed clay pastes (e)" and moving fluids (9). Thixotropy is a border-line nhenomenon for which as yet there is no satisfactory theoretical explanation. In a thixo- tropic system "solid-liquid", the solid particles do not come into immediate contact since they are surrounded by an envelope of water which separates them. In the gel state the particles build up a structure which is very loose. In this structure the forces linking the particles are extremely small. Upon the slightest mechanical agitation (jolting, shaking) the structure breaks down (sol state), but after the mechanical stress ceases it is reformed within a certain time. Of the numerous factors affecting thixotropy the fol- lowing are listed here: type and concentration of the disperse phase, grain size, grain shape, type of clay minerals and inter- changeable ions, and the electrolyte content. Thixotro~icPhenomena during Soil Movements in Norwav The thixotropic change of state "stiff-liquid-stifff1 shown by the test can also be observed in fine-grained soils in the natural state. In the postglacial varved clays which rose above sea level owing to the continental elevation of Scandi- navia, there is an irregular occurrence of quick clay. In these clays catastrophic movements of the soil are frequent. On many occasions the solid wooded ground of a valley or of a terrace has been observed first to wobble and then to burst with frightful noise, with clayey mud pouring out of it and flowing downhill (cf. 10 b, p. 20, 26). Blocks of surface dry-crust with rooted trees float on the pasty quick clay like ice floes on a river and people and houses are carried away for miles (cf. 10 a, p. 5 ff., and 11). Contrary to the obsolete concept of a permanent liquid state of such mud masses, the Geotechnical Commission of the Swedish State Railway (cf. 2, p. 17) found that quick clays have no liquid consistency when the soil is at rest but become liquid as soon as it is in motion. The same observation was made when movements resembling small scale ground ruptures occurred in the Lerkedal railway cutc Numbers in parentheses refer to bibliography. 2% ) ting near Trondhjem." When the upper layers were dredged out the quick clays, like the sof t-plastic clays, remained stationary. Only when the equilibrium of the masses was too much disturbed by sinking the floor of the cutting to a depth of seven metres did the ground break, the ruptures being confined to a narrow zone of quick clay. On August 21, 194.4, as an indication of the impending first rupture, a cleavage tapering off obliquely towards the upper edge of the youth slope appeared in the 2.5 m. thick dry-crust. R'ithin several hours the cleavage widened by several decimetres. The following day a 28 m. wide section of the slope which had been separated by this cleavage slid down approximately four metres, tilting backwards in the direction opposite to the sliding surface. It then moved approximately nine metres into the cutting. In the upper part of the moving earth block additional gaping cleavages appeared in the dry-crust. The lower parts of the soil consisting of sandy quick clay with low salt content became pasty and poured out in the form of a viscous mud onto the 20 m. wide floor of the cutting at the foot of the slope (soil physical indices, Table I, No. 4 and 7). The dry-crust (approximately 1 1/2 m. thick) of the slope surface ruptured and split into smaller blocks on top of the flowing mud. %hen walked upon the next day, these blocks were pressed into the mud. Flow bulges similar to those of lava with corded-folded surface formed in some places on the mud surface. These bulges remained in the rapidly forming surface dry-crust of one centimetre thickness. Under this dry-crust the clay was soft, like pudding. When knocked with the sole of the foot the clay became thick-flowing and flowed under its own weight. During a rest period of ap- proximately four weeks it again became strong enough that care- ful digging and dredging became possible.
Recommended publications
  • Regulatory Guide 3.39 Standard Format & Content of License
    NUREG-O010 USNRC REGULATORY J GUIDE SERIES REGULATORY GUIDE 3.39 STANDARD FORMAT AND CONTENT OF LICENSE APPLICATIONS FOR PLUTONIUM PROCESSING 2 AND FUEL FABRICATION PLANTS JANUARY 1976 UNITED STATES NUCLEAR REGULATORY COMMISSION Available from National Technical Information Service Springfield, Virginia 22161 Price: Printed Copy $5.50 ; Microfiche $2.25 U.S. NUCLEAR REGULATORY COMMISSION January 1976 REGULATORY GUIDE OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 3.39 1 STANDARD FORMAT AND C KEN\ OF LICENSE APPLIC 0O1 .R PLUTONIUM PROCf$ L4('I AND FUEL FABRjATI XP lTS USNRC REGULATORY GUIDES Comments should be sent to the Secretary of the Commission. U.S. Nuclear Regulatory Guides are Issued to describe and make available to the public Regulatory Commission. Washington. D.C. 20555. Attention Docketing and methods ecceptable to the NRC staff of implementing specific parts of the Service Section Commission's regulations, to delineate techniques used by the staff in evelu eting specific problems or postulated accidents. or to provide guidance to appli The guides are issued In the following ten broed divisions cants Regulatory Guides are not substitutes for regulations. and compliance 1 wer Reactors 6. Products with them Is not required. Methods end solutions different from those set 2. out in Research and Test Reactors 7. Transponation the guides will be acceptable if they provide a basis for the findings requisite to 3. Fuels and Materiels Facilities I Occupational Health the issuance or continuance of apermit or license by the Commission 4. Evironmental andSiting 9.Antitrust Review Comments and suggestions for Improvements in these guides are encouraged 5. Materials and Plant Protection 10.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • International Society for Soil Mechanics and Geotechnical Engineering
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. 1/18 Liquefaction of Saturated Sandy Soils Liquéfaction de sols sableux saturés by V. A. F lorin , Professor, Doctor of Technical Sciences, Associate Member of the USSR Academy of Sciences, Institute of Mechanics of the USSR Academy of Sciences, and P. L. I vanov , Docent, Candidate of Technical Sciences, Leningrad Polytechnic Institute. Summary Sommaire The authors give results obtained from theoretical and Le présent rapport contient quelques résultats des études experimental research on the liquefaction of saturated sandy théoriques et expérimentales des phénomènes de liquéfaction soils undertaken by them, in the Laboratory of Soil Mechanics de sols sableux saturés qui ont été effectuées aux Laboratoires of the Institute of Mechanics of the U.S.S.R. Academy of Sciences de Mécanique des sols de l’institut de Mécanique de l’Académie and in the Leningrad Polytechnic Institute. des Sciences de l’U.R.S.S. et de l’institut Polytechnique de Laboratory investigations have been carried out on various Leningrad. kinds of disturbances affecting saturated sandy soils and causing Les auteurs décrivent des études de Laboratoire de la liqué­ their liquefaction. The authors also give the results of studies faction de sols sableux soumis à diverses influences.
    [Show full text]
  • Permeability and Seepage -2
    13 Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay Permeability and Seepage -2 Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is reduced to zero due to upward flow of water. Quick sand occurs in nature when water is being forced upward under pressurized conditions. In this case, the pressure of the escaping water exceeds the weight of the soil and the sand grains are forced apart. The result is that the soil has no capability to support a load. Why does quick condition or boiling occurs mostly in fine sands or silts? Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay Some practical examples of quick conditions Excavations in granular materials behind cofferdams alongside rivers Any place where artesian pressures exist (i.e. where head of water is greater than the usual static water pressure). -- When a pervious underground structure is continuous and connected to a place where head is higher. Behind river embankments to protect floods Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay Some practical examples of quick conditions Contrary to popular belief, it is not possible to drown in quick sand, because the density of quick sand is much greater than that of water. ρquicksand >> ρwater Consequently, it is literally impossible for a person to be sucked into quicksand and disappear. So, a person walking into quicksand would sink to about waist depth and then float.
    [Show full text]
  • Nature and Effects of Earthquake Hazards A
    Session 7: Nature and Effects of Earthquake Hazards Session No. 7 Course Title: Earthquake Hazard and Emergency Management Session Title: Nature and Effects of Earthquake Hazards Author: James R. Martin, II Time: 120 minutes ______________________________________________________________________________ Objectives: 7.1. Describe the nature of earthquake hazards, and especially, how these hazards differ from other hazards. 7.2. Describe the effects of earthquakes upon infrastructure (buildings, lifelines, etc.). 7.3. What are the general effects of earthquakes upon people and what is the nature of the casualties from earthquakes? 7.4. Describe the general effects of earthquakes upon the economy and the nature of earthquake losses. Scope: In this session, the students will learn about the general nature of earthquake hazards, specifically how earthquake hazards differ from other natural hazards, and the special challenges they pose. This section addresses a variety of effects of earthquakes and specifically the factors that produce damage and losses. The session covers the effects on people, the economy, and infrastructure. This section is closely linked with Section 9 in which mitigation will be discussed. This section is important because it provides a better understanding of earthquake hazards, and fosters improved communication with scientists, engineers, policy makers, the public, etc. ______________________________________________________________________________ Readings: Suggested student reading: Commission on Engineering and Technical Systems. 1990. “The Economic Consequences of a Catastrophic Earthquake,” Proceedings of a Forum, August 1 and 2, 1990, Overview of Economic Research on Earthquake Consequences, National Academies Press. Earthquake Hazard and Emergency Management 7-1 Session 7: Nature and Effects of Earthquake Hazards http://books.nap.edu/catalog/2027.html.
    [Show full text]
  • Impact of Thixotropy on Flow Patterns Induced in a Stirred Tank
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Archive Toulouse Archive Ouverte Impact of thixotropy on flow patterns induced in a stirred tank: Numerical and experimental studies G. Couerbe a, D.F. Fletcher b, C. Xuereb a, M. Poux a,∗ a Universit e´ de Toulouse, Laboratoire de G enie´ Chimique, CNRS/INP/UPS, 5 rue Paulin Talabot, BP 1301, 31106 Toulouse Cedex, France b School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia abstract Agitation of a thixotropic shear•thinning fluid exhibiting a yield stress is investigated both experimentally and via simulations. Steady•state experiments are conducted at three 1 impeller rotation rates (1, 2 and 8 s − ) for a tank stirred with an axial•impeller and flow•field measurements are made using particle image velocimetry (PIV) measurements. Three• dimensional numerical simulations are also performed using the commercial CFD code Keywords: ANSYS CFX10.0. The viscosity of the suspension is determined experimentally and is mod• Thixotropy elled using two shear•dependant laws, one of which takes into account the flow instabilities CFD of such fluids at low shear rates. At the highest impeller speed, the flow exhibits the famil• PIV iar outward pumping action associated with axial•flow impellers. However, as the impeller Stirred tank speed decreases, a cavern is formed around the impeller, the flow generated in the vicin• Impeller ity of the agitator reorganizes and its pumping capacity vanishes. An unusual flow pattern, Mixing where the radial velocity dominates, is observed experimentally at the lowest stirring speed. It is found to result from wall slip effects.
    [Show full text]
  • Thixotropy Vs Wall Slip in Suspensions
    Thixotropy vs wall slip in suspensions Wonjae Choi Papers : Dullaert, Mewis : Thixotropy : Build-up and breakdown curves during flow ( JoR, 2005 ) Claimed the first robust stress measurement of the thixotropic system Introduced de-embedding of rheometer’s transfer function from the output data Dullaert, Mewis : A model system for thixotropy studies ( Rheol Acta, 2005 ) Detailed description on the previous ‘robust thixotropic system’ Covered various issues which was problematic for previous researches and was reduced with their new compound Covered wall-slip phenomenon and remedy for it Experiments about thixotropy Difficulties in experiments While there are various models & theories about thixotropy, there are few reliable experimental datasets Primary reason for this is the difficulties involved in measuring thixotropic system with enough accuracy Main objective of this paper Building robust thixotropic system which supports repeatible & reliable measurements Recall : Definition of thixotropy in this paper Change of floc structure resulting in varying viscosity Does not necessarily include viselasticity Why is measurement difficult? Implemental artifacts Wall slip Heterogeneous shear rates Gap size effect Rheometer’s transfer function Memory of floc’s microstructure Evaporation of solvents Particle sedimentation, change in particle’s wetting property, adsorption Plan Wall slip Interparticle attraction & PIB Viscosity control Sedimentation Memory Steady-state Enough pre-treatment Evaporation Non volatile suspension
    [Show full text]
  • State Highway Department Extension Service And
    Public Access Copy DO NOT REMOVE STATE OF DELAWARE from room 208. DELAWARE GEOLOGICAL SURVEY Bulletin No. 1 GROUNDWATER PROBLEMS IN HIGHWAY CONSTRUCTION AND MAINTENANCE WILLIAM C. RASMUSSEN Geologirt United States Geological Swey and LEON B. HAIGLER Hydraulic Engineer United States Geological Smey PREPARED BY THE UN~TEDSTATES GEOLOGICAL SURVEY IN COOPEMTION WITH THE DELAWARESTATE HIGHWAYDEPARTMENT AGRICULTURALEXTENSION SERVICE AND EXPERIMENTSTATION AND THE DELAWAREGEOLOGICAL SURVEY Published for !be DELAWARE GEOLOGICAL SURVEY Newark, 1953 STATE OF DELAWARE Contents DELAWARE GEOLOGICAL SURVEY Bulletin No. 1 Introduction ................................................. 4 Purpose and scope ......................................... 4 GROUND-WATER PROBLEMS IN HIGHWAY 4 CONSTRUCTION AND MAINTENANCE the State ............................................... 5 Cooperation and acknowIedgments ............................ 6 7 WILLIAM C. RASMUSSEN Road subdrainage 7 Geologist Quicksand ............................................. 8 United States Geological Survey and LEON B. HAIGLER Hydraulic Engineer United States Geological Survey PREPARED BY THE Figure 1. Map of the State of Delaware, showing the physiographic provinces and the localities discussed ................... 18 UNITEDSTATES GEOLOGICAL SURVEY 2. Map of subdrainage robIem, roadway near Portsville, IN COOPERATION WITH THE between Laurel an 1Bethel, Sussex County, Del. .......... 19 DELAWARESTATE HIGHWAY DEPARTMENT 3. Cross sections showing high water table beneath road shown in figure
    [Show full text]
  • Cyclic Response of a Sand with Thixotropic Pore Fluid
    Cyclic Response of a Sand with Thixotropic Pore Fluid C.S. El Mohtar1, J. Clarke1, A. Bobet1, M. Santagata1, V. Drnevich1 and C. Johnston2 1School of Civil Engineering, Purdue University, West Lafayette, IN 2Department of Agronomy, Purdue University, West Lafayette, IN ABSTRACT Saturated specimens of Ottawa sand prepared with 0%, 3% and 5% bentonite by dry mass of sand are tested under cyclic loading to investigate the effects of bentonite on the cyclic response. For the same skeleton relative density and cyclic stress ratio (CSR), the cyclic tests on the sand-bentonite mixtures show a significant increase of the number of cycles required for liquefaction compared to the clean sand. This is caused , as observed in resonant column tests, by an increase of the elastic threshold due to the presence of bentonite, which delays the generation of excess pore pressure. Such behavior can be explained by the rheological properties of the pore fluid. Oscillatory tests conducted with a rheometer on bentonite slurries show that for shear strains as large as 1% these materials exhibit elastic behavior with a constant shear modulus. Moreover, due to the thixotropic nature of the bentonite slurries, their storage modulus shows a marked increase with time. This observation is consistent with the increase in the liquefaction resistance of the sand-bentonite mixtures with time also observed in cyclic triaxial experiments. INTRODUCTION Liquefaction is an important cause of damage to civil infrastructures during earthquakes. Notable examples are: the collapse
    [Show full text]
  • Abstract-Papers up to 4 Pages Should Be Submitted Using This Format
    IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 02 (February. 2014), ||V5|| PP 12-19 Study on the Liquefaction Resistance of Sand With Plastic And Non Plastic Fines S.Boobathiraja1, P.Balamurugan2, C. Siva prakash3, S.Ashwin4 1& 2Assistant Professor, Department of Civil Engineering, Erode Sengunthar Engineering College 3&4 U G Students, Department of Civil Engineering, Erode Sengunthar Engineering College Abstract: - Liquefaction is the term commonly used to describe the sudden dramatic strength loss which occurs in sand during seismic loading. The quick sand condition can be achieved by developing a suitable model with detailed analysis and design to develop a critical hydraulic gradient in which the effective stress becomes zero. The parameter used to compare the results is the head of water. The plastic fines are the clay particles and the non plastic fine is the silt obtained from quarry dust. The head required for the sand to liquefy with 1, 2% of the clay and silt is obtained. The resistance of sand to liquefaction with sand and silt is compared. Keywords: - Non plastic fines, Plastic fines, Quick sand. I. INTRODUCTION Soil liquefaction describes a phenomenon whereby a soil substantially loses strength and stiffness in response to an applied stress, usually earthquake shaking or other rapid loading (force) causing it to behave like a liquid[1]. The phenomenon is most commonly observed in loose sandy soils. This is because a loose sand has a tendency to compress when a load is applied, dense sand by contrast tend to expand in volume or dilate .If the loading is rapidly applied and repetitive, the water pressure builds up in the soil.
    [Show full text]
  • 5. Flow of Water Through Soil
    5-1 5. FLOW OF WATER THROUGH SOIL 5.1 FLOW OF WATER IN A PIPE The flow of water through a rough open pipe may be expressed by means of the Darcy- Weisbach resistance equation L v2 ∆ h = f D 2g (5.1) in which _h is the head loss over a length L of pipe of diameter D. The average velocity of flow is v. f is a measure of pipe resistance. In Fig. 4.1 standpipes or piezometers have been connected to the pipe at points P and Q. The heights to which the water rises in these piezometers indicate the heads at these points. The difference between the elevations for the water surfaces in the piezometers is the head loss (_h). If the hydraulic gradient (i) is defined as i = ∆h (5.2) L then it is clear from equation (4.1) that the velocity v is proportional to the square root of i. The expression for rate of discharge of water Q may be written as πD2 2gD Q = v 1/2 1/2 4 = v A = ( f ) i A (5.3) If the pipe is filled with a pervious material such as sand the rate of discharge of water through the sand is no longer proportional to the square root of i. Darcy, in 1956, found that Q was proportional to the first power of i Q = k i A (5.4) Q = k i (5.5) or v = A where k is the constant of proportionality which is called the coefficient of permeability or the hydraulic conductivity .
    [Show full text]
  • Research Article Strength Recovery Model of Clay During Thixotropy
    Hindawi Advances in Civil Engineering Volume 2021, Article ID 8825107, 11 pages https://doi.org/10.1155/2021/8825107 Research Article Strength Recovery Model of Clay during Thixotropy Bin Tang ,1 Biaohe Zhou ,2 Liang Xie ,2,3 Jianfeng Yin ,4 Shengnan Zhao ,2 and Zhibing Wang 2 1Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin University of Technology, Guilin 541004, China 2Institute of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, China 3Geotechnical Engineering Company, Wuhan Surveying-Geotechnical Research Institute Co., Ltd., MCC Group, Wuhan 430080, China 4Hunan Nonferrous Institute of Engineering Prospecting Co., Ltd. Changsha, Hunan 410129, China Correspondence should be addressed to Bin Tang; [email protected] Received 30 August 2020; Revised 24 December 2020; Accepted 23 January 2021; Published 3 February 2021 Academic Editor: Wen-Chieh Cheng Copyright © 2021 Bin Tang et al. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (ixotropy is a hot topic in the field of rheology of dispersed systems. Many researchers have proposed different models and hypotheses to explain the thixotropy of clay. In this paper, the strength recovery model of Zhanjiang Formation clay in the process of thixotropy is studied. Firstly, through unconfined compressive strength test, the influence of soil sensitivity, moisture content, and density on the strength growth of remolded soil was studied. (e results show great influence of sensitivity, moisture content, and density on the thixotropic strength of the Zhanjiang Formation clay: the higher the sensitivity and the density, the stronger the thixotropy of soil; the higher the moisture content, the weaker the thixotropy of soil.
    [Show full text]