Download PDF Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seagrass) Within the EU Water Framework Directive: a UK Perspective
Marine Pollution Bulletin 55 (2007) 181–195 www.elsevier.com/locate/marpolbul Angiosperms (seagrass) within the EU water framework directive: A UK perspective Jo Foden a,*, D.P. Brazier b a Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom b Cyngor Cefn Gwlad Cymru/Countryside Council for Wales, Maes y Ffynnon, Penrhosgarnedd, Bangor, Gwynedd, LL57 2DN, United Kingdom Abstract Taxonomic composition, the presence of disturbance-sensitive species and abundance are attributes for monitoring the status of mar- ine angiosperms; a biological quality element required for assessment of environmental condition under the Water Framework Directive (WFD). Their relevance for defining the ecological status of UK water bodies and the establishment of reference conditions for these attributes are described. Founded on quantitative measurements of these attributes, a set of metrics has been developed for monitoring and assessment of the only truly marine angiosperms, seagrass. The proposed metrics are presented and tested against a variety of littoral and sublittoral UK seagrass beds. In combination they express the cumulative response of marine angiosperms to different levels of anthropogenic disturbance. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Marine angiosperms; Seagrass; UK; Water Framework Directive; Reference conditions; Ecological status 1. Introduction There are no detectable changes in angiosperm abundance due to anthropogenic activities’’. Annex V of the Water Framework Directive WFD, In CWs ‘‘all disturbance-sensitive ... angiosperm taxa 2000/60/EC states that angiosperms, phytoplankton, mac- associated with undisturbed conditions are present. The levels roalgae, benthic invertebrate fauna and fish are the biolog- of ... angiosperm abundance are consistent with undisturbed ical quality elements to be used in defining the ecological conditions’’ (WFD, 2000/60/EC, Annex V). -
How Do Seagrasses Face Herbivory? a Case of Study in Cadiz Bay
How do seagrasses face herbivory? A case of study in Cadiz bay Isabel Casal*1, Fernando G. Brun1 and Eva Zub´ıa2 *Corresponding author: [email protected] 1Department of Biology (Ecology Area), University of C´adiz,Puerto Real (C´adiz)Spain 2Department of Organic Chemistry, University of C´adiz,Puerto Real (C´adiz),Spain Keywords: Herbivory, Marine Angiosperms, Natural Products Introduction The marine angiosperms or seagrasses are vascular plants with leaves, rhizomes, roots, flowers and seeds that inhabit marine environment. Seagrasses are characterized by developing extensive crowded meadows in shallow coastal areas, forming one of the most important coastal habitats of the biosphere, bearing a great ecological value because of the services and functions they provide, both to humans and marine ecosystems. Seagrasses are distributed along all the coasts of the world, except in Antarctica (Robertson and Mann, 1984) while only four species are found in the Mediterranean Sea: Zostera noltei Hornemann (1832), Zostera marina Linnaeus (1753), Cymodocea nodosa Ascherson (1870) and Posidonia oceanica (Linnaeus) Delile (1813). With the exception of the P. oceanica, the other three species coexist in the Bay of Cadiz (Figure1, modified from Brun et al.(2015)). Figure 1: (A) Seagrass habitats in the Bay of Cadiz (B) Zostera noltei (C) Cymodocea nodosa (D) Zostera marina. 1 Marine angiosperms possess a secondary metabolism that synthetizes specific organic compounds known as natural products. These compounds play important roles in the survival of the plants, including their involvement in chemical defence mechanisms. One of the ecological functions played by these natural products could be their deterrent capacity against herbivores. -
The Influence of Hediste Diversicolor (O.F
Rostock. Meeresbiolog. Beitr. (1993)1 Andreas Bick; Günter Arlt The influence of Hediste diversicolor (O.F. MÜLLER, 1776) on the macro- and meiozoobenthos of a shallow water area of Mecklenburg Bay (Western Baltic Sea) Introduction The purpose of many ecological studies is to identify interactions between faunistic ecosystem components by means of laboratory and field experiments. It has often been shown that abiotic and biotic factors such as competition, disturbance and predation influence the composition and dynamics of macrobenthos communities (REISE, 1977; COMMITO and AMBROSE, 1985; AM- BROSE, 1986; BEUKEMA, 1987; KIKUCHI, 1987; REDMOND and SCOTT, 1989; COMMITO and BANCAVAGE, 1989; MATILA and BONSDORFF, 1989; HILL et al., 1990). Experiments have also been performed to detect interactions between macrofauna and meiofauna (BELL & Coull, 1978; REISE, 1979; GEE et al., 1985; ALONGI and TENORE, 1985). The interactions between Nereidae and infauna that are common in shallow water and are fairly easily handled have been a major topic of study (COMMITO, 1982; REISE, 1979b; COMMITO and SCHRADER, 1985; OLAFSON and PERSSON 1986; RÖNN et al., 1988). The purpose of our studies was to investigate the influence of the omnivorous H. diversicolor on the infauna of a shallow water region in the southern Baltic Sea. H. diversicolor achieves abun- dances of between 5,000 and 15,000 ind m"2 (individual dominances up to 15 %) in the investi- gation area and is thus a major component of the macrofauna. It therefore seemed likely that its carnivorous feeding habits can affect community structure. To detect direct influences on both the macrozoobenthos and meiozoobenthos and to reduce box effects, we performed short term experiments. -
Assessing the Impact of Environmental Pressures on Seagrass Blue Carbon Stocks in the British Isles
Assessing the impact of environmental pressures on seagrass Blue Carbon stocks in the British Isles Alix Evelyn Green University College London PhD – Environmental Science 2019 i I, Alix Evelyn Green confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ii Abstract The requirements of nations to respond to the Paris Climate Agreement by outlining National Determined Contributions (NDC’s) to reduce their emissions is placing an increased global focus on the spatial extent, loss and restoration of seagrass meadows. Despite such interest, local carbon storage trends and the spatial extent of seagrass remains poorly mapped globally, and knowledge of historical loss is limited. In the British Isles this information is largely absent. The primary aim of this work was to provide a foundation of knowledge on seagrass Blue Carbon and the status of seagrass in the British Isles, to 1) better inform local conservation and management, and 2) further advance the field’s understanding of trends in sediment carbon storage. The work raised questions about the globally accepted standards for Blue Carbon research, particularly in extrapolating estimates from short (<40cm) to long (>100cm) cores. This underestimated carbon stocks by >40% in one site. Across 13 studied seagrass meadows, seagrass carbon stocks were similar, apart from at one anomalous site, and differences could not be explained by sediment silt content or aboveground biomass. Despite local similarities, on a European scale the average recorded carbon stocks were high, representing the second most carbon dense sediment per hectare of any documented European country. -
Sub-Regional Report On
EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2. -
Passarelli Et Al 2012.Pdf
Journal of Experimental Marine Biology and Ecology 438 (2012) 52–60 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O.F. Müller) trophic pressure Claire Passarelli ⁎, Cédric Hubas, Audrey Nicolas Segui, Julie Grange, Tarik Meziane UMR BOREA-CNRS 7208,Muséum National d'Histoire Naturelle, CP 53, 61 rue Buffon, F-75231 Paris Cedex 05, France article info abstract Article history: In soft-bottom tidal flats, sediment stability is one of the crucial parameters modulating the abundance and com- Received 16 July 2012 position of benthic assemblages. It is dependent on a wide range of variables, both abiotic and biotic. Investigat- Received in revised form 1 October 2012 ing how these variables and their interactions influence sediment stability is therefore essential to understand Accepted 7 October 2012 how benthic assemblages are distributed in their environment. In this context, we designed a microcosm Available online xxxx study to examine how microorganisms and macrofauna interact to alter sediment stability. We cultured a natural microbial community, enriched with diatoms, both alone and together with the common ragworm Hediste Keywords: Diatoms diversicolor, and monitored their effects on photosynthetic biomasses, bacterial abundances, exopolymer secre- Extracellular polymeric substances (EPS) tions and sediment stability. We also assessed the consumption of biofilm by worms using fatty acid biomarkers. Fatty acids Our results demonstrate that even if H. diversicolor fed on diatoms, they stimulated biofilm development, H. diversicolor in terms of photosynthetic biomass and exopolymer production. Also, sediment cohesiveness was enhanced Microphytobenthos when both diatoms and H. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
(Hediste) Diversicolor (Müller, 1776) to Potential Fish Predation
Smelling Danger – Alarm Cue Responses in the Polychaete Nereis (Hediste) diversicolor (Müller, 1776) to Potential Fish Predation C. Elisa Schaum¤, Robert Batty, Kim S. Last* Scottish Association of Marine Science, Scottish Marine Institute, Dunstaffnage, Scotland Abstract The harbour ragworm, Nereis (Hediste) diversicolor is a common intertidal marine polychaete that lives in burrows from which it has to partially emerge in order to forage. In doing so, it is exposed to a variety of predators. One way in which predation risk can be minimised is through chemical detection from within the relative safety of the burrows. Using CCTV and motion capture software, we show that H. diversicolor is able to detect chemical cues associated with the presence of juvenile flounder (Platichthys flesus). Number of emergences, emergence duration and distance from burrow entrance are all significantly reduced during exposure to flounder conditioned seawater and flounder mucous spiked seawater above a threshold with no evidence of behavioural habituation. Mucous from bottom- dwelling juvenile plaice (Pleuronectes platessa) and pelagic adult herring (Clupea harengus) elicit similar responses, suggesting that the behavioural reactions are species independent. The data implies that H. diversicolor must have well developed chemosensory mechanisms for predator detection and is consequently able to effectively minimize risk. Citation: Schaum CE, Batty R, Last KS (2013) Smelling Danger – Alarm Cue Responses in the Polychaete Nereis (Hediste) diversicolor (Müller, 1776) to Potential Fish Predation. PLoS ONE 8(10): e77431. doi:10.1371/journal.pone.0077431 Editor: Roberto Pronzato, University of Genova, Italy, Italy Received June 10, 2013; Accepted September 2, 2013; Published October 14, 2013 Copyright: © 2013 Schaum et al. -
Burial of Zostera Marina Seeds in Sediment Inhabited by Three Polychaetes: Laboratory and field Studies
Journal of Sea Research 71 (2012) 41–49 Contents lists available at SciVerse ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Burial of Zostera marina seeds in sediment inhabited by three polychaetes: Laboratory and field studies M. Delefosse ⁎, E. Kristensen Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark article info abstract Article history: The large number of seeds produced by eelgrass, Zostera marina, provides this plant with a potential to disperse Received 4 December 2011 widely and colonise new areas. After dispersal, seeds must be buried into sediment for assuring long-term survival, Received in revised form 25 April 2012 successful germination and safe seedling development. Seeds may be buried passively by sedimentation or actively Accepted 25 April 2012 through sediment reworking by benthic fauna. We evaluated the effect of three polychaetes on the burial rate and Available online 5 May 2012 depth of eelgrass seeds. Burial was first measured in controlled laboratory experiments using different densities of Nereis (Hediste) diversicolor (400–3200 ind m−2), Arenicola marina (20–80 ind m−2), and the invasive Marenzelleria Keywords: – −2 Polychaete viridis (400 1600 ind m ). The obtained results were subsequently compared with burial rates of seed mimics in 2 Ecosystem engineer experimental field plots (1 m ) dominated by the respective polychaetes. High recovery of seeds in the laboratory Invasive species (97–100%) suggested that none of these polychaetes species feed on eelgrass seeds. N. diversicolor transported Zostera marina seeds rapidly (b1 day) into its burrow, where they remained buried at a median depth of 0.5 cm. -
Inventory of Eelgrass Beds in Hampshire and the Isle of Wight 2014
Inventory of eelgrass beds in Hampshire and the Isle of Wight 2014 Section One: Report Version 6: May 2014 Zostera marina Paul Naylor Marsden, A. L. and Chesworth, J. C. 2014. Inventory of eelgrass beds in Hampshire and the Isle of Wight 2014, Section One: Report. Version 6: May 2014. Hampshire and Isle of Wight Wildlife Trust, Hampshire. i Acknowledgements Hampshire and Isle of Wight Wildlife Trust would like to thank the following, who have provided funding, data, advice, support and time in the production of this report and coollection of data: Natural England, Esmeé Fairbairn Founddation, Pig Shed Trust, Southern Inshore Fisheries Conservation Authority, Sussex Inshore Fisheries Conservation Authority, Hampshire County Council, Sita Trust, Ken Collins and Jenny Mallinson (University of Southhampton), Roger Herbert (University of Bournemouth), Anne Marston (Isle of Wight County Council)), Ian Ralphs (Hampshire Biodiversity Records Centre), The Wildlife Trusts, Jenni Tubbs, Chris Wood (Seasearch, Marine Conservation Society), Neil Garrick-Maidment (The Seahorse Trust), Colin Froud (Divercol), Val Gwynn (Country Wild Services), Lorraine Hooldstock, Torbay Coast and Countryside Trust, Dorset Environmental Records Centre, Solent Forum, Shelley Vince, Jessica Craig, Wanda Mills, Environment Agency, Ed Rowsell (Chichestter Harbour Conservancy), Iain Vincent, , Lucy Martin, Adam Johnson, Rebecca Oliver, Vicky Ashcroft, Rachel Fine, Martin Waareham, Steve Read, and Richard Unsworth, Ben Jones, Rosemary McCCloskey, and Jo Peters (Seagrass Ecosystem Research Group, University of Swansea). Hampshire and Isle of Wight Wildlife Trust would also like to thank all of the volunteer surveyors who took part in both the scuba diving and intertidal surveys conducted to gather data for this project. -
Christina Pavloudi Biologist Scientific Assistant
Christina Pavloudi Biologist Scientific assistant Contact address University of the Aegean Department of Marine Sciences University Hill Mytilene 81100, Greece Tel: Fax: e-mail: [email protected] Education 2017: PhD on Marine Sciences, University of Ghent, University of Bremen, Hellenic Centre for Marine Research (MARES Joint Doctoral Programme on Marine Ecosystem Health & Conservation) Thesis title: Microbial community functioning at hypoxic sediments revealed by targeted metagenomics and RNA stable isotope probing 2012: MSc on Environmental Biology – Management of Terrestrial and Marine Resources, University of Crete, Hellenic Centre for Marine Research, Natural History Museum of Crete Thesis title: Comparative analysis of geochemical variables, macrofaunal and microbial communities in lagoonal ecosystems 2009: BSc on Biology, Aristotle University of Thessaloniki Thesis title: Comparative study of the organismic assemblages associated with the demosponge Sarcotragus foetidus Schmidt, 1862 in the coasts of Cyprus and Greece Professional Scientific Experience 2018-present: Scientific assistant at the Department of Marine Sciences, University of the Aegean 2017-present: Post-Doc Researcher (RECONNECT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2016-2017: Research assistant (JERICO-NEXT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2013-2015: Research assistant (LifeWatchGreece project), Institute -
Restoration of Seagrass Meadows in the Mediterranean Sea: a Critical Review of Effectiveness and Ethical Issues
water Review Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues Charles-François Boudouresque 1,*, Aurélie Blanfuné 1,Gérard Pergent 2 and Thierry Thibaut 1 1 Aix-Marseille University and University of Toulon, MIO (Mediterranean Institute of Oceanography), CNRS, IRD, Campus of Luminy, 13009 Marseille, France; [email protected] (A.B.); [email protected] (T.T.) 2 Università di Corsica Pasquale Paoli, Fédération de Recherche Environnement et Societé, FRES 3041, Corti, 20250 Corsica, France; [email protected] * Correspondence: [email protected] Abstract: Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural Citation: Boudouresque, C.-F.; ecosystem (e.g., sandy bottoms, sublittoral reefs) with P.