Language and Logic Lecture 4 Propositional Logic

Total Page:16

File Type:pdf, Size:1020Kb

Language and Logic Lecture 4 Propositional Logic Language and Logic Lecture 4 Propositional Logic Dr. Mark Lee [email protected] “This sentence has twoo errors.”! “This sentence has three a’s, two c’s, two d’s, nineteen e’s, six f’s, two g’s, five h’s, ten i’s, two l’s, twelve n’s, nine o’s, five r’s, twenty six s’s, sixteen t’s, four u’s, four v’s, eight w’s, four x’s, and two y’s.” Formal languages In previous weeks we’ve looked at natural languages and shown that we can reason logically about arguments using a (semi)-formal view of language and the use of truth tables. In this lecture we will set out a formal view of propositional logic. A formal language is one where:! 1. There is a clear and unambiguous syntax !2. It is possible to prove whether or not any sentence is a member of that language. We should also hope that any interesting formal language has a suitable method for determining the validity of any argument in that language (A proof theory). However, this is not always the case. Propositional Logic (PL) Propositional logic has (usually) five operators: ∧ Conjunction (… and …) ∨ Disjunction (… or …) ¬ Negation (not …) → Implication (If … then …) ↔ Biconditional Implication (If and only if) Formula in PL P atomic formula P v Q Compound formula! Any compound formula can be discomposed into a set of atomic formula and atomic formulae can be combined to form a compound formula. Consider: I’ll go home and I’ll study logic or I’ll watch tv. P = I’ll go home. Q = I’ll study logic R = I’ll watch TV! Obviously, the formula for the above would be P ∧ Q ∨ R! However this is ambiguous between (P ∧ Q) ∨ R and P ∧ (Q ∨ R) Since this is a formal language, we need to make the distinction clear and therefore: 1. Any binary connective must be bracketed 2. If a formula is compound then bracket it. Negation There is only one unary connective in PL. Negation always applies to the smallest formula i.e. ¬P ∨ Q means (¬P) ∨ Q If we wish to negate the compound formula then we need to use brackets. ¬(P ∨ Q) Propositional Logic Syntax F → A A → [P]|[Q]|[R] ... F → F B F B → [∧] | [∨] | [→] | [↔] F → UF U → [¬] Using the above grammar, we can parse any propositional logic formula. You should note that this is considerably less complex than Natural Language syntax. It also should be unambiguous (unlike most natural language). ¬(P ∨ Q) Main connective For any formula, the main connective is just the one connective whose scope is the entire formula. De Morgan’s laws (As an interlude before proof theory) Augustus De Morgan (1806-1871) published a set of inference rules for PL. The most famous are referred to as De Morgan’s laws. Rule 1! ¬(P ∧ Q) ↔ ¬P ∨ ¬Q Rule 2! ¬(P ∨ Q) ↔ ¬P ∧ ¬Q We can show that both laws are valid by constructing a truth table for each Rule 1 P Q ¬ (P∧Q) ↔ ¬P ∨ ¬Q T T F T T F F F T F T F T F T T F T T F T T T F F F T T T T T T Rule 2 P Q ¬ (P∨Q) ↔ ¬P ∧ ¬Q T T F T T F F F T F F T T F F T F T F T T T F F F F T F T T T T More generally it is possible to simulate any connective in PL using a collection of nand and nor gates. This has increased the relevance (and fame) of De Morgan’s laws. Arguments In natural language we have used the following convention for simple arguments: Proposition 1 Premise 1 Proposition 2 Premise 2 Proposition 3 Conclusion! PL gives us two methods for expressing the above: P → Q, P : Q (i.e. an argument which might or might not be valid)! P → Q, ¬Q " ¬P (i.e. an argument which is valid and has been proved to be valid) Proof theory Given any system of logic, we can distinguish between a formal language (in this case PL) and a proof theory (a method of proving the validity of formulae in that language). Given any formal language, there might be many different proof theories. So far we have used truth tables to prove whether an argument is valid in (semi-formal) PL. Truth tables however cannot be “scaled up” to deal with more interesting logics such as predicate calculus. Instead we will introduce Natural Deduction over the next two weeks. However before that we must introduce some formal notation for what constitutes a proof and provide a simple notation for proofs. A proof notation Any proof consists of a number of lines. Each line has four parts: ! Line number Formula Rule of Annotation {Dependency Numbers} The line number is increased by one every line. The formula must be a well formed formula of PL. The rule of annotation must be a rule contained in our proof theory. The dependence numbers are the numbers of lines which the new line depends on (i.e. where the premise the line depends on, was originally introduced). An example should make this clear. However we don’t currently have a proof theory to use. For the time being let us use Modus Ponens, Modus Tollens plus De Morgan’s laws and a law of substitution where any part of a compound formula can be substituted with a biconditional formula. Consider the following argument.! “It’s not the case that Peter is studying logic and Quentin is studying maths. If Peter is not studying logic or Quentin is not studying maths then Roger is taking sports sciences. Therefore Roger !is studying sports sciences.” If we wished to prove the above using truth tables then we would do the following: P = Peter is studying logic ! Q = Quentin is studying maths ! R = Roger is studying sports sciences ¬(P ∧ Q). ((¬P ! ¬Q) → R). (therefore) R. or as a material implication ¬(P ∧ Q) ∧ ((¬P ! ¬Q) → R) →R We could then create a truth table for all the values of P, Q, & R and show that the main connective (or material implication) was valid in all cases. If you are still unsure about truth tables then you could use this for an exercise. A proof using our new notation is as follows: 1. ¬ (P ∧ Q) Premise {1} 2. (¬P ! ¬Q) De Morgan #1 {1} 3. (¬P ! ¬Q) → R Premise {3} 4 R Modus Ponens 2,3 {1,3} This might seem complex. We will practice constructing such proofs on Tuesday. Introducing Natural Deduction First introduced by Jaskowski (among others) in 1929 Natural Deduction is an approach to proof theory which attempts to develop proofs which are as “natural” as possible (i.e. as close to human reasoning as possible). Various Natural Deduction Systems exist which allow different rules of inference. However, all start from the basis that very connective has an Introduction and an Elimination rule. I’ll only introduction the rules for conjunction today to give you a taster for next time. Conjunction Introduction Conjunction introduction is an inference rule for inferring that if two premises are true then their conjunction is also true. 1. A Premise {1} 2. B Premise {2} 3. A ∧ B Conjunction Introduction (or ∧-Intro) {1 2} Conjunction Elimination Conjunction elimination is an inference rule for inferring that if a conjunction is true then either side of the conjunction is also true. This requires two rules. 1. A ∧ B Premise {1} 2. A Conjunction Elimination LHS (or ∧-elim lhs) {1} 1. A ∧ B Premise {1} 2. B Conjunction Elimination LHS (or ∧-elim rhs) {1} Both rules should seem trivially easy. Next week we will introduce more rules and practice proving things using natural deduction. .
Recommended publications
  • Classifying Material Implications Over Minimal Logic
    Classifying Material Implications over Minimal Logic Hannes Diener and Maarten McKubre-Jordens March 28, 2018 Abstract The so-called paradoxes of material implication have motivated the development of many non- classical logics over the years [2–5, 11]. In this note, we investigate some of these paradoxes and classify them, over minimal logic. We provide proofs of equivalence and semantic models separating the paradoxes where appropriate. A number of equivalent groups arise, all of which collapse with unrestricted use of double negation elimination. Interestingly, the principle ex falso quodlibet, and several weaker principles, turn out to be distinguishable, giving perhaps supporting motivation for adopting minimal logic as the ambient logic for reasoning in the possible presence of inconsistency. Keywords: reverse mathematics; minimal logic; ex falso quodlibet; implication; paraconsistent logic; Peirce’s principle. 1 Introduction The project of constructive reverse mathematics [6] has given rise to a wide literature where various the- orems of mathematics and principles of logic have been classified over intuitionistic logic. What is less well-known is that the subtle difference that arises when the principle of explosion, ex falso quodlibet, is dropped from intuitionistic logic (thus giving (Johansson’s) minimal logic) enables the distinction of many more principles. The focus of the present paper are a range of principles known collectively (but not exhaustively) as the paradoxes of material implication; paradoxes because they illustrate that the usual interpretation of formal statements of the form “. → . .” as informal statements of the form “if. then. ” produces counter-intuitive results. Some of these principles were hinted at in [9]. Here we present a carefully worked-out chart, classifying a number of such principles over minimal logic.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • On Basic Probability Logic Inequalities †
    mathematics Article On Basic Probability Logic Inequalities † Marija Boriˇci´cJoksimovi´c Faculty of Organizational Sciences, University of Belgrade, Jove Ili´ca154, 11000 Belgrade, Serbia; [email protected] † The conclusions given in this paper were partially presented at the European Summer Meetings of the Association for Symbolic Logic, Logic Colloquium 2012, held in Manchester on 12–18 July 2012. Abstract: We give some simple examples of applying some of the well-known elementary probability theory inequalities and properties in the field of logical argumentation. A probabilistic version of the hypothetical syllogism inference rule is as follows: if propositions A, B, C, A ! B, and B ! C have probabilities a, b, c, r, and s, respectively, then for probability p of A ! C, we have f (a, b, c, r, s) ≤ p ≤ g(a, b, c, r, s), for some functions f and g of given parameters. In this paper, after a short overview of known rules related to conjunction and disjunction, we proposed some probabilized forms of the hypothetical syllogism inference rule, with the best possible bounds for the probability of conclusion, covering simultaneously the probabilistic versions of both modus ponens and modus tollens rules, as already considered by Suppes, Hailperin, and Wagner. Keywords: inequality; probability logic; inference rule MSC: 03B48; 03B05; 60E15; 26D20; 60A05 1. Introduction The main part of probabilization of logical inference rules is defining the correspond- Citation: Boriˇci´cJoksimovi´c,M. On ing best possible bounds for probabilities of propositions. Some of them, connected with Basic Probability Logic Inequalities. conjunction and disjunction, can be obtained immediately from the well-known Boole’s Mathematics 2021, 9, 1409.
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Notes on Proof Theory
    Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures .
    [Show full text]
  • Relevant and Substructural Logics
    Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore.
    [Show full text]
  • Qvp) P :: ~~Pp :: (Pvp) ~(P → Q
    TEN BASIC RULES OF INFERENCE Negation Introduction (~I – indirect proof IP) Disjunction Introduction (vI – addition ADD) Assume p p Get q & ~q ˫ p v q ˫ ~p Disjunction Elimination (vE – version of CD) Negation Elimination (~E – version of DN) p v q ~~p → p p → r Conditional Introduction (→I – conditional proof CP) q → r Assume p ˫ r Get q Biconditional Introduction (↔I – version of ME) ˫ p → q p → q Conditional Elimination (→E – modus ponens MP) q → p p → q ˫ p ↔ q p Biconditional Elimination (↔E – version of ME) ˫ q p ↔ q Conjunction Introduction (&I – conjunction CONJ) ˫ p → q p or q ˫ q → p ˫ p & q Conjunction Elimination (&E – simplification SIMP) p & q ˫ p IMPORTANT DERIVED RULES OF INFERENCE Modus Tollens (MT) Constructive Dilemma (CD) p → q p v q ~q p → r ˫ ~P q → s Hypothetical Syllogism (HS) ˫ r v s p → q Repeat (RE) q → r p ˫ p → r ˫ p Disjunctive Syllogism (DS) Contradiction (CON) p v q p ~p ~p ˫ q ˫ Any wff Absorption (ABS) Theorem Introduction (TI) p → q Introduce any tautology, e.g., ~(P & ~P) ˫ p → (p & q) EQUIVALENCES De Morgan’s Law (DM) (p → q) :: (~q→~p) ~(p & q) :: (~p v ~q) Material implication (MI) ~(p v q) :: (~p & ~q) (p → q) :: (~p v q) Commutation (COM) Material Equivalence (ME) (p v q) :: (q v p) (p ↔ q) :: [(p & q ) v (~p & ~q)] (p & q) :: (q & p) (p ↔ q) :: [(p → q ) & (q → p)] Association (ASSOC) Exportation (EXP) [p v (q v r)] :: [(p v q) v r] [(p & q) → r] :: [p → (q → r)] [p & (q & r)] :: [(p & q) & r] Tautology (TAUT) Distribution (DIST) p :: (p & p) [p & (q v r)] :: [(p & q) v (p & r)] p :: (p v p) [p v (q & r)] :: [(p v q) & (p v r)] Conditional-Biconditional Refutation Tree Rules Double Negation (DN) ~(p → q) :: (p & ~q) p :: ~~p ~(p ↔ q) :: [(p & ~q) v (~p & q)] Transposition (TRANS) CATEGORICAL SYLLOGISM RULES (e.g., Ǝx(Fx) / ˫ Fy).
    [Show full text]
  • Propositional Logic (PDF)
    Mathematics for Computer Science Proving Validity 6.042J/18.062J Instead of truth tables, The Logic of can try to prove valid formulas symbolically using Propositions axioms and deduction rules Albert R Meyer February 14, 2014 propositional logic.1 Albert R Meyer February 14, 2014 propositional logic.2 Proving Validity Algebra for Equivalence The text describes a for example, bunch of algebraic rules to the distributive law prove that propositional P AND (Q OR R) ≡ formulas are equivalent (P AND Q) OR (P AND R) Albert R Meyer February 14, 2014 propositional logic.3 Albert R Meyer February 14, 2014 propositional logic.4 1 Algebra for Equivalence Algebra for Equivalence for example, The set of rules for ≡ in DeMorgan’s law the text are complete: ≡ NOT(P AND Q) ≡ if two formulas are , these rules can prove it. NOT(P) OR NOT(Q) Albert R Meyer February 14, 2014 propositional logic.5 Albert R Meyer February 14, 2014 propositional logic.6 A Proof System A Proof System Another approach is to Lukasiewicz’ proof system is a start with some valid particularly elegant example of this idea. formulas (axioms) and deduce more valid formulas using proof rules Albert R Meyer February 14, 2014 propositional logic.7 Albert R Meyer February 14, 2014 propositional logic.8 2 A Proof System Lukasiewicz’ Proof System Lukasiewicz’ proof system is a Axioms: particularly elegant example of 1) (¬P → P) → P this idea. It covers formulas 2) P → (¬P → Q) whose only logical operators are 3) (P → Q) → ((Q → R) → (P → R)) IMPLIES (→) and NOT. The only rule: modus ponens Albert R Meyer February 14, 2014 propositional logic.9 Albert R Meyer February 14, 2014 propositional logic.10 Lukasiewicz’ Proof System Lukasiewicz’ Proof System Prove formulas by starting with Prove formulas by starting with axioms and repeatedly applying axioms and repeatedly applying the inference rule.
    [Show full text]
  • Chapter 9: Answers and Comments Step 1 Exercises 1. Simplification. 2. Absorption. 3. See Textbook. 4. Modus Tollens. 5. Modus P
    Chapter 9: Answers and Comments Step 1 Exercises 1. Simplification. 2. Absorption. 3. See textbook. 4. Modus Tollens. 5. Modus Ponens. 6. Simplification. 7. X -- A very common student mistake; can't use Simplification unless the major con- nective of the premise is a conjunction. 8. Disjunctive Syllogism. 9. X -- Fallacy of Denying the Antecedent. 10. X 11. Constructive Dilemma. 12. See textbook. 13. Hypothetical Syllogism. 14. Hypothetical Syllogism. 15. Conjunction. 16. See textbook. 17. Addition. 18. Modus Ponens. 19. X -- Fallacy of Affirming the Consequent. 20. Disjunctive Syllogism. 21. X -- not HS, the (D v G) does not match (D v C). This is deliberate to make sure you don't just focus on generalities, and make sure the entire form fits. 22. Constructive Dilemma. 23. See textbook. 24. Simplification. 25. Modus Ponens. 26. Modus Tollens. 27. See textbook. 28. Disjunctive Syllogism. 29. Modus Ponens. 30. Disjunctive Syllogism. Step 2 Exercises #1 1 Z A 2. (Z v B) C / Z C 3. Z (1)Simp. 4. Z v B (3) Add. 5. C (2)(4)MP 6. Z C (3)(5) Conj. For line 4 it is easy to get locked into line 2 and strategy 1. But they do not work. #2 1. K (B v I) 2. K 3. ~B 4. I (~T N) 5. N T / ~N 6. B v I (1)(2) MP 7. I (6)(3) DS 8. ~T N (4)(7) MP 9. ~T (8) Simp. 10. ~N (5)(9) MT #3 See textbook. #4 1. H I 2. I J 3.
    [Show full text]
  • Propositional Logic
    Chapter 3 Propositional Logic 3.1 ARGUMENT FORMS This chapter begins our treatment of formal logic. Formal logic is the study of argument forms, abstract patterns of reasoning shared by many different arguments. The study of argument forms facilitates broad and illuminating generalizations about validity and related topics. We shall initially focus on the notion of deductive validity, leaving inductive arguments to a later treatment (Chapters 8 to 10). Specifically, our concern in this chapter will be with the idea that a valid deductive argument is one whose conclusion cannot be false while the premises are all true (see Section 2.3). By studying argument forms, we shall be able to give this idea a very precise and rigorous characterization. We begin with three arguments which all have the same form: (1) Today is either Monday or Tuesday. Today is not Monday. Today is Tuesday. (2) Either Rembrandt painted the Mona Lisa or Michelangelo did. Rembrandt didn't do it. :. Michelangelo did. (3) Either he's at least 18 or he's a juvenile. He's not at least 18. :. He's a juvenile. It is easy to see that these three arguments are all deductively valid. Their common form is known by logicians as disjunctive syllogism, and can be represented as follows: Either P or Q. It is not the case that P :. Q. The letters 'P' and 'Q' function here as placeholders for declarative' sentences. We shall call such letters sentence letters. Each argument which has this form is obtainable from the form by replacing the sentence letters with sentences, each occurrence of the same letter being replaced by the same sentence.
    [Show full text]
  • Natural Deduction with Propositional Logic
    Natural Deduction with Propositional Logic Introducing Natural Natural Deduction with Propositional Logic Deduction Ling 130: Formal Semantics Some basic rules without assumptions Rules with assumptions Spring 2018 Outline Natural Deduction with Propositional Logic Introducing 1 Introducing Natural Deduction Natural Deduction Some basic rules without assumptions 2 Some basic rules without assumptions Rules with assumptions 3 Rules with assumptions What is ND and what's so natural about it? Natural Deduction with Natural Deduction Propositional Logic A system of logical proofs in which assumptions are freely introduced but discharged under some conditions. Introducing Natural Deduction Introduced independently and simultaneously (1934) by Some basic Gerhard Gentzen and Stanis law Ja´skowski rules without assumptions Rules with assumptions The book & slides/handouts/HW represent two styles of one ND system: there are several. Introduced originally to capture the style of reasoning used by mathematicians in their proofs. Ancient antecedents Natural Deduction with Propositional Logic Aristotle's syllogistics can be interpreted in terms of inference rules and proofs from assumptions. Introducing Natural Deduction Some basic rules without assumptions Rules with Stoic logic includes a practical application of a ND assumptions theorem. ND rules and proofs Natural Deduction with Propositional There are at least two rules for each connective: Logic an introduction rule an elimination rule Introducing Natural The rules reflect the meanings (e.g. as represented by Deduction Some basic truth-tables) of the connectives. rules without assumptions Rules with Parts of each ND proof assumptions You should have four parts to each line of your ND proof: line number, the formula, justification for writing down that formula, the goal for that part of the proof.
    [Show full text]
  • Argument Forms and Fallacies
    6.6 Common Argument Forms and Fallacies 1. Common Valid Argument Forms: In the previous section (6.4), we learned how to determine whether or not an argument is valid using truth tables. There are certain forms of valid and invalid argument that are extremely common. If we memorize some of these common argument forms, it will save us time because we will be able to immediately recognize whether or not certain arguments are valid or invalid without having to draw out a truth table. Let’s begin: 1. Disjunctive Syllogism: The following argument is valid: “The coin is either in my right hand or my left hand. It’s not in my right hand. So, it must be in my left hand.” Let “R”=”The coin is in my right hand” and let “L”=”The coin is in my left hand”. The argument in symbolic form is this: R ˅ L ~R __________________________________________________ L Any argument with the form just stated is valid. This form of argument is called a disjunctive syllogism. Basically, the argument gives you two options and says that, since one option is FALSE, the other option must be TRUE. 2. Pure Hypothetical Syllogism: The following argument is valid: “If you hit the ball in on this turn, you’ll get a hole in one; and if you get a hole in one you’ll win the game. So, if you hit the ball in on this turn, you’ll win the game.” Let “B”=”You hit the ball in on this turn”, “H”=”You get a hole in one”, and “W”=”you win the game”.
    [Show full text]