Endoplasmic Reticulum Ca2+ Signaling and Calpains Mediate Renal Cell Death

Total Page:16

File Type:pdf, Size:1020Kb

Endoplasmic Reticulum Ca2+ Signaling and Calpains Mediate Renal Cell Death Cell Death and Differentiation (2002) 9, 734 ± 741 ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00 www.nature.com/cdd Endoplasmic reticulum Ca2+ signaling and calpains mediate renal cell death 1,4 1 2 3 JF Harriman , XL Liu , MD Aleo , K Machaca and Introduction RG Schnellmann*,1,5 An initial effect of ischemia, hypoxia, or mitochondrial 1 Department of Pharmacology and Toxicology, University of Arkansas for inhibition is the prevention of ATP production. When ATP Medical Sciences, 4301 West Markham Street, Slot 638, Little Rock, Arkansas, production falls, protein kinases are unable to phosphorylate AR 72205-7199, USA phosphoproteins and ATP-dependent ion transporters are 2 Drug Safety Evaluation, P®zer, Inc., Eastern Point Road, Groton, Connecticut, inhibited. Further, the loss of oxidative phosphorylation and CT 06340-4947, USA ATP depletion results in either oncotic (necrotic, rapid) or 3 Department of Physiology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 505, Little Rock, Arkansas, AR 72205-7199, USA apoptotic (delayed) cell death, depending on the level of 4 Current address: Wil Research, Inc., 1407 George Road, Ashland, Ohio, OH glycolytic ATP production. For example, in cultured mouse 1 44805-9281, USA renal proximal tubules (RPT), Lieberthal et al. determined 5 Current address: Department of Pharmaceutical Sciences, Medical University that an 85% reduction in ATP levels was required to switch the of South Carolina, 280 Calhoun St., POB 250140, Charleston, SC 29425, USA mechanism of cell death from apoptosis to oncosis. RPT have * Corresponding author: Rick G Schnellmann, Department of Pharmaceutical low glycolytic activity and are very susceptible to ischemia- Sciences, Medical University of South Carolina, 280 Calhoun St., POB 250140, and toxicant-induced oncosis. Charleston, SC 29425, USA. Tel: (843) 792-3754; Fax: (843) 792-2620; E-mail: [email protected] Many studies suggest that increases in cytosolic free 2+ 2+ Ca (Ca f) mediate oncosis following anoxia/hypoxia and Received 5.12.01; revised 8.1.02; accepted 16.1.02 chemical exposure. For example, studies using concurrent 2+ Edited by T Ferguson measurement of Ca f and cell viability revealed that 2+ increases in Ca f occur prior to plasma membrane damage.2,3 In addition, decreasing the extracellular Ca2+ Abstract concentration reduced the release of lactate dehydrogen- The goal of the current study was to determine the roles of ATP ase (LDH), a marker of cell death and membrane damage, content, endoplasmic reticulum (ER) Ca2+ stores, cytosolic from rabbit RPT subjected to anoxia or mitochondrial inhibition and rat RPT subjected to hypoxia.4±6 Further, free Ca2+ (Ca2+ ) and calpain activity in the signaling of rabbit f chelation of intracellular Ca2+ prevented extracellular Ca2+ renal proximal tubular (RPT) cell death (oncosis). Increasing uptake and cell death in mitochondrial inhibitor-exposed concentrations (0.3 ± 10 mM) of the mitochondrial inhibitor RPT.7 Finally, evidence supporting a role for Ca2+ in cell antimycin A produced rapid ATP depletion that correlated to a injury comes from the observed cytoprotection of Ca2+ 2+ rapid and sustained increase in Ca f, but not phospholipase channel blockers in renal cell models subjected to anoxia or C activation. The ER Ca2+-ATPase inhibitors thapsigargin hypoxia.6±8 These studies support an important role for 2+ 2+ (5 mM) or cyclopiazonic acid (100 mM) alone produced similar Ca in cell death and suggest that a rise in Ca f occurs 2+ before extracellular Ca2+ influx. but transient increases in Ca f. Pretreatment with thapsi- gargin prevented antimycin A-induced increases in Ca2+ and The endoplasmic reticulum (ER) contains the largest f 2+ antimycin A pretreatment prevented thapsigargin-induced intracellular store of Ca and is replenished by a high- 2+ increases in Ca2+ . Calpain activity increased in conjunction affinity, low-capacity Ca -ATPase uptake system (SER- f CA).9,10 Physiological release of ER Ca2+ results from with ER Ca2+ release. Pretreatment, but not post-treatment, phospholipase C-mediated inositol trisphosphate (IP3) with thapsigargin or cyclopiazonic acid prevented antimycin formation and its subsequent binding to IP3 receptors on A-induced cell death. These data demonstrate that extensive the ER.10 In many cells, depletion of ER Ca2+ stores 2+ ATP depletion signals oncosis through ER Ca release, a 2+ 2+ triggers extracellular Ca entry, resulting in a rise in Ca F 2+ 2+ sustained increase in Ca f and calpain activation. Depletion and the refilling of the ER Ca store. This influx pathway is of ER Ca2+ stores prior to toxicant exposure prevents termed capacitative Ca2+ entry or store-operated Ca2+ 2+ 11 12 2+ increases in Ca f and oncosis. entry. Waters et al. suggested that ER Ca release Cell Death and Differentiation (2002) 9, 734 ± 741. doi:10.1038/ played a role in RPT cell death by demonstrating that sj.cdd.4401029 depletion of ER Ca2+ stores prior to hypoxia or mitochon- drial inhibitor exposure prevented cell death. 2+ Keywords: cell death; oncosis; renal proximal tubule; endoplasmic Supraphysiological and/or prolonged increases in Ca f reticulum; calpain; calcium are thought to activate degradative enzymes such as calpains, Ca2+-activated cysteine proteases. Ischemic/ 2+ Abbreviations: ER, endoplasmic reticulum; Ca f, cytosolic free hypoxic injury in brain, kidney, liver and myocardium is Ca2+; RPT, renal proximal tubule; SERCA, smooth endoplasmic thought to be mediated by calpains.13±19 Using the RPT 2+ reticulum Ca -ATPase; LDH, lactate dehydrogenase; IP3, inositiol model, we demonstrated that dissimilar calpain inhibitors trisphosphate; PLC, phospholipase C decrease RPT cell death produced by a variety of Calcium release mediates cell death JF Harriman et al 735 toxicants.7,20,21 However, there is limited data demonstrat- 292+13 nM, respectively) before returning to the baseline ing increased calpain activity during cell injury and death. level (30 s after addition) (Figure 2A,B). Both agents 16 2+ Edelstein et al. reported an increase in calpain activity in produced similar rises and decays in Ca f (Figure 2A,B). rat RPT subjected to anoxia and Bronk and Gores13 To test whether the ER Ca2+ store was completely depleted reported an increase in calpain-like protease activity in rat by 5 mM thapsigargin or 100 mM cyclopiazonic acid, two hepatocytes subjected to anoxia. However, increases in experiments were performed. In the first, the agents were calpain activity have not been examined in relation to added again 1 min following the first exposure to thapsigargin. 2+ increases in Ca f during cell injury and death. The The second addition of thapsigargin or cyclopiazonic acid did pathway in Figure 1 illustrates our current hypothesis for not result in a second peak, indicating ER Ca2+ depletion the role of ATP content, ER Ca2+ stores, cytosolic free Ca2+ (data not shown). The addition of ionomycin in the absence of and calpains in cell death. However, several critical extracellular Ca2+ non-specifically releases internal Ca2+ questions remain. Is ER Ca2+ released during cell injury stores. In the second experiment, pretreatment with thapsi- 2+ and death? What is the signal that results in the release of gargin deceased Ca f increases due to ionomycin (10 mM) ER Ca2+? Is calpain activity increased as a result of the ER by 89%. To determine whether extracellular Ca2+ influx 2+ 2+ 2+ Ca release? The goal of the studies in this manuscript is contributed to the rise or decay of Ca f, extracellular Ca to answer these questions. was chelated with EGTA. Decreasing extracellular Ca2+ levels to 100 mM immediately prior to thapsigargin or cyclopiazonic acid did not significantly alter the peak or decay 2+ 2+ Results of Ca f, suggesting little or no extracellular Ca influx during or immediately after ER Ca2+ depletion with these agents Characterization of ER Ca2+ release with ER (Figure 2). Ca2+-ATPase inhibitors To determine the kinetics of ER Ca2+ release with smooth endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, thapsigargin (5 mM) or cyclopiazonic acid (100 mM) was 2+ added to RPT suspensions and Ca f monitored. Thapsigar- gin is an irreversible inhibitor and cyclopiazonic acid is a reversible inhibitor of SERCAs.22,23 Inhibition of SERCAs 2+ 2+ quickly results in increases in Ca f through the ER Ca leak. 2+ Increases in Ca f occurred within 10 s after exposure to thapsigargin or cyclopiazonic acid, resulting in similar peak 2+ Ca f levels (184+7 nM baseline to 275+20 and 2+ Figure 1 Hypothesis of Ca f increases and calpain activation in RPT during antimycin A treatment. ER Ca2+ release may occur by either phospholipase C (PLC)-generated inositol trisphosphate (IP3) binding to the IP3 receptor on the ER or by inhibition of the ER Ca2+-ATPase by ATP depletion. The early events Figure 2 The effect of thapsigargin (Thaps) (A) and cyclopiazonic acid (CPA) 2+ 2+ 2+ upon antimycin A exposure include increases in Ca f levels due to ER Ca (B) on cytosolic Ca f levels in RPT. Thaps (5 mM) or CPA (100 mM) were release and extracellular Ca2+ influx and resulting increase in calpain activity. added with or without addition of EGTA (900 mM) and readings obtained for an Calpain activation leads to substrate hydrolysis, late stage Ca2+ influx and cell additional 2 min. Shown are representative traces (n=4). Closed circles are death without EGTA, open circles are with EGTA Cell Death and Differentiation Calcium release mediates cell death JF Harriman et al 736 2+ 2+ ATPase and ER Ca release may account for the increases Effect of antimycin A exposure on Ca f levels 2+ in Ca f. Antimycin A blocks the electron transport chain and has been used as a model of anoxia (i.e. chemical anoxia).24 Antimycin Effect of ER Ca2+ depletion on antimycin A caused a concentration-dependent (0.3 ± 10 mM) increase 2+ 2+ A-induced Ca f increases in Ca f levels, resulting in a sustained peak by 90 s (Figure 2+ 3A,B).
Recommended publications
  • Discovery of Endoplasmic Reticulum Calcium Stabilizers to Rescue ER-Stressed Podocytes in Nephrotic Syndrome
    Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome Sun-Ji Parka, Yeawon Kima, Shyh-Ming Yangb, Mark J. Hendersonb, Wei Yangc, Maria Lindahld, Fumihiko Uranoe, and Ying Maggie Chena,1 aDivision of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; bNational Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850; cDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; dInstitute of Biotechnology, University of Helsinki, Helsinki, Finland 00014; and eDivision of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 28, 2019 (received for review August 16, 2018) Emerging evidence has established primary nephrotic syndrome activating transcription factor 6 (ATF6), which act as proximal (NS), including focal segmental glomerulosclerosis (FSGS), as a sensors of ER stress. ER stress activates these sensors by inducing primary podocytopathy. Despite the underlying importance of phosphorylation and homodimerization of IRE1α and PERK/ podocyte endoplasmic reticulum (ER) stress in the pathogenesis of eukaryotic initiation factor 2α (eIF2α), as well as relocalization of NS, no treatment currently targets the podocyte ER. In our mono- ATF6 to the Golgi, where it is cleaved by S1P/S2P proteases from genic podocyte ER stress-induced NS/FSGS mouse model, the 90 kDa to the active 50-kDa ATF6 (8), leading to activation of podocyte type 2 ryanodine receptor (RyR2)/calcium release channel their respective downstream transcription factors, spliced XBP1 on the ER was phosphorylated, resulting in ER calcium leak and (XBP1s), ATF4, and p50ATF6 (8–10).
    [Show full text]
  • Cytosolic Phosphorylation of Calnexin Controls Intracellular Ca2ϩ Oscillations Via an Interaction with Serca2b H
    Cytosolic Phosphorylation of Calnexin Controls Intracellular Ca2ϩ Oscillations via an Interaction with SERCA2b H. Llewelyn Roderick,* James D. Lechleiter,‡ and Patricia Camacho* *Department of Physiology, and ‡Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900 Abstract. Calreticulin (CRT) and calnexin (CLNX) are of this residue. We also demonstrate by coimmunopre- lectin chaperones that participate in protein folding in cipitation that CLNX physically interacts with the the endoplasmic reticulum (ER). CRT is a soluble ER COOH terminus of SERCA2b and that after dephos- lumenal protein, whereas CLNX is a transmembrane phorylation treatment, this interaction is significantly protein with a cytosolic domain that contains two con- reduced. Together, our results suggest that CRT is sensus motifs for protein kinase (PK) C/proline- uniquely regulated by ER lumenal conditions, whereas directed kinase (PDK) phosphorylation. Using confo- CLNX is, in addition, regulated by the phosphorylation cal Ca2ϩ imaging in Xenopus oocytes, we report here status of its cytosolic domain. The S562 residue in that coexpression of CLNX with sarco endoplasmic CLNX acts as a molecular switch that regulates the reticulum calcium ATPase (SERCA) 2b results in inhi- interaction of the chaperone with SERCA2b, thereby bition of intracellular Ca2ϩ oscillations, suggesting a affecting Ca2ϩ signaling and controlling Ca2ϩ-sensitive functional inhibition of the pump. By site-directed mu- chaperone
    [Show full text]
  • CCN3 and Calcium Signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2
    Cell Communication and Signaling BioMed Central Review Open Access CCN3 and calcium signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2 Address: 1CNRS UMR 8078, Hôpital Marie Lannelongue, 133, Avenue de la Résistance 92350 Le PLESSIS-ROBINSON, France and 2Laboratoire d'Oncologie Virale et Moléculaire, Tour 54, Case 7048, Université Paris 7-D.Diderot, 2 Place Jussieu 75005 PARIS, France Email: Alain Lombet - [email protected]; Nathalie Planque - [email protected]; Anne-Marie Bleau - [email protected]; Chang Long Li - [email protected]; Bernard Perbal* - [email protected] * Corresponding author Published: 15 August 2003 Received: 26 June 2003 Accepted: 15 August 2003 Cell Communication and Signaling 2003, 1:1 This article is available from: http://www.biosignaling.com/content/1/1/1 © 2003 Lombet et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling.
    [Show full text]
  • Calcium Signaling at the Endoplasmic Reticulum Fine-Tuning Stress
    Cell Calcium 70 (2018) 24–31 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Review Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses T ⁎ Amado Carreras-Suredaa,b,c, Philippe Pihána,b,c, Claudio Hetza,b,c,d,e, a Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile b Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile c Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile d Buck Institute for Research on Aging, Novato, CA, 94945, USA e Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA ARTICLE INFO ABSTRACT Keywords: Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER homeostasis ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to ER stress operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein Calcium handling mechanisms folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER cal- Calcium homeostasis cium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under Unfolded protein response chronic stress. The global coordination between UPR signaling and energetic demands takes place at mi- Mitochondrial associated membranes Mitochondria biology tochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.
    [Show full text]
  • Calcium Signaling in Aging and Neurodegenerative Diseases 2019
    International Journal of Molecular Sciences Meeting Report Calcium Signaling in Aging and Neurodegenerative Diseases 2019 Luísa Cortes 1,2 , João Malva 2,3,4, Ana Cristina Rego 1,2,3 and Cláudia F. Pereira 1,2,3,* 1 Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] (L.C.); [email protected] (A.C.R.) 2 CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] 3 Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal 4 iCRB- Coimbra Institute for Clinical and Biomedical Research; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 February 2020; Published: 7 February 2020 Abstract: The European Calcium Society (ECS) workshop, which is held every 2 years, is a dedicated meeting of scientists interested in the elucidation of the action of calcium binding, calcium signaling and the study of proteins and organelles, such as mitochondria and endoplasmic reticulum, thereby involved, either in health and disease conditions. The 8th edition of the ECS workshop was organized by a group of researchers from the University of Coimbra, Portugal, in close collaboration with ECS board members. Thanks to the central role of “Calcium Signaling in Aging and Neurodegenerative Disorders”, the ECS 2019 workshop was attended by 62 experts who presented their results in a plenary lecture and five regular symposia, two oral communication sessions and two poster sessions, followed by a hands-on session on calcium imaging.
    [Show full text]
  • Proteomics of Serum Extracellular Vesicles Identifies a Novel COPD Biomarker, Fibulin-3 from Elastic Fibres
    ORIGINAL ARTICLE COPD Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres Taro Koba 1, Yoshito Takeda1, Ryohei Narumi2, Takashi Shiromizu2, Yosui Nojima 3, Mari Ito3, Muneyoshi Kuroyama1, Yu Futami1, Takayuki Takimoto4, Takanori Matsuki1, Ryuya Edahiro1, Satoshi Nojima5, Yoshitomo Hayama1, Kiyoharu Fukushima1, Haruhiko Hirata1, Shohei Koyama1, Kota Iwahori1, Izumi Nagatomo1, Mayumi Suzuki1, Yuya Shirai1, Teruaki Murakami1, Kaori Nakanishi 1, Takeshi Nakatani1, Yasuhiko Suga1, Kotaro Miyake1, Takayuki Shiroyama1, Hiroshi Kida 1, Takako Sasaki6, Koji Ueda7, Kenji Mizuguchi3, Jun Adachi2, Takeshi Tomonaga2 and Atsushi Kumanogoh1 ABSTRACT There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl- peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD.
    [Show full text]
  • Calpain Inhibitor and Ibudilast Rescue Β Cell Functions in a Cellular Model of Wolfram Syndrome
    Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome Lien D. Nguyena,b,1, Tom T. Fischera,c,1, Damien Abreud,e, Alfredo Arroyoa, Fumihiko Uranod,f, and Barbara E. Ehrlicha,b,2 aDepartment of Pharmacology, Yale University, New Haven, CT 06520; bInterdepartmental Neuroscience Program, Yale University, New Haven, CT 06520; cInstitute of Pharmacology, University of Heidelberg, 69117 Heidelberg, Germany; dDepartment of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110; eMedical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110; and fDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved June 1, 2020 (received for review April 18, 2020) Wolfram syndrome is a rare multisystem disease characterized by diseases, such as Alzheimer’s disease (22), cancer progression childhood-onset diabetes mellitus and progressive neurodegener- (23), and diabetes mellitus (24, 25). ation. Most cases are attributed to pathogenic variants in a single Here we show that KO of WFS1 in rat insulinoma (INS1) cells gene, Wolfram syndrome 1 (WFS1). There currently is no disease- led to elevated resting cytosolic calcium, reduced stimulus- modifying treatment for Wolfram syndrome, as the molecular con- evoked calcium signaling, and, consequently, hypersusceptibility sequences of the loss of WFS1 remain elusive. Because diabetes to hyperglycemia and decreased glucose-stimulated insulin se- mellitus is the first diagnosed symptom of Wolfram syndrome, we cretion. Overexpression of WFS1 or WFS1’s interacting partner aimed to further examine the functions of WFS1 in pancreatic β neuronal calcium sensor-1 (NCS1) reversed the deficits observed cells in the context of hyperglycemia.
    [Show full text]
  • Ryanodine Receptor Regulation During Exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E
    COMMENTARY COMMENTARY Intensity matters: Ryanodine receptor regulation during exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E. Lehnarta,d,1 aHeart Research Center Göttingen, Clinic of Cardiology & Pulmonology, University Medical Center & Georg-August-University, 37099 Göttingen, Germany; bThe National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; cKing’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE17EH, United Kingdom; and dGerman Centre for Cardiovascular Research site Götttingen, 37099 Göttingen, Germany Skeletal muscles provide fascinating examples which were correlated with depressed muscle how humans have evolved and exercise. While function (3). humans developed superior cognition, Previous studies determined that calpain metabolome evolution studies indicate an activation cleaves RyR1 channels into stably accelerated parallel decline in muscle ener- associated ∼375- and ∼150-kDa fragments getic capacity and strength (1). New forms of sustaining subconductance channel open gat- locomotion including exceptional endurance ing in vitro (6). Recombinant, N-terminally were adapted ∼2 million years ago (2). Now- truncated RyR1 channels reconstituted in lipid adays, we generally assume healthy aging and bilayers exhibited CICR-like functions (7). disease prevention depend on regular Notably, 24 h after HIIT exercise recreation- exercise. Contrasting with evolutionary ally active humans showed significant RyR1 adaptation, high-intensity interval training fragmentation (re)producing a ∼375-kDa (HIIT) represents an ultrashort form of ex- fragment in muscle biopsies similar to cal- ercise and a promising intervention for dis- pain-treated RyR1 (3, 6). Calpain is known ease prevention. However, the molecular to cleave RyR1 protomers at residues 1383– mechanisms are incompletely understood.
    [Show full text]
  • Thapsigargin—From Traditional Medicine to Anticancer Drug
    International Journal of Molecular Sciences Review Thapsigargin—From Traditional Medicine to Anticancer Drug Agata Jaskulska 1,2, Anna Ewa Janecka 2 and Katarzyna Gach-Janczak 2,* 1 Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] 2 Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-272-57-10 Abstract: A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found to be a potent cytotoxin that induces apoptosis by inhibiting the sarcoplasmic/endoplasmic reticu- lum Ca2+ ATPase (SERCA) pump, which is necessary for cellular viability. This biological activity encouraged studies on the use of thapsigargin as a novel antineoplastic agent, which were, however, hampered due to high toxicity of this compound to normal cells. In this review, we summarized the recent knowledge on the biological activity and molecular mechanisms of thapsigargin action and advances in the synthesis of less-toxic thapsigargin derivatives that are being developed as novel anticancer drugs. Keywords: thapsigargin; cytotoxin; anticancer activity; sarcoplasmic/endoplasmic reticulum Ca2+ ATPase; unfold protein response; apoptosis; prodrug; prostate-specific antigen; prostate-specific membrane antigen; mipsagargin 1. Introduction Citation: Jaskulska, A.; Janecka, A.E.; Thapsigargin (Tg), a guaianolide-type sesquiterpene lactone, is abundant in the com- Gach-Janczak, K. Thapsigargin—From mon Mediterranean weed Thapsia garganica (Apiaceae), known as “deadly carrot” due to Traditional Medicine to Anticancer its high toxicity to sheep and cattle.
    [Show full text]
  • Neuronal Calcium Sensor-1 Enhancement of Insp3 Receptor Activity Is Inhibited by Therapeutic Levels of Lithium
    Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium Christina Schlecker, … , Klara Szigeti-Buck, Barbara E. Ehrlich J Clin Invest. 2006;116(6):1668-1674. https://doi.org/10.1172/JCI22466. Research Article Neuroscience Regulation and dysregulation of intracellular calcium (Ca2+) signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) has been linked to many cellular processes and pathological conditions. In the present study, addition of neuronal calcium sensor-1 (NCS-1), a high-affinity, low-capacity, calcium-binding protein, to purified InsP3R type 1 (InsP3R1) increased the channel activity in both a calcium-dependent and -independent manner. In intact cells, enhanced expression of NCS-1 resulted in increased intracellular calcium release upon stimulation of the phosphoinositide signaling pathway. To determine whether InsP3R1/NCS-1 interaction could be functionally relevant in bipolar disorders, conditions in which NCS-1 is highly expressed, we tested the effect of lithium, a salt widely used for treatment of bipolar disorders. Lithium inhibited the enhancing effect of NCS-1 on InsP3R1 function, suggesting that InsP3R1/NCS-1 interaction is an essential component of the pathomechanism of bipolar disorder. Find the latest version: https://jci.me/22466/pdf Research article Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium Christina Schlecker,1,2,3 Wolfgang Boehmerle,1,4 Andreas Jeromin,5 Brenda DeGray,1 Anurag Varshney,1 Yogendra Sharma,6 Klara Szigeti-Buck,7 and Barbara E. Ehrlich1,3 1Department of Pharmacology, Yale University, New Haven, Connecticut, USA. 2Department of Neuroscience, University of Magdeburg, Magdeburg, Germany.
    [Show full text]
  • Calcineurin Associated with the Lnositol 1,4,5=Trisphosphate Receptor-FKBPI 2 Complex Modulates Ca*+ Flux
    Cell, Vol. 83,463-472, November 3, 1995, Copyright 0 1995 by Cell Press Calcineurin Associated with the lnositol 1,4,5=Trisphosphate Receptor-FKBPI 2 Complex Modulates Ca*+ Flux Andrew M. Cameron,* Joseph P. Steiner,* such as the transcription factor NFAT (for nuclear factor A. Jane Roskams, l Siraj M. Ali, * Gabriele V. Ronnett,? of activated T cells) (Liu et al., 1991; O’Keefe et al., 1992; and Solomon H. Snyder**5 Clipstone and Crabtree, 1992; for review of calcineurin, *Department of Neuroscience see Klee et al., 1988). In its phosphorylated state, NFAT tDepartment of Neurology cannot translocate to the nucleus, where it regulates ex- $Department of Pharmacology and Molecular Sciences pression of genes critical for T cell activation such as in- SDepartment of Psychiatry and Behavioral Sciences terleukin-2 (IL-2). Rapamycin acts differently than cyclo- Johns Hopkins University School of Medicine sporin A and FK506, as it blocks the actions of IL-2 rather Baltimore, Maryland 21205 than its synthesis (Bierer et al., 1990). Rapamycin binds with high affinity to FKBP12 and inhibits its rotamase activ- ity, but the rapamycin-FKBP12 complex does not interact Summary with calcineurin. Rather, this immunosuppressant-immu- nophilin complex binds to a recently identified target pro- The immunosuppressant drug FK506 binds to the im- tein designated RAFT (for rapamycin and FKBP12 target) munophilin protein FKBPl2 and inhibits its prolyl iso- or FRAP (for FKBP-rapamycin-associated protein) (Sa- meraseactivity. Immunosuppresiveactions, however, batini et al., 1994; Brown et al., 1994). are mediated via an FK506-FKBP12 inhibition of the Marks and colleagues have observed an association Ca*+-activated phosphatase calcineurin.
    [Show full text]
  • Neuronal Calcium Signaling Review
    Neuron, Vol. 21, 13±26, July, 1998, Copyright 1998 by Cell Press Neuronal Calcium Signaling Review Michael J. Berridge Siegesmund, 1968; Takahashi and Wood, 1970; Henkart The Babraham Institute et al.,1976). These subsurface cisternae have been clas- Babraham Laboratory of Molecular Signalling sified into different types depending on how closely they Cambridge CB2 4AT approach the plasma membrane (Takahashi and Wood, United Kingdom 1970). The type I come within 40±80 nm, whereas the type II and III come much closer (20 nm) and often follow the contours of the plasma membrane, suggesting that Introduction the two membranes are bound together (Rosenbluth, Calcium plays an important role in regulating a great 1962). Indeed, the two membranes are separated by a variety of neuronal processes. Like other cells, neurons fuzzy material with a distinct periodicity reminiscent of use both extracellular and intracellular sources of cal- the triadic junction of muscle cells (Henkart et al., 1976). In the axonal initial segment of certain neurons (e.g., cium. The mechanisms responsible for regulating the cortical principal cells, spiny stellate cells, and dentate influx of external calcium are well established (Figure granule cells) the subsurface cisternae appear as multi- 1). For example, voltage-operated channels are used layered structures called cisternal organelles (Peters et to trigger the release of neurotransmitter at synaptic al., 1968; Kosaka, 1980; Takei et al., 1992; Benedeczky junctions and they contribute to dendritic action poten- et al., 1994). In the case of the initial segment of CA3 tials. In addition, neurotransmitters can induce an influx hippocampal neurons, both subsurface cisternae and cis- of calcium using receptor-operated channels such as ternal organelles coexist (Kosaka, 1980).
    [Show full text]