Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 44 (2003), No. 1, 75-98. Generalized GCD Rings II Majid M. Ali David J. Smith Department of Mathematics, University of Auckland, Auckland, New Zealand e-mail:
[email protected] [email protected] Abstract. Greatest common divisors and least common multiples of quotients of elements of integral domains have been investigated by L¨uneburgand further by J¨ager. In this paper we extend these results to invertible fractional ideals. We also lift our earlier study of the greatest common divisor and least common multiple of finitely generated faithful multiplication ideals to finitely generated projective ideals. MSC 2000: 13A15 (primary); 13F05 (secondary) Keywords: greatest common divisor, least common multiple, invertible ideal, pro- jective ideal, multiplication ideal, flat ideal, Pr¨ufer domain, semihereditary ring, Bezout domain, p.p. ring 0. Introduction Let R be a ring and K the total quotient ring of R. An integral (or fractional) ideal A of R is invertible if AA−1 = R, where A−1 = {x ∈ K : xA ⊆ R}. Let I and J be ideals of R. Then [I : J] = {x ∈ R : xJ ⊆ I} is an ideal of R. The annihilator of I, denoted by annI, is [0 : I]. An ideal J of R is called a multiplication ideal if for every ideal I ⊆ J, there exists an ideal C of R such that I = JC, see [6], [16] and [23]. Let J be a multiplication ideal of R and I ⊆ J. Then I = JC ⊆ [I : J]J ⊆ I, so that I = [I : J]J.