L11-Acid-Base Disorders [PDF]

Total Page:16

File Type:pdf, Size:1020Kb

L11-Acid-Base Disorders [PDF] OBJECTIVES I. To explain the principles of blood gas and acid-base analysis. II. To interpret blood gas analysis and diagnose various acid base disorders. III. Describe causes of acid base disorders. IV. Understand use of acid base nomograms. PCO2= 35-45 mmHg If the problem in the PCO2, it is respiratory acidosis or alkalosis. Compensation: The body . HCO3- = 22-26 mEq/L response to acid-base If the problem in the HCO3, it is metabolic acidosis or alkalosis. imbalance Depending on the underlying problem the Complete compensation mechanisms differ : compensation: if the PH back into the Respiratory problem Metabolic problem normal limits. Kidney can brings Respiratory Partial compensation compensation: if the Metabolic (hypo/hyperventilation) PH still outside the compensation + normal range. Buffer system ACID-BASE IMBALANCE: ACIDOSIS Causes Compensation A- Respiratory: . CNS depression (anaesthesia). Carbonic Kidneys acid excess eliminate Kidney also . Resp muscle paralysis/ diaphragm caused by hydrogen ion generates paralysis, rib fractures, etc.. blood levels and retain new . Obstructive lung diseases e.g. of CO2 above bicarbonate bicarbonate. Emphysema. 45 mm Hg. ion. Pulmonary edema. B- Metabolic: K+ exchanges Bicarbonate deficit: blood conc. of Renal with excess HCO3- drops below 22mEq/L. excretion of H+ in ECF Increased . Diabetic ketoacidosis. hydrogen ( H+ into ventilation. Severe diarrahea.(loss of HCO3). ions if cells, K+ out . Hypoaldosteronism. possible. of cells). Acute renal failure (fail to excrete H+). Accumulation of acids. ACID-BASE IMBALANCE: ALKALOSIS Causes compensation A- Respiratory: Carbonic acid deficit: pCO is <35mmHg 2 Conditions that (hypocapnea). stimulate Most common acid-base imbalance. respiratory Kidneys Excrete . Hyperventilation: center and wash conserve bicarbonate out CO2 hydrogen ion. ion. High altitude (Oxygen deficiency). (Hyperventilatio . Hysterical. n): . Anorexia nervosa. Early salicylate intoxication. B. Metabolic: Respiratory Blood conc. Of HCO3 is > 26mEq/L. compensation . Severe vomiting = loss of stomach acid Kidney excretes difficult or heavy ingestion of antacids. alkaline urine and (hypoventilation . Severe dehydration. retain H+. Excess antacids & alkaline drugs. limited by . Hyperaldosteronism.(endocrine hypoxia). disorders). Compensation Respiratory Acidosis Respiratory Alkalosis • Kidneys eliminate hydrogen ion and retain bicarbonate ion. Kidneys conserve hydrogen ion • Kidney also generates new Excrete bicarbonate ion bicarbonate. Metabolic Acidosis Metabolic Alkalosis • Increased ventilation • Kidney excretes alkaline urine and • Renal excretion of hydrogen ions if retain H+ possible • Respiratory compensation difficult – • K+exchanges with excess H+ in ECF hypoventilation limited by hypoxia • ( H+ into cells, K+ out of cells) Effects of acidosis Effects of alkalosis • Principal effect of acidosis: • Alkalosis causes over excitability of the central and peripheral nervous systems. - depression of the CNS through ↓ of - Numbness. synaptic transmission. - Lightheadedness. - Generalized weakness. - Deranged CNS function the greatest - It can cause : threat. Nervousness. muscle spasms or tetany . * Severe acidosis causes: . Convulsions . Disorientation. Loss of consciousness. Coma. Death. Death. RESPIRATORY: ALKALOSIS AND ACIDOSIS Contact us: [email protected] METABOLIC: ACIDOSIS AND ALKALOSIS Contact us: [email protected] Diagnosis of Acid-Base Imbalances : 1) Note whether the pH is low (acidosis) or high (alkalosis) - 2) Decide which value, pCO2 or HCO3 , is outside the normal range and could be the cause of the problem. If the cause is a change in pCO2, the problem is respiratory. - If the cause is HCO3 the problem is metabolic. The change in PH : The difference between If pH is normal (between 7.35-7.45) Compenstaed diarrhea and vomiting : If pH is abnormal (<7.35 or >7.45) uncompenstated. In diarrhea : cause metabolic Is the cause Respiratory or metabolic? acidosis due to loss of bicarbonate from intestine so If PCO2>45 = Respiratory acidosis the PH will decrease. If PCO2<35= Respiratory alkalosis In vomiting : cause metabolic If HCO3-< 22= Metabolic acidosis. alkalosis due to loss of HCL so If HCO3-> 26 = metabolic alkalosis. the PH will increase . Example 1: A patient is in intensive care because he suffered a severe myocardial infarction 3 days ago. The lab reports the following values from an arterial blood sample: pH =7.21, PCO2= 42, HCO3- = 12: To answer it List the condition First : : acidosis or alkalosis, Second :metabolic or respiratory Third : compensated or uncompensated? The answer : Metabolic acidosis, uncompensated Example 1: A 50 year-old man with history of type 2 diabetes was admitted to the emergency department with history of polyuria. On examination he had rapid and deep breathing. Blood analysis showed glucose level of 400 mg/dl. The following is the arterial blood analysis report of this patient: pH = 7.1, PCO2 = 40 mmHg and HCO3- = 18 mmol/L The answer : Metabolic acidosis, uncompensated Example 2 : pH = 7.36, PCO2= 54, HCO3- = 32: the answer : respiratory, acidosis, compensated Example 3: pH =7.38, PCO2= 38, HCO3- = 25: The answer : normal Summary How to diagnosis? PH Lower 7.4 Above 7.4 Acidosis alkalosis Pco Hco3 If PCO2>45 If PCO2<35 If HCO3-< 22= If HCO3-> 26 = Respiratory Acidosis Respiratory alkalosis Metabolic acidosis. metabolic alkalosis. (between 7.35-7.45) (<7.35 or >7.45) Compenstaed Uncompenstated Ans Q1.which of the following cause acidosis? Q3. A patient is seen in the emergency A. Hyperaldosteronism department with following blood value B. Sever vomiting PH=7.8,HCO3- =29,PCO2 =38 what is the acid-base : C. Hyperventilation disorder? 1 D. Sever diarrhea A. Respiratory Acidosis .D B. Respiratory Alkalosis C. Metabolic Acidosis D. Metabolic Alkalosis 2 .A .A Q2.How the kidney compensate alkalosis ? Q4.In the conversion from acute to A. The kidney conserves H+ And excretes CHO- chronic respiratory alkalosis, what happen to 3 B. K+ exchanges with excess H+ in ECF blood PH ? .D C. Hyperventilation A. Increase D. A+C B. Decrease to normal C. Severe decreasing 4 .B D. Constant Q1.How does the kidney compensate of Q3.What is “ Anorexia nervosa” ? respiratory acidosis? An emotional disorder characterized by an Kidney will eliminate H+ ions and retain HCO3- obsessive desire to loose weight by refusing to ions , also generates new HCO3- eat , so it will cause alkalosis. Q2.what is the difference between vomiting and Q4.a patient is in ER because she travels to high diarrhea an acid-base imbalance ? Altitude for 5hrs . The report as following . Vomiting : is combined with excessive loose of PH=7.49 acid . PCO2=25 Diarrhea : is combined with low absorption of PHCO3=21 HCO3- due to high flow fluid go out . What is the diagnosis ? Respiratory alkalosis uncompensated .
Recommended publications
  • The History of Carbon Monoxide Intoxication
    medicina Review The History of Carbon Monoxide Intoxication Ioannis-Fivos Megas 1 , Justus P. Beier 2 and Gerrit Grieb 1,2,* 1 Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany; fi[email protected] 2 Burn Center, Department of Plastic Surgery and Hand Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany; [email protected] * Correspondence: [email protected] Abstract: Intoxication with carbon monoxide in organisms needing oxygen has probably existed on Earth as long as fire and its smoke. What was observed in antiquity and the Middle Ages, and usually ended fatally, was first successfully treated in the last century. Since then, diagnostics and treatments have undergone exciting developments, in particular specific treatments such as hyperbaric oxygen therapy. In this review, different historic aspects of the etiology, diagnosis and treatment of carbon monoxide intoxication are described and discussed. Keywords: carbon monoxide; CO intoxication; COHb; inhalation injury 1. Introduction and Overview Intoxication with carbon monoxide in organisms needing oxygen for survival has probably existed on Earth as long as fire and its smoke. Whenever the respiratory tract of living beings comes into contact with the smoke from a flame, CO intoxication and/or in- Citation: Megas, I.-F.; Beier, J.P.; halation injury may take place. Although the therapeutic potential of carbon monoxide has Grieb, G. The History of Carbon also been increasingly studied in recent history [1], the toxic effects historically dominate a Monoxide Intoxication. Medicina 2021, 57, 400. https://doi.org/10.3390/ much longer period of time. medicina57050400 As a colorless, odorless and tasteless gas, CO is produced by the incomplete combus- tion of hydrocarbons and poses an invisible danger.
    [Show full text]
  • Pathophysiology of Acid Base Balance: the Theory Practice Relationship
    Intensive and Critical Care Nursing (2008) 24, 28—40 ORIGINAL ARTICLE Pathophysiology of acid base balance: The theory practice relationship Sharon L. Edwards ∗ Buckinghamshire Chilterns University College, Chalfont Campus, Newland Park, Gorelands Lane, Chalfont St. Giles, Buckinghamshire HP8 4AD, United Kingdom Accepted 13 May 2007 KEYWORDS Summary There are many disorders/diseases that lead to changes in acid base Acid base balance; balance. These conditions are not rare or uncommon in clinical practice, but every- Arterial blood gases; day occurrences on the ward or in critical care. Conditions such as asthma, chronic Acidosis; obstructive pulmonary disease (bronchitis or emphasaemia), diabetic ketoacidosis, Alkalosis renal disease or failure, any type of shock (sepsis, anaphylaxsis, neurogenic, cardio- genic, hypovolaemia), stress or anxiety which can lead to hyperventilation, and some drugs (sedatives, opoids) leading to reduced ventilation. In addition, some symptoms of disease can cause vomiting and diarrhoea, which effects acid base balance. It is imperative that critical care nurses are aware of changes that occur in relation to altered physiology, leading to an understanding of the changes in patients’ condition that are observed, and why the administration of some immediate therapies such as oxygen is imperative. © 2007 Elsevier Ltd. All rights reserved. Introduction the essential concepts of acid base physiology is necessary so that quick and correct diagnosis can The implications for practice with regards to be determined and appropriate treatment imple- acid base physiology are separated into respi- mented. ratory acidosis and alkalosis, metabolic acidosis The homeostatic imbalances of acid base are and alkalosis, observed in patients with differing examined as the body attempts to maintain pH bal- aetiologies.
    [Show full text]
  • Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
    Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car.
    [Show full text]
  • Acid-Base Physiology & Anesthesia
    ACID-BASE PHYSIOLOGY & ANESTHESIA Lyon Lee DVM PhD DACVA Introductions • Abnormal acid-base changes are a result of a disease process. They are not the disease. • Abnormal acid base disorder predicts the outcome of the case but often is not a direct cause of the mortality, but rather is an epiphenomenon. • Disorders of acid base balance result from disorders of primary regulating organs (lungs or kidneys etc), exogenous drugs or fluids that change the ability to maintain normal acid base balance. • An acid is a hydrogen ion or proton donor, and a substance which causes a rise in H+ concentration on being added to water. • A base is a hydrogen ion or proton acceptor, and a substance which causes a rise in OH- concentration when added to water. • Strength of acids or bases refers to their ability to donate and accept H+ ions respectively. • When hydrochloric acid is dissolved in water all or almost all of the H in the acid is released as H+. • When lactic acid is dissolved in water a considerable quantity remains as lactic acid molecules. • Lactic acid is, therefore, said to be a weaker acid than hydrochloric acid, but the lactate ion possess a stronger conjugate base than hydrochlorate. • The stronger the acid, the weaker its conjugate base, that is, the less ability of the base to accept H+, therefore termed, ‘strong acid’ • Carbonic acid ionizes less than lactic acid and so is weaker than lactic acid, therefore termed, ‘weak acid’. • Thus lactic acid might be referred to as weak when considered in relation to hydrochloric acid but strong when compared to carbonic acid.
    [Show full text]
  • Parenteral Nutrition Primer: Balance Acid-Base, Fluid and Electrolytes
    Parenteral Nutrition Primer: Balancing Acid-Base, Fluids and Electrolytes Phil Ayers, PharmD, BCNSP, FASHP Todd W. Canada, PharmD, BCNSP, FASHP, FTSHP Michael Kraft, PharmD, BCNSP Gordon S. Sacks, Pharm.D., BCNSP, FCCP Disclosure . The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except: . Phil Ayers - ASPEN: Board Member/Advisory Panel; B Braun: Consultant; Baxter: Consultant; Fresenius Kabi: Consultant; Janssen: Consultant; Mallinckrodt: Consultant . Todd Canada - Fresenius Kabi: Board Member/Advisory Panel, Consultant, Speaker's Bureau • Michael Kraft - Rockwell Medical: Consultant; Fresenius Kabi: Advisory Board; B. Braun: Advisory Board; Takeda Pharmaceuticals: Speaker’s Bureau (spouse) . Gordon Sacks - Grant Support: Fresenius Kabi Sodium Disorders and Fluid Balance Gordon S. Sacks, Pharm.D., BCNSP Professor and Department Head Department of Pharmacy Practice Harrison School of Pharmacy Auburn University Learning Objectives Upon completion of this session, the learner will be able to: 1. Differentiate between hypovolemic, euvolemic, and hypervolemic hyponatremia 2. Recommend appropriate changes in nutrition support formulations when hyponatremia occurs 3. Identify drug-induced causes of hypo- and hypernatremia No sodium for you! Presentation Outline . Overview of sodium and water . Dehydration vs. Volume Depletion . Water requirements & Equations . Hyponatremia • Hypotonic o Hypovolemic o Euvolemic o Hypervolemic . Hypernatremia • Hypovolemic • Euvolemic • Hypervolemic Sodium and Fluid Balance . Helpful hint: total body sodium determines volume status, not sodium status . Examples of this concept • Hypervolemic – too much volume • Hypovolemic – too little volume • Euvolemic – normal volume Water Distribution . Total body water content varies from 50-70% of body weight • Dependent on lean body mass: fat ratio o Fat water content is ~10% compared to ~75% for muscle mass .
    [Show full text]
  • Chapter 26: Fluid, Electrolyte, and Acid-Base Balance
    Chapter 26: Fluid, Electrolyte, and Acid-Base Balance Chapter 26 is unusual because it doesn’t introduce much new material, but it reviews and integrates information from earlier chapters to cover 3 types of regulation: regulation of fluid volume, regulation of electrolyte (=ion) concentrations, and regulation of pH. • Outline of slides: • 1. Regulating fluid levels (blood/ECF) • Compartments of the body • Regulation of fluid intake and excretion • 2. Regulating ion concentrations (blood/ECF) • 3. Regulating pH (blood/ECF) • Chemical buffers • Physiological regulation • Respiratory • Renal 1 3 subsections to this chapter – we will cover the middle one only briefly. 1 Ch. 26: Test Question Templates • Q1. Given relevant plasma data, classify a patient’s possible acid-base disorder as a metabolic or respiratory acidosis or alkalosis that is or is not fully compensated. Or, if given such a disorder, give expected plasma pH and CO2 level (high, normal, or low). • Example A: Plasma pH is 7.32, CO2 levels in blood are low. What is this? • Example B: A patient’s plasma has a pH of 7.5. Explain how you could make an additional measurement to determine whether the cause of this unusual pH is metabolic or respiratory. • Example C: A patient’s plasma CO2 levels are very low, yet plasma pH is normal. How can this be? 2 Q1. Example A: (slight) metabolic acidosis. Example B: Measure the CO2 level in the plasma. If the high plasma pH is due to a respiratory problem, the CO2 concentration will be low. If the high pH is NOT due to a respiratory problem, the CO2 will not be low, and may be high if the person is undergoing respiratory compensation for a metabolic alkalosis.
    [Show full text]
  • The Electro-Physiology-Feeedback Measures of Interstitial Fluids
    INTERNATIONAL MEDICAL UNIVERSITY The elecTro-Physiology-Feeedback Measures oF inTersTiTial Fluids BY PROFESSOR OF MEDICINE DESIRÉ DUBOUNET IMUNE PRESS 2008 Electro-Physiology -FeedBack Measures of Interstitial Fluids edited by Professor Emeritus Desire’ Dubounet, IMUNE ISBN 978-615-5169-03-8 1 CHAPTER 1 THE ELECTRO-PHYSIOLOGY-FEEDBACK MEASURES OF INTERSTITIAL FLUIDS The interstitial liquid constitutes the true interior volume that bathe the organs of the human body. It is by its presence that all the exchanges between plasma and the cells are performed. With the vascular, lymphatic and nervous systems, it seems to be the fourth communication way of information's between all the cells. No direct methods for sampling interstitial fluid are currently available. The composition of interstitial fluid, which constitutes the environment of the cells and is regulated by the electrical process of electrochemistry. This has previously been sampled by the suction blister or liquid paraffin techniques or by implantation of a perforated capsule or wick. The results have varied, depending on the sampling technique and animal species investigated. In one study, the ion distribution between vascular and interstitial compartments agreed with the Donnan equilibrium; in others, the concentrations of sodium and potassium were higher in interstitial fluid than in plasma. The concentration of protein in interstitial fluid is lower than in plasma, and the free ion activities theoretically differ from those of plasma because of the Donnan effect. In spite of these differences, and for practical reasons only, plasma is used clinically to monitor fluid and electrolytes. The relation between plasma and interstitial fluid is important in treating patients with abnormal plasma volume or homeostasis.
    [Show full text]
  • New Jersey Chapter American College of Physicians Resident
    New Jersey Chapter American College of Physicians Resident Abstract Competition 2018 Submissions Category Name Additional Authors Program Abstract Title Abstract Clinical Vignette Ankit Bansal Ankit Bansal MD, Robert Atlanticare Rare Case of A 62‐year‐old male IV drug abuser with hepatitis C and diabetes presented to the emergency Lyman MS IV, Saraswati Regional Necrotizing department with progressively worsening right forearm pain and swelling for two days after injecting Racherla MD Medical Myositis leading to heroin. Vitals included temperature 98.8°F and heart rate 107 bmp. Physical examination showed Center Thoracic and erythematous skin with surrounding edema and abscess formation of the right biceps extending into (Dominik Abdominal the axilla, and tenderness to palpation of the right upper extremity (RUE). Labs were white blood cell Zampino) Compartment count 16.1 x103/uL with bands 26%, hemoglobin 12.4 g/dL, platelets 89 x103/uL and blood lactate 2.98 Syndrome mmol/L. Patient was admitted to telemetry for sepsis secondary to right arm cellulitis and abscess. Bedside incision and drainage was performed. Blood and wound cultures were drawn and patient was started on Vancomycin and Levofloxacin. On the third day of admission, patient became febrile, obtunded and had signs of systemic toxicity. Labs showed a worsening leukocytosis and lactic acidosis. CT RUE was consistent with complex fluid collection and with extensive gas tracking encircling the entire length of the right biceps brachii muscle. Surgical debridement was performed twice over the next few days. Blood cultures grew corynbacterium and coagulase negative staphylococcus; wound culture grew coagulase negative staphylococcus. Levofloxacin was switched to Aztreonam.
    [Show full text]
  • Acid-Base Disorders Made So Easy Even a Caveman Can Do It
    ACID-BASE DISORDERS MADE SO EASY EVEN A CAVEMAN CAN DO IT Lorraine R Franzi, MS/HSM, RD, LDN, CNSD Nutrition Support Specialist University of Pittsburgh Medical Center Pittsburgh, PA I. LEARNING OBJECTIVES The clinician after participating in the roundtable will be able to: 1) Indicate whether the pH level indicates acidosis or alkalosis. 2) State whether the cause of the pH imbalance is respiratory or metabolic. 3) Identify if there is any compensation for the acid-base imbalance. II. INTRODUCTION Acid-Base balance is an intricate concept which requires an intimate and detailed knowledge of the body’s metabolic pathways used to eliminate the H+ ion. Clinicians may find it daunting to understand when first introduced to the subject. This roundtable session will demonstrate how to analyze blood gas levels in a very elementary manner so as to diagnose any acid-base disorder in a matter of minutes. The body is in a constant state of flux delicately stabilizing the pH so as to maintain its normalcy. In order to prevent untoward effects of alkalosis or acidosis the body has three major buffering systems that it uses to adjust the pH. They are: 1) Plasma protein (Prot-) 2) Plasma hemoglobin (Hb-) 3) Bicarbonate (HCO3-) The Bicarbonate-Carbonic acid system is the most dominate buffering system and controls the majority of the hydrogen ion (H+) equilibrium. Maintaining homeostasis when these acid-base shifts occur is vital to survival. Metabolic and respiratory processes work in unison to keep the H+ normal and static. II. ACID-BASE ABNORMALITIES The four principal acid-base imbalances are illustrated in Table 1.
    [Show full text]
  • The Role of Hypercapnia in Acute Respiratory Failure Luis Morales-Quinteros1* , Marta Camprubí-Rimblas2,4, Josep Bringué2,9, Lieuwe D
    Morales-Quinteros et al. Intensive Care Medicine Experimental 2019, 7(Suppl 1):39 Intensive Care Medicine https://doi.org/10.1186/s40635-019-0239-0 Experimental REVIEW Open Access The role of hypercapnia in acute respiratory failure Luis Morales-Quinteros1* , Marta Camprubí-Rimblas2,4, Josep Bringué2,9, Lieuwe D. Bos5,6,7, Marcus J. Schultz5,7,8 and Antonio Artigas1,2,3,4,9 From The 3rd International Symposium on Acute Pulmonary Injury Translational Research, under the auspices of the: ‘IN- SPIRES®' Amsterdam, the Netherlands. 4-5 December 2018 * Correspondence: luchomq2077@ gmail.com Abstract 1Intensive Care Unit, Hospital Universitario Sagrado Corazón, The biological effects and physiological consequences of hypercapnia are increasingly Carrer de Viladomat, 288, 08029 understood. The literature on hypercapnia is confusing, and at times contradictory. Barcelona, Spain On the one hand, it may have protective effects through attenuation of pulmonary Full list of author information is available at the end of the article inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree. In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means.
    [Show full text]
  • Acid-Base Balance
    Intensive Care Nursery House Staff Manual Acid-Base Balance INTRODUCTION: The newborn infant is subject to numerous conditions that may disturb acid-base homeostasis. Management of ventilation, which controls the respiratory component of acid-base balance, is discussed in the section on Respiratory Support (P. 10). This section is a brief discussion of the metabolic aspects of acid-base balance. METABOLIC ACIDOSIS, defined as a base deficit >5 mEq/L on the first day and >4 mEq/L thereafter, occurs from: •Loss of buffer (mainly bicarbonate) or •Excess production of acid or decreased excretion of acid The anion gap is a useful calculation in assessing metabolic acidosis. + - - Anion gap = [Na ] – ([Cl ] + [HCO3 ]) Loss of buffer has no effect on anion gap. Accumulation of organic acid (e.g., lactic acid) causes an increase in anion gap. Normal anion gap: <15 mEq/L Increased anion gap: >15 mEq/L in LBW infants (<2,500 g) >18 mEq/L in ELBW infants (<1,000 g) Newborn infants normally have a base deficit of 1 to 3 mEq/L. Common causes of metabolic acidosis: •Bicarbonate loss, especially via immature kidney or from GI tract •Lactic acidosis from inadequate tissue perfusion and oxygenation (e.g., from asphyxia, shock, severe anemia, hypoxemia, PDA, NEC, excessive ventilator pressures with ↓ cardiac output) •Hypothermia •Organic acidemia due to an inborn error of metabolism (see P. 155) •Excessive Cl in IV fluids •Renal failure •Excessive acid load from high protein formula in preterm (late metabolic acidosis of prematurity ) - •Excretion of HCO3 as metabolic compensation for respiratory alkalosis Dilution acidosis is caused by excessive volume expansion (with saline, Ringer’s lactate or dextrose solutions).
    [Show full text]
  • Arterial Acid–Base Status During Digestion and Following Vascular Infusion of Nahco3 and Hcl in the South American Rattlesnake, Crotalus Durissus
    Comparative Biochemistry and Physiology, Part A 142 (2005) 495 – 502 www.elsevier.com/locate/cbpa Arterial acid–base status during digestion and following vascular infusion of NaHCO3 and HCl in the South American rattlesnake, Crotalus durissus Sine K. Arvedsen a,b, Johnnie B. Andersen a,b, Morten Zaar a,b, Denis Andrade b, Augusto S. Abe b, Tobias Wang a,b,* a Department of Zoophysiology, The University of Aarhus, Denmark b Departamento de Zoologia, Instituto de Biocieˆncias, UNESP, Rio Claro, SP, Brazil Received 17 May 2005; received in revised form 30 September 2005; accepted 2 October 2005 Available online 10 November 2005 Abstract Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the ‘‘alkaline tide’’. Numerous studies on À different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3 ]pl) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2. Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid–base disturbances À À 1 were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO3 ] increased from 18.4T1.5 to 23.7T1.0 mmol L during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0T0.7 to 19.1T1.4 mm Hg at 24 h.
    [Show full text]