Sci Vis 17 (4), 238—246 (2017)

Available at www.sciencevision.org

OPEN ACCESS Research Article

A preliminary assessment on the plankton diversity of ‘B’ dam in , northeast

Esther Lalhmingliani,* Freddy Lalrinpuia

Department of Zoology, , 796004, India

Planktonic sampling was carried out at Serlui ‘B’ dam, Mizoram, northeast India from July Received 18 November 2017 Accepted 30 November 2017 2016 to April 2017. The present study reported the occurrence of 6 groups of phytoplankton belonging to 27 genera and 16 orders and 4 groups of zooplanktons belonging to 12 genera *For correspondence : 7 orders. The phytoplankton group consisted of Cyanophyceae, Bacillariophyceae, Ulvophy- [email protected] ceae, Zygnematophyceae, Chlorophyceae and Xanthophyceae. Cyanophyceae were the pre- dominant component of phytoplankton in Serlui ‘B’ dam during all seasons in terms of nu- merical abundance and account for 64% of the total phytoplankton. The zooplankton groups consisted of Maxillopoda, Tubulinea, Eurotatoria and Branchiopoda. Of these, the class Maxil- lopoda was the predominant component of zooplankton in Serlui ‘B’ dam during all season in terms of numerical abundance and account for 73% of the total zooplankton encountered from the study site. This study provides preliminary report of planktons of Serlui ‘B’ dam. Contact us : [email protected]

Key words: Mizoram; phytoplankton; Serlui ‘B’ dam; zooplankton. https://doi.org/10.33493/scivis.17.04.08

Introduction

Materials and Methods

ISSN (print) 0975-6175/(online) 2229-6026. 2017 The Mizo Academy of Sciences. CC BY-SA 4.0 International. 238 Sci Vis 17 (4), 238—246 (2017)

′ ″ ′ ″

Results and Discussion

239 Sci Vis 17 (4), 238—246 (2017)

Table 1 | List of phytoplankton of Serlui ‘B’ dam. No Phytoplankton Summer Winter Spring Total July Aug Sept Oct Nov Dec Jan Feb Mar Apr 1 Cyanophyceae a) Nostocales Rivularia 143 237 98 100 130 5 20 17 22 29 801 Nostoc 33 3 1 2 0 35 0 0 0 0 74 Anabaena 6 0 2 3 2 6 1 0 0 0 20 b) Chroococcales Microcystis 3 0 0 0 0 1 0 0 0 0 4 c) Oscillatoriales Oscillatoria 5 0 0 0 0 1 0 2 0 0 8 d) Spirulinales Spirulina 3 0 0 0 0 0 0 0 0 0 3 2 Bacillariophyceae a) Naviculales Pinnularia 6 0 1 0 0 2 0 0 0 0 9 Navicula 4 6 1 0 0 0 17 6 6 5 45 Stauroneis 1 1 1 0 0 0 5 0 0 2 10 b) Pennales Diatoma 18 7 5 4 3 9 26 7 12 21 112 c) Tabellariales Meridion 0 0 0 0 0 1 0 0 0 0 1 3 Ulvophyceae a) Ulotrichales Ulothrix 4 8 0 2 3 2 5 3 3 6 36 4 Zygnematophyceae a) Desmidiales Cosmarium 6 1 1 0 2 1 0 0 0 0 11 Docidium 6 0 0 0 0 0 0 2 2 1 11 Gonatozygon 1 0 0 0 0 0 0 0 0 0 1 Desmidium 0 0 13 7 3 0 3 0 0 0 26 Closterium 0 0 0 0 0 0 0 2 0 1 3 b) Zygnematales Spirogyra 2 5 0 0 0 2 4 4 2 8 27 Mougeotia 5 2 1 7 8 5 3 2 3 7 43 Zygnema 0 2 0 1 2 0 0 0 0 0 5 Sirogonium 0 0 0 1 0 0 0 0 0 0 1 Cylindrocystis 0 0 0 1 0 0 0 0 0 0 1 5 Chlorophyceae a) Oedogoniales Oedogonium 10 2 3 3 13 2 11 7 5 1 57 b) Sphaeropleales Ankistrodesmus 2 0 0 0 0 0 0 0 0 0 2 c) Microsporales Microspora 5 0 0 3 18 3 0 0 0 0 29 d) Volvocales Pandorina 0 0 0 0 4 3 8 6 0 0 21 6 Xanthophyceae a) Mischococcales Ophiocytium 0 0 0 0 0 0 0 0 6 0 6 Total 263 274 127 134 188 78 103 56 61 80 1364

240 Sci Vis 17 (4), 238—246 (2017)

Table 2 | List of zooplankton of Serlui ‘B’ dam. No Zooplankton Summer Winter Spring Total July Aug Sept Oct Nov Dec Jan Feb Mar Apr 1 Maxillopoda (Copepoda) a) Cyclopoida Nauplius 0 0 0 0 3 0 0 2 5 5 15 Cyclops 8 2 6 5 11 4 0 5 4 6 51 b) Calanoida Calanoid 5 0 1 2 36 1 2 13 8 3 71 Diaptomus 0 0 0 0 5 0 0 0 1 0 6 2 Tubulinea a) Arcellinida Arcella 1 3 0 0 2 0 0 0 0 1 7 3 Eurotatoria (Rotifera) a) Ploima Keratella 1 0 0 0 0 0 0 0 0 1 2 4 Branchiopoda a) Cladocera Alona 3 0 2 7 2 0 0 12 2 0 28 Bosmina 0 0 0 0 0 0 0 2 4 0 6 Acroperus 0 0 0 1 0 0 0 0 0 0 1 b) Anostraca Eubranchipus 0 0 0 1 0 0 0 8 0 0 9 c) Diplostraca Chydorus 0 0 0 0 0 1 0 0 0 0 1 Sida 0 1 0 0 0 0 0 0 0 0 1 Total 18 6 9 16 59 6 2 42 24 16 198

Fig. 2 | Seasonal distribution of phytoplankton in Serlui Fig. 3 | Phytoplanktons of Serlui ‘B’ dam. ‘B’ dam.

241 Sci Vis 17 (4), 238—246 (2017)

Fig. 3 | Phytoplanktons of Serlui ‘B’ dam.

242 Sci Vis 17 (4), 238—246 (2017)

Fig. 4 | Phytoplanktons of Serlui ‘B’ dam.

243 Sci Vis 17 (4), 238—246 (2017)

Fig. 7 | Zooplanktons of Serlui ‘B’ dam.

244 Sci Vis 17 (4), 238—246 (2017)

Fig. 5 | Overall group distribution of zooplankton in Fig. 6 | Seasonal distribution of zooplankton in Serlui ‘B’ Serlui ‘B’ dam. dam.

Conclusion

245 Sci Vis 17 (4), 238—246 (2017)

9. Needham, J.G & Needham, P.R. (1972). A Guide to the Study of Freshwater Biology (5th Edition). Holden–Day, Inc., Sansone Street, San Francisco, C.A. pp. 105. 10. Tundisi, J.G., Tundisi, M.T. & Calijuri, M.C. (1993). Limnology and Management of Reservoir in Brazil. (M. Straskraba, J.G. Tundisi & A. Duncan eds); Compara- tive reservoir Limnology and water quality Manage- ment. pp. 25–55. Kluer Academic Publishers. The Neth- erlands. 11. Sladecek, V. (1983). Rotifers as indicators of water qual- ity. Hydrobiologia 100, 169–201. 12. Murugan, N., Murugavel, P. & Kodarkar, M.S. (1998). Cladocera: The biology, Classification, Identification and Acknowledgement Ecology. Indian Association of Aquatic Biologists (IAAB), Hyderabad. 13. Marcus, N. (2004). An overview of the impacts of eu- trophication and chemical pollutants on copepods of the coastal zone, Zoological Studies 43 (2), 211–217. 14. Naik, U.G., Bhosale, S.H., Rathod, J.L. & Bhat, U.G. (2005). Diversity of phytoplanktonic groups in the river Kali, west coast of India. Proceedings of the State Level UGC Sponsored Seminar on Biodiversity and its Con- References servation, Haveri. pp. 192–196. 15. Zargar, S. & Ghosh, T.K. (2006). Influence of cooling 1. Singh, S.P., Pathak, D. & Singh, R. (2002). Hydrobi- water discharges from Kaiga nuclear power plant on ological studies of two ponds of Satna (M.P) India. Ecol- selected indices applied to plankton population of ogy Environment and Conservation 8(3), 289–292. Kadra reservoir. Journal of Environmental Biology 27, 91 2. Kedar, G.T & Patil, G.P (2011). Study on seasonal fluc- –198. tuation in physico-chemical parameters of Rishi Lake, 16. Nandan, S.N. & Aher, N.H. (2006). Algal community Karanja (Lad), Dist. Washim, Maharashtra. Proceed- used for assessment of water quality of Harabareer dam ings of UGC Sponsored National Level Conference on and Mosam river of Maharashtra. Journal of Environ- Environmental Biology and Biodiversity, NCEBB, pp. mental Biology 26, 223– 227. 120–122. 17. Gopal, B. & Zutshi, D.P. (1998). Remarks on the pre- 3. Biligrami, K.S. (1988). Biological Monitoring of Rivers – sent status of limnology in India based on the Indian Problems and Prospects. Proceedings of the Indian Na- publication in Hydrobiologia and suggestion for future tional Science Academy B54 (2&3), 171–174. approach. Hydrobiologia 72, 211–222. 4. APHA (1985) American Water Works Association 18. Trivedy, R.K., Garud, J.M. & Goel, P.K. (1985). Studies (AWWA) and Water Pollution Control Federation on Chemistry and Phytoplankton of freshwater bodies (WPCF). In: Standard Methods for the examination of in Kolhapur with special reference to human activity. Water and Wastewater, 16th Edition (A.E. Greenberg, Journal of Pollution Research 4(1), 25–44. R.R. Trussell & L.S. Clesceri eds), Washington DC. 19. Pachuau, L. & Sharma, B. K. (2013). Zooplankton diver- 5. Fristch, F.E. (1935). The Structure and Reproduction of sity of a sub–tropical reservoir of Mizoram, Northeast Algae Vol 1. Cambridge. pp. 1–791. India. Opuscula Zoologica Budapest 44(1), 47–60. 6. Davis, C.C. (1955). The Marine and Freshwater Plank- 20. Lalhmingliani, E. & Ralte, J.L.B. (2016). Preliminary ton. Constable and Company Ltd., London, pp. 539. assessment of plankton diversity in Tam Dil, Mizoram, 7. Edmondson, W.T. (1959). Freshwater Biology (2nd Edi- Northeast India. In: Science and Technology for Shaping tion). John Wiley and sons, Inc., N.Y. pp. 1–412. the Future of Mizoram. Proceedings of the Mizoram 8. Prescott, G.W. (1982). Algae of the Western Great Lakes Science Congress. Allied Publishers Pvt. Ltd. India, pp. Area. Otto Koeltz Science Publishers West Germany. 39–42.

246