Micro Spider

Total Page:16

File Type:pdf, Size:1020Kb

Micro Spider HORNET SERIES (ORG14xx) FULLY INTEGRATED GPS MODULE Datasheet OriginGPS.comO r i g i n GPS . c o m Page 1 of 45 Hornet Series – ORG14XX Datasheet Revision 3.0 June 5, 2016 INDEX Datasheet .............................................................................................................................................................................. 1 1. SCOPE ...................................................................................................................................................................... 5 2. DISCLAIMER ............................................................................................................................................................ 5 3. SAFETY INFORMATION ........................................................................................................................................... 5 4. ESD SENSITIVITY ...................................................................................................................................................... 5 5. CONTACT INFORMATION ....................................................................................................................................... 5 6. RELATED DOCUMENTATION................................................................................................................................... 5 7. REVISION HISTORY .................................................................................................................................................. 6 8. GLOSSARY ............................................................................................................................................................... 6 9. ABOUT HORNET FAMILY ......................................................................................................................................... 7 10. ABOUT ORIGINGPS ................................................................................................................................................. 7 11. DESCRIPTION........................................................................................................................................................... 8 11.1. FEATURES ................................................................................................................................................................ 8 11.2. ARCHITECTURE........................................................................................................................................................ 9 11.3. APPLICATIONS ....................................................................................................................................................... 11 12. ELECTRICAL SPECIFICATIONS ................................................................................................................................ 12 12.1. ABSOLUTE MAXIMUM RATINGS ........................................................................................................................... 12 12.2. RECOMMENDED OPERATING CONDITIONS ......................................................................................................... 12 13. PERFORMANCE ..................................................................................................................................................... 14 13.1. ACQUISITION TIMES.............................................................................................................................................. 14 13.2. SENSITIVITY ........................................................................................................................................................... 14 13.3. RECEIVED SIGNAL STRENGTHS ............................................................................................................................. 15 13.4. POWER CONSUMPTION........................................................................................................................................ 15 13.5. ACCURACY ............................................................................................................................................................. 16 13.6. DYNAMIC CONSTRAINS ........................................................................................................................................ 16 14. POWER MANAGEMENT ........................................................................................................................................ 17 14.1. POWER STATES ..................................................................................................................................................... 17 14.2. POWER SAVING MODES ....................................................................................................................................... 17 15. EXTENDED FEATURES ........................................................................................................................................... 20 15.1. ALMANAC BASED POSITIONING (ABP™)1 ............................................................................................................ 20 15.2. ACTIVE JAMMER REMOVER .................................................................................................................................. 20 15.3. CLIENT GENERATED EXTENDED EPHEMERIS (CGEE™) ......................................................................................... 20 16. INTERFACE............................................................................................................................................................. 21 16.1. PAD ASSIGNMENTS ............................................................................................................................................... 21 16.2. CONNECTIVITY ...................................................................................................................................................... 21 16.2.1. POWER .................................................................................................................................................................. 21 16.2.2. HOST CONTROL INTERFACE .................................................................................................................................. 22 16.2.3. HOST DATA INTERFACE......................................................................................................................................... 23 16.2.4. SMART SENSORS DATA INTERFACE ...................................................................................................................... 26 16.3. TYPICAL APPLICATION CIRCUIT............................................................................................................................. 27 17. PCB LAYOUT .......................................................................................................................................................... 28 17.1. FOOTPRINT............................................................................................................................................................ 28 17.2. DESIGN RESTRICTIONS .......................................................................................................................................... 29 17.3. PLACEMENT .......................................................................................................................................................... 29 17.4. PCB STACK UP ....................................................................................................................................................... 30 18. OPERATION ........................................................................................................................................................... 31 18.1. STARTING THE MODULE ....................................................................................................................................... 31 18.2. VERYFING THE MODULE HAS STARTED ................................................................................................................ 32 18.3. SHUTTING DOWN THE MODULE .......................................................................................................................... 32 19. SOFTWARE FUNCTIONS ........................................................................................................................................ 32 19.1. NMEA .................................................................................................................................................................... 32 19.2. OSP™ ..................................................................................................................................................................... 34 20. HANDLING INFORMATION.................................................................................................................................... 38 20.1. PRODUCT PACKAGING AND DELIVERY ................................................................................................................. 38 Page 2 of 45 Hornet Series – ORG14XX Datasheet Revision 3.0 June 5, 2016 20.2. MOISTURE SENSITIVITY ........................................................................................................................................ 39 20.3. ASSEMBLY ............................................................................................................................................................
Recommended publications
  • Indoor Positioning Technologies
    Research Collection Habilitation Thesis Indoor positioning technologies Author(s): Mautz, Rainer Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007313554 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Indoor Positioning Technologies Habilitation Thesis submitted to ETH Zurich Application for Venia Legendi in Positioning and Engineering Geodesy Dr. Rainer Mautz Institute of Geodesy and Photogrammetry, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich February 2012 1 2 Acknowledgements First, I would like to acknowledge the promotion of this thesis by the referent Prof. Dr. Hilmar Ingensand, Institute of Geodesy and Photogrammetry, ETH Zurich. Particularly valuable to me have been open‐minded discussions with him and his networked thinking which inspired me to produce such a comprehensive work. I am indebted to the co‐referent Prof. Dr. Alain Geiger, as well as to my colleagues Sebastian Tilch and David Grimm who took their time to proof‐read this publication and to provide fruitful suggestions. Last but not least I would sincerely thank Mark Leyland for correcting the English text. His help not only improved the quality of this thesis, but enriched my English language in general. My wife Guang was so patient with my late nights, and I want to thank her for her faithful support in writing this work. 3 Contents Acknowledgements
    [Show full text]
  • Nüvi® 610/660/670 © 2006–2007 Garmin Ltd
    Owner’s Manual nüvi® 610/660/670 © 2006–2007 Garmin Ltd. or its subsidiaries Garmin International, Inc. Garmin (Europe) Ltd. Garmin Corporation 1200 East 151st Street, Unit 5, The Quadrangle, No. 68, Jangshu 2nd Olathe, Kansas 66062, USA Abbey Park Industrial Estate, Road, Shijr, Taipei Tel. 913/397.8200 or Romsey, SO51 9DL, UK County, Taiwan 800/800.1020 Tel. +44 (0) 870.8501241 (outside the UK) or Tel. 886/2.2642.9199 Fax 913/397.8282 0808 2380000 (UK only) Fax 886/2.2642.9099 Fax 44/0870.8501251 All rights reserved. Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express prior written consent of Garmin. Garmin hereby grants permission to download a single copy of this manual onto a hard drive or other electronic storage medium to be viewed and to print one copy of this manual or of any revision hereto, provided that such electronic or printed copy of this manual must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited. 0191 Information in this document is subject to change without notice. Garmin reserves the right to change or improve its products and to make changes in the content without obligation to notify any person or organization of such changes or improvements. Visit the Garmin Web site (www.garmin.com) for current updates and supplemental information concerning the use and operation of this and other Garmin products.
    [Show full text]
  • UNIVERSITY of CALGARY New Enhanced Sensitivity Detection
    UNIVERSITY OF CALGARY New Enhanced Sensitivity Detection Techniques for GPS L1 C/A and Modernized Signal Acquisition by Surendran K. Shanmugam A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA January, 2008 c Surendran K. Shanmugam 2008 ISBN: 978-0-494-38222-6 Abstract Throughout history, there has been a constant effort to master the art of navigation for its importance in trade and commerce. Even today, this pursuit of better navigation is still active for its continual impact in various fields. In the last decade, the navigation field witnessed drastic changes with the advent of global navigation satellite system (GNSS) in the form of the global positioning system (GPS). This decade is currently witnessing the expansion of its scope far beyond its traditional focus. On the other hand, these expansions has brought upon new challenges to the current GPS system that were never encountered before. Hence, the legacy GPS system is expected to overcome some stern impediments inherent to these new applications for its continual dominance. For instance, massive signal attenuation, radio frequency interference (RFI) and multipath readily represents, the axis of evil, in the view point of GPS operations as applied to these new applications. More specifically, massive signal attenuation and RFI conditions poses a grave difficulty in terms of traditional GPS operations. Subsequently, one has to resort to enhanced sensitivity GPS receivers for successful GPS operations under these adverse signal conditions. A number of detection algorithms have been utilized to permit successful GPS operations under degraded signal environments.
    [Show full text]
  • User Guide for Egnos Application Developers
    USER GUIDE FOR EGNOS APPLICATION DEVELOPERS ED 2.0, 15/12/2011 Preface After more than 10 years of development and qualification efforts bringing together actors from across the European continent, including project teams, industrial teams, and operators, for the first time Europe has at its disposal a GNSS infrastructure which delivers, on a permanent basis and according to international civil aviation standards, a satellite navigation service covering much of the continent. For all space sector participants, it is extremely gratifying to see a programme having origina- ted in research and development leaving the space agency sphere and entering into the world of services addressed at a vast community of users. After telecommunications, meteorology, oceanography, search and rescue and Earth observation, we are now seeing the emergence of a new area of operational space activity, which clearly illustrates the unique and essential contribution space can make to citizens. The success of a development activity is a crucial step on the way to the success of a pro- gramme. For it to become a total success, efforts must now focus on ensuring that users, in all application areas, can obtain easy access to services, making those services straightforward to use and, of course, on guaranteeing quality of service over time. This guide is designed to acquaint the user with the system and to provide the essential tech- nical information that users and application developers require if they are to make the best possible use of EGNOS. CNES, the European Space Agency and the European Commission are proud to have contri- buted to the development of the EGNOS system, and thank all participants in this effort, both public and industrial, for their contributions to and support for the programme.
    [Show full text]
  • Ts 125 172 V12.0.0 (2014-10)
    ETSI TS 125 172 V12.0.0 (2014-10) TECHNICAL SPECIFICATION Universal Mobile Telecommunications System (UMTS); Requirements for support of Assisted Galileo and Additional Navigation Satellite Systems (A-GANSS) Frequency Division Duplex (FDD) (3GPP TS 25.172 version 12.0.0 Release 12) 3GPP TS 25.172 version 12.0.0 Release 12 1 ETSI TS 125 172 V12.0.0 (2014-10) Reference RTS/TSGR-0425172vc00 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • LTE Location Based Services Technology Introduction White Paper
    LTE Location Based Services Technology Introduction White paper LTE Location Based Services (LBS) involve the process of determining where a device is located. Global Navigation Satellite System (GNSS) based solutions are highly accurate and the technology of choice for absolute position accuracy, providing the device has a good line-of-sight, but this is not always the case. A device can be in a highly dense urban environment with reduced satellite visibility or indoors with very low signal levels. These limitations of GNSS systems have meant that LTE cellular based alternatives have been developed within 3GPP Release 9 and onwards. They are described in this white paper. .02/ CI 01.00 3573.7380 Template: 1SP05 J. Schütz J. Schütz September 2013 Mike Thorpe, Zelmer Ewald Table of Contents Table of Contents 1 Introduction ............................................................................ 3 2 Global Navigation Satellite Systems .................................... 4 2.1 Assisted – Global Navigation Satellite Systems ....................................... 6 2.2 Why A-GNSS is not always enough ........................................................... 8 3 General aspects of LTE positioning ................................... 10 4 LTE Positioning Protocols .................................................. 12 4.1 LPP – Location Positioning Protocol .......................................................12 4.2 SUPL – Secure User Plane ........................................................................13 4.2.1 Areas Event Triggering
    [Show full text]
  • Hornetella ORG1408 GPS Receiver Module
    HORNETELLA (ORG1408) GPS RECEIVER MODULE DatasheetDATASHEET OriginGPS.comO r i g i n GPS . c o m HORNETELLADatasheet (ORG1408) OriginGPS.comO r i g i n GPS . c o m GPS RECEIVER MODULE Page 1 of 32 Hotnetella – ORG1408 Datasheet Revision 2.1 June 5, 2016 DATASHEET INDEX 1. SCOPE ...................................................................................................................................................................... 5 2. DISCLAIMER ............................................................................................................................................................ 5 3. SAFETY INFORMATION ........................................................................................................................................... 5 4. ESD SENSITIVITY ...................................................................................................................................................... 5 5. CONTACT INFORMATION ....................................................................................................................................... 5 6. RELATED DOCUMENTATION................................................................................................................................... 5 7. REVISION HISTORY .................................................................................................................................................. 5 8. GLOSSARY ..............................................................................................................................................................
    [Show full text]
  • Telit Jupiter SGEE-EPO Application Note
    Telit Jupiter SGEE-EPO Application Note 80433NT11332A r2 – 2015-03-06 Telit Jupiter SGEE-EPO Application Note 80433NT11332A r2 – 2015-03-06 APPLICABILITY TABLE PRODUCT SL871 SE868-A SL869-V2 SC872-A Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 2 of 33 Mod. 0806 2011-07 Rev.2 Telit Jupiter SGEE-EPO Application Note 80433NT11332A r2 – 2015-03-06 SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE Notice While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others. It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.
    [Show full text]
  • HERE, Mediatek Team up to Deliver Advanced Global Positioning
    Press release HERE , MediaTek team up to deliver advanced global positioning solutions 11 for IoT tracking devices MediaTek selects HERE Network Positioning to support fast and accurate location fix 20 April 2017 AMSTERDAM, Netherlands and HSINCHU, Taiwan – In a world with billions of connected sensors, advanced location positioning technology is unlocking new opportunities for businesses everywhere. HERE Technologies, a global provider of location services to the Internet of Things (IoT) industry, and MediaTek, one of the world’s largest fabless semiconductor companies, today announced a collaboration to enable the HERE Network Positioning solution on select MediaTek chipsets. “We are pleased to work with HERE to connect the next billion to the devices and technologies they want,” said YuChuan Yang, Deputy General Manager of Internet of Things Business Unit, MediaTek. “Network positioning is a crucial component of the connected experience and HERE’s database improves positioning accuracy significantly. We look forward to continuing to blend our strengths with those of HERE for the benefit of our customers around the world.” HERE Network Positioning employs proprietary technology to determine a device’s location rapidly and accurately based on mobile network and Wi-Fi signals. As part of this collaboration, MediaTek offers to device manufacturers a 4-in-1 combo solution based on the MediaTek MT2503 product family, a highly integrated ARM-based SiP design that contains Bluetooth, multiple GNSS receivers and an integrated 2G modem. In one of the first implementations, 3G Electronics, a China-based IoT customer of MediaTek, recently introduced a children’s smartwatch series called KidsWatch, which is powered by MediaTek chipsets featuring HERE’s Network Positioning solution in products sold outside China.
    [Show full text]
  • On Applicable Cellular Positioning for UMTS
    Julkaisu 735 Publication 735 Jakub Marek Borkowski On Applicable Cellular Positioning for UMTS Tampere 2008 Tampereen teknillinen yliopisto. Julkaisu 735 Tampere University of Technology. Publication 735 Jakub Marek Borkowski On Applicable Cellular Positioning for UMTS Thesis for the degree of Doctor of Technology to be presented with due permission for public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere University of Technology, on the 23rd of May 2008, at 12 noon. Tampereen teknillinen yliopisto - Tampere University of Technology Tampere 2008 ISBN 978-952-15-1971-0 (printed) ISBN 978-952-15-2016-7 (PDF) ISSN 1459-2045 On Applicable Cellular Positioning for UMTS Jakub Marek Borkowski April 29, 2008 Abstract Enabling the positioning of cellular handsets increases the safety level and at the same time opens exciting commercial opportunities for operators through providing location-based services. A major implementation obstacle, which prevents a wide deployment of cellular location techniques is the requirement of modifications of the existing network infrastructures and a need for the replacement of legacy terminals. Despite a significant amount of research on the mobile positioning problem, there are still unresolved aspects regarding applicable positioning solutions providing es- timation accuracy sufficient for the majority of location-based services. Typically, the applicability of positioning technology in current networks and provided estimation accuracy yield for trade off. The aim of the research performed in the frame of this thesis is to propose network- and mobile-based location techniques for UMTS networks that do not require any changes on the network side or in the user terminals and at the same time provide a reasonable estimation performance.
    [Show full text]
  • Mobile-Location-Technology.Pdf (PDF File, 2.2
    Assessment of Mobile Location Technology – Update Final Report July 2012 Ofcom Assessment of Mobile Location Technology – Update 304664 TNC TCS 02 A 6 July 2012 Final Report July 2012 Ofcom Riverside House, 2a Southwark Bridge Road, London, SE1 9HA Mott MacDonald, 10 Fleet Place, London EC4M 7RB, United Kingdom T +44 (0)20 7651 0300 F +44 (0)20 7651 0310, W www.mottmac.com Assessment of Mobile Location Technology – Update Issue and revision record Revision Date Originator Checker Approver Description A 6 July 2012 Phil Skeffington Richard Hewlett Richard Hewlett Final edits / changes Sarah Vant Simon Bowyer Alan Whitelaw This document is issued for the party which commissioned it We accept no responsibility for the consequences of this and for specific purposes connected with the above-captioned document being relied upon by any other party, or being used project only. It should not be relied upon by any other party or for any other purpose, or containing any error or omission used for any other purpose. which is due to an error or omission in data supplied to us by other parties This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it. Mott MacDonald, 10 Fleet Place, London EC4M 7RB, United Kingdom T +44 (0)20 7651 0300 F +44 (0)20 7651 0310, W www.mottmac.com Assessment of Mobile Location Technology – Update Content Chapter Title Page Executive Summary i 1. Introduction 1 1.1 Background and rationale _____________________________________________________________ 1 1.2 Requirements ______________________________________________________________________ 1 1.3 Scope ____________________________________________________________________________ 2 1.4 Structure __________________________________________________________________________ 3 2.
    [Show full text]
  • Location Data in Body Worn Systems March 2021 Table of Contents
    WHITE PAPER Location data in body worn systems March 2021 Table of Contents 1 Summary 3 2 Introduction 4 3 Location data usage 4 4 Obtaining the data 4 4.1 Techniques for positioning assistance 5 5 Positioning with Axis body worn cameras 5 5.1 Positioning assistance 5 5.2 Important considerations 5 2 1 Summary Body worn cameras can store various types of metadata in the recordings. Location data is one example. By tying the video to the geographical coordinates where it was filmed, the evidentiary value of the recording can be significantly enhanced. Body worn cameras from Axis obtain location data through communication with several navigational satellites. When starting up the body worn system, it typically takes up to 15 minutes in clear conditions (or longer, depending on weather and environment) to establish satellite communication and pick up enough data. The waiting time is kept down by use of positioning assistance which pre-downloads satellite data from servers while the cameras are docked. Unlike many other types of GPS devices, such as smartphones and navigators, Axis body worn cameras cannot use nearby cell towers or Wi-Fi networks to determine their location. Satellite coverage is needed, which means that the cameras can store coordinates only when used outdoors. 3 2 Introduction With a body worn camera, incidents can be recorded wherever they occur. Mounted on the body of an official, the camera is brought to where it is needed and can capture events that would never have been caught by fixed cameras mounted in predetermined locations. A recording produced by a body worn camera comprises a piece of trusted and secure evidence, objectively showing what happened at the scene of an incident.
    [Show full text]