Rule Applicability on RDF Triplestore Schemas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Including Co-Referent Uris in a SPARQL Query
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Heriot Watt Pure Including Co-referent URIs in a SPARQL Query Christian Y A Brenninkmeijer1, Carole Goble1, Alasdair J G Gray1, Paul Groth2, Antonis Loizou2, and Steve Pettifer1 1 School of Computer Science, University of Manchester, UK. 2 Department of Computer Science, VU University of Amsterdam, The Netherlands. Abstract. Linked data relies on instance level links between potentially differing representations of concepts in multiple datasets. However, in large complex domains, such as pharmacology, the inter-relationship of data instances needs to consider the context (e.g. task, role) of the user and the assumptions they want to apply to the data. Such context is not taken into account in most linked data integration procedures. In this paper we argue that dataset links should be stored in a stand-off fashion, thus enabling different assumptions to be applied to the data links during query execution. We present the infrastructure developed for the Open PHACTS Discovery Platform to enable this and show through evaluation that the incurred performance cost is below the threshold of user perception. 1 Introduction A key mechanism of linked data is the use of equality links between resources across different datasets. However, the semantics of such links are often not triv- ial: as Halpin et al. have shown sameAs, is not always sameAs [12]; and equality is often context- and even task-specific, especially in complex domains. For ex- ample, consider the drug \Gleevec". A search over different chemical databases return records about two different chemical compounds { \Imatinib" and \Ima- tinib Mesylate" { which differ in chemical weight and other characteristics. -
Versioning Linked Datasets
Master’s Thesis Versioning Linked Datasets Towards Preserving History on the Semantic Web Author Paul Meinhardt 744393 July 13, 2015 Supervisors Magnus Knuth and Dr. Harald Sack Semantic Technologies Research Group Internet Technologies and Systems Chair Abstract Linked data provides methods for publishing and connecting structured data on the web using standard protocols and formats, namely HTTP, URIs, and RDF. Much like on the web of documents, linked data resources continuously evolve over time, but for the most part only their most recent state is accessible. In or- der to investigate the evolution of linked datasets and understand the impact of changes on the web of data it is necessary to make prior versions of such re- sources available. The lack of a common “self-service” versioning platform in the linked data community makes it more difficult for dataset maintainers to preserve past states of their data themselves. By implementing such a platform which also provides a consistent interface to historic information, dataset main- tainers can more easily start versioning their datasets while application develop- ers and researchers instantly have the possibility of working with the additional temporal data without laboriously collecting it on their own. This thesis, researches the possibility of creating a linked data versioning plat- form. It describes a basic model view for linked datasets, their evolution and presents a service approach to preserving the history of arbitrary linked datasets over time. Zusammenfassung Linked Data beschreibt Methoden für die Veröffentlichung und Verknüpfung strukturierter Daten im Web mithilfe standardisierter Protokolle und Formate, nämlich HTTP, URIs und RDF. Ähnlich wie andere Dokumente im World Wide Web, verändern sich auch Linked-Data-Resourcen stetig mit der Zeit. -
Semantics Developer's Guide
MarkLogic Server Semantic Graph Developer’s Guide 2 MarkLogic 10 May, 2019 Last Revised: 10.0-8, October, 2021 Copyright © 2021 MarkLogic Corporation. All rights reserved. MarkLogic Server MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 2 MarkLogic Server Table of Contents Table of Contents Semantic Graph Developer’s Guide 1.0 Introduction to Semantic Graphs in MarkLogic ..........................................11 1.1 Terminology ..........................................................................................................12 1.2 Linked Open Data .................................................................................................13 1.3 RDF Implementation in MarkLogic .....................................................................14 1.3.1 Using RDF in MarkLogic .........................................................................15 1.3.1.1 Storing RDF Triples in MarkLogic ...........................................17 1.3.1.2 Querying Triples .......................................................................18 1.3.2 RDF Data Model .......................................................................................20 1.3.3 Blank Node Identifiers ..............................................................................21 1.3.4 RDF Datatypes ..........................................................................................21 1.3.5 IRIs and Prefixes .......................................................................................22 1.3.5.1 IRIs ............................................................................................22 -
Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing. -
Rdfs:Frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology
rdfs:frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology Stefan Gradmann SUMMARY. The paper sets out from a few basic observations (biblio- graphic information is still mostly part of the ‘hidden Web,’ library au- tomation methods still have a low WWW-transparency, and take-up of FRBR has been rather slow) and continues taking a closer look at Se- mantic Web technology components. This results in a proposal for im- plementing FRBR as RDF-Schema and of RDF-based library catalogues built on such an approach. The contribution concludes with a discussion of selected strategic benefits resulting from such an approach. [Article copies available for a fee from The Haworth Document Delivery Service: 1-800-HAWORTH. E-mail address: <[email protected]> Web- site: <http://www.HaworthPress.com> © 2005 by The Haworth Press, Inc. All rights reserved.] Stefan Gradmann, PhD, is Head, Hamburg University “Virtual Campus Library” Unit, which is part of the computing center and has a mission of providing information management services to the university as a whole, including e-publication services and open access to electronic scientific information resources. Address correspondence to: Stefan Gradmann, Virtuelle Campusbibliothek Regionales Rechenzentrum der Universität Hamburg, Schlüterstrasse 70, D-20146 Hamburg, Germany (E-mail: [email protected]). [Haworth co-indexing entry note]: “rdfs:frbr–Towards an Implementation Model for Library Cata- logs Using Semantic Web Technology.” Gradmann, Stefan. Co-published simultaneously in Cataloging & Classification Quarterly (The Haworth Information Press, an imprint of The Haworth Press, Inc.) Vol. 39, No. 3/4, 2005, pp. 63-75; and: Functional Requirements for Bibliographic Records (FRBR): Hype or Cure-All? (ed: Patrick Le Boeuf) The Haworth Information Press, an imprint of The Haworth Press, Inc., 2005, pp. -
Property Graph Vs RDF Triple Store: a Comparison on Glycan Substructure Search
RESEARCH ARTICLE Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search Davide Alocci1,2, Julien Mariethoz1, Oliver Horlacher1,2, Jerven T. Bolleman3, Matthew P. Campbell4, Frederique Lisacek1,2* 1 Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 2 Computer Science Department, University of Geneva, Geneva, 1227, Switzerland, 3 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 4 Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia * [email protected] Abstract Resource description framework (RDF) and Property Graph databases are emerging tech- nologies that are used for storing graph-structured data. We compare these technologies OPEN ACCESS through a molecular biology use case: glycan substructure search. Glycans are branched Citation: Alocci D, Mariethoz J, Horlacher O, tree-like molecules composed of building blocks linked together by chemical bonds. The Bolleman JT, Campbell MP, Lisacek F (2015) molecular structure of a glycan can be encoded into a direct acyclic graph where each node Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search. PLoS ONE 10(12): represents a building block and each edge serves as a chemical linkage between two build- e0144578. doi:10.1371/journal.pone.0144578 ing blocks. In this context, Graph databases are possible software solutions for storing gly- Editor: Manuela Helmer-Citterich, University of can structures and Graph query languages, such as SPARQL and Cypher, can be used to Rome Tor Vergata, ITALY perform a substructure search. Glycan substructure searching is an important feature for Received: July 16, 2015 querying structure and experimental glycan databases and retrieving biologically meaning- ful data. -
Powl – a Web Based Platform for Collaborative Semantic Web Development
Powl – A Web Based Platform for Collaborative Semantic Web Development Sören Auer University of Leipzig [email protected] Abstract: We outline Powl, an opensource, web-based semantic web develop- ment platform for PHP. It may be used as a foundational framework for seman- tic web applications. Powl allows parsing, storing, querying, manipulating, ver- sioning, serving and serializing RDF-S and OWL knowledge bases in a collaborative web enabled environment. Detailed project information, a demon- stration and complete source code of Powl is available at http://powl.sf.net. 1 Introduction In this demonstration paper we give an overview on Powl, a web based ontology management tool. Its capabilities include parsing, storing, querying, manipulating, versioning, serving and serializing RDF and OWL knowledge bases for different target audiences. For the semantic web researcher it may provide a test bed for rapid implementations of new approaches. For the web application developer it offers an object-oriented application programming interface for semantic web software devel- opment. For knowledge engineers there is a sophisticated web interface for collabora- tive development of ontologies in a web enabled environment. Powl is implemented in the web scripting language PHP1. An implementation in a script language has serveral advantages. In addition to being platform independent, Powl is thus simple to modify and extend by researchers and semantic web develop- ers. The source code is compact and easy to grasp. This results in a short development time - Powl was developed in approximately 9 man-months so far. An advantage of PHP in particular is that it is by far the most widely used pro- gramming language for web applications. -
A Digital Library for Plant Information with Performance Comparison Between a Relational Database and a Nosql Database (RDF Triple Store)
Grand Valley State University ScholarWorks@GVSU Technical Library School of Computing and Information Systems 2015 A Digital Library for Plant Information with Performance Comparison between a Relational Database and a NoSQL Database (RDF Triple Store) Md Arman Ullah Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib ScholarWorks Citation Ullah, Md Arman, "A Digital Library for Plant Information with Performance Comparison between a Relational Database and a NoSQL Database (RDF Triple Store)" (2015). Technical Library. 205. https://scholarworks.gvsu.edu/cistechlib/205 This Project is brought to you for free and open access by the School of Computing and Information Systems at ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. A Digital Library for Plant Information with Performance Comparison between a Relational Database and a NoSQL Database (RDF Triple Store) By Md Arman Ullah A project submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Information System at Grand Valley State University April, 2015 Dr. Tao Yonglei Date Abstract This project is to develop a digital library that allows the user to browse, search, and retrieve information about plants. It uses plant information acquired from the United States Department of Agriculture (USDA), which contains native and naturalized plants in North American territories. In addition, the user is allowed to contribute information and the administrator is able to add or edit plant information. This project is built by using a relational database and also a NoSQL database (RDF Triple Store), allowing to compare performance between the two databases. -
Some Experiments on the Usage of a Deductive Database for RDFS Querying and Reasoning
Some experiments on the usage of a deductive database for RDFS querying and reasoning Giovambattista Ianni1;2, Alessandra Martello1, Claudio Panetta1, and Giorgio Terracina1 1 Dipartimento di Matematica, Universit`adella Calabria, I-87036 Rende (CS), Italy, 2 Institut fÄurInformationssysteme 184/3, Technische UniversitÄatWien Favoritenstra¼e 9-11, A-1040 Vienna, Austria fianni,a.martello,panetta,[email protected] Abstract. Ontologies are pervading many areas of knowledge represen- tation and management. To date, most research e®orts have been spent on the development of su±ciently expressive languages for the represen- tation and querying of ontologies; however, querying e±ciency has re- ceived attention only recently, especially for ontologies referring to large amounts of data. In fact, it is still uncertain how reasoning tasks will scale when applied on massive amounts of data. This work is a ¯rst step toward this setting: based on a previous result showing that the SPARQL query language can be mapped to a Datalog, we show how e±cient querying of big ontologies can be accomplished with a database oriented exten- sion of the well known system DLV, recently developed. We report our initial results and we discuss about bene¯ts of possible alternative data structures for representing RDF graphs in our architecture. 1 Introduction The Semantic Web [4, 11] is an extension of the current Web by standards and technologies that help machines to understand the information on the Web so that they can support richer discovery, data integration, navigation, and au- tomation of tasks. Roughly, the main ideas behind the Semantic Web aim to (i) add a machine-readable meaning to Web pages, (ii) use ontologies for a precise de¯nition of shared terms in Web resources, (iii) make use of KR technology for automated reasoning on Web resources, and (iv) apply cooperative agent technology for processing the information of the Web. -
Healing the Fragmentation to Realise the Full Potential of The
HealingHealing thethe fragmentationfragmentation toto realiserealise thethe fullfull potentialpotential of thethe IoTIoT Dr.Dr. DaveDave Raggett,Raggett, W3C/ERCIMW3C/ERCIM email:email: [email protected]@w3.org 2525 JuneJune 20202020 ThisThis talktalk isis supportedsupported byby thethe CreateCreate--IoTIoT CoordinationCoordination andand SupportSupport ActionAction withwith fundingfunding fromfrom thethe EuropeanEuropean CommissionCommission Investments in IoT are at risk! Eric Siow, Director, Open Web Platform Standards and Ecosystem Strategies at Intel: • IoT is a little over 10 years old • Hype has been much greater than present reality • IoT is “biting off more that it can chew” • Trying to address too many markets • Involves too many and mostly uncoordinated SDOs and SIGs 2/14 Key IoT Challenges Facing Smart Cities • Lack of coalescence around a set of complementary standards • Hinders scalability, interoperability and evolution • Need to simplify: prioritise and define requirements • Regional regulatory differences adding to the confusion • Diverse requirements impede scalability of the market • Need regulatory agencies to participate and help with standardisation requirements • Lack of interoperability wastes up to 40% of IoT value1 • Cities and technology partners may waste up to $321 billion by 20252 1. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world 2. https://machinaresearch.com/news/smart-cities-could-waste-usd341-billion-by-2025-on-non-standardized-iot-deployments/ -
Combining Unstructured, Fully Structured and Semi-Structured Information in Semantic Wikis
Combining Unstructured, Fully Structured and Semi-Structured Information in Semantic Wikis Rolf Sint1, Sebastian Schaffert1, Stephanie Stroka1 and Roland Ferstl2 1 [email protected] Salzburg Research Jakob Haringer Str. 5/3 5020 Salzburg Austria 2 [email protected] Siemens AG (Siemens IT Solutions and Services) Werner von Siemens-Platz 1 5020 Salzburg Austria Abstract. The growing impact of Semantic Wikis deduces the impor- tance of finding a strategy to store textual articles, semantic metadata and management data. Due to their different characteristics, each data type requires a specialized storing system, as inappropriate storing re- duces performance, robustness, flexibility and scalability. Hence, it is important to identify a sophisticated strategy for storing and synchro- nizing different types of data structures in a way they provide the best mix of the previously mentioned properties. In this paper we compare fully structured, semi-structured and unstruc- tured data and present their typical appliance. Moreover, we discuss how all data structures can be combined and stored for one application and consider three synchronization design alternatives to keep the dis- tributed data storages consistent. Furthermore, we present the semantic wiki KiWi, which uses an RDF triplestore in combination with a re- lational database as basis for the persistence of data, and discuss its concrete implementation and design decisions. 1 Introduction Although the promise of effective knowledge management has had the indus- try abuzz for well over a decade, the reality of available systems fails to meet the expectations. The EU-funded project KiWi - Knowledge in a Wiki project sets out to combine the wiki method of collaborative content creation with the technologies of the Semantic Web to bring knowledge management to the next level. -
SWAD-Europe Deliverable 5.1: Schema Technology Survey
Sat Jun 05 2004 23:47:40 Europe/London SWAD-Europe Deliverable 5.1: Schema Technology Survey Project name: Semantic Web Advanced Development for Europe (SWAD-Europe) Project Number: IST-2001-34732 Workpackage name: 5. Integration with XML Technology Workpackage description: ☞http://www.w3.org/2001/sw/Europe/plan/workpackages/live/esw-wp-5.html Deliverable title: SWAD-Europe: Schema Technology Survey URI: ☞http://www.w3.org/2001/sw/Europe/reports/xml_schema_tools_techniques_report Authors: Stephen Buswell, Dan Brickley, Brian Matthews Abstract: This report surveys the state of schema annotation and mapping technology. It takes a practical approach by targeting the work to the needs of developers, providing background to support our attempts to answer frequently asked questions on this subject. The report first reviews previous work on 'bridging languages', giving an overview of the major approaches and uses that to motivate further technical work to progress the state of the art in this area. Status: Snapshot release for discussion and editorial work. Further revisions are planned during WP4. Comments on this document are welcome and should be sent to the ☞[email protected] list. An archive of this list is available at ☞http://lists.w3.org/Archives/Public/public-esw/ This report is part of ☞SWAD-Europe ☞Work package 5: Integration with XML Technology and addresses the topic of Schema annotation, and the relationship(s) between RDF and XML technologies. The variety of so-called 'schema languages' for the Web has caused some confusion. This document attempts to place them in context, and explore the state of the art in tools for mapping data between the different approaches.