Cellular Dust”

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Dust” Acta Scientific Gastrointestinal Disorders (ISSN: 2582-1091) Volume 4 Issue 5 May 2021 Short Communication How and why I Coined the Term “Cellular Dust” Mister Seun Ayoade* Received: March 22, 2021 Independent Researcher, Alumnus, College of Medicine University of Ibadan, Oyo Published: April 02, 2021 State, Nigeria © All rights are reserved by Mister Seun *Corresponding Author: Mister Seun Ayoade, Independent Researcher, Alumnus, Ayoade. College of Medicine University of Ibadan, Oyo State, Nigeria. I was partly inspired to coin the term “cellular dust” from the Charles Babbage Anglican Computer theological concept of the original immortality, fall and subsequent Raymond Vahan Charismatic/ MRI machine mortality of man. The Good Book says in Genesis 2:7 “and The Lord Damadian Pentecostal God formed man of the DUST of the ground and breathed into his Gregor Johann Roman Catholic Genetics, Genes nostrils the breath of life; and the man became a living soul”. The Mendel scriptural phrase “for DUST thou art, and unto DUST shalt thou re- Christian Doppler Roman Catholic Doppler effect turn” in the 19th verse of the next chapter evoked in me the con- Sir Isaac Newton Arian Laws of motion cept of the de-coordination of the microzymas at the point of death Robert Hooke Anglican Hooke’s Law [1]. Dust also serves as a medium for creating non humans in scrip- Robert Boyle Anglican Boyle’s Law ture viz “….Aaron stretched out his hand with his rod and smote Henri Becquerel Roman Catholic Radioactivity the dust of the earth, and it became lice….all the dust in the land Thermionic became lice” (Exodus 8:17). Also, in the English language “dust” Sir John Ambrose Congregational valve, right hand Fleming church evokes the most basic, irreducible minimum, and primordial com- rule ponent of a thing. This is how and why I coined the term “cellular Determined William Thomson Free Church of dust”. value of absolute (Lord Kelvin) Scotland zero I wish I could say that some nefarious characters, purporting Wilhelm Conrad Lutheran X rays to be scientists, have not foolishly attempted to hijack the term I Röntgen coined [2]. Law of partial John Dalton Quaker pressure The cellular dust hypothesis (CDH)/Microzyman Theory of Scottish Episcopal Antiseptic Origin (MTO), unlike evolution, does not necessarily deny the exis- Joseph Lister Church surgery tence of a Supreme Being [3-6]. Human blood Karl Landsteiner Roman Catholic types Contrary to what many prattle today, one can be a sound scien- Sandemanian Electromagnetic tist and a person of faith as well. Michael Faraday Church induction Discovered Christian scientists include Louis Jacques Roman Catholic hydrogen Thénard Invention/ peroxide Christian Scientist Denomination Discovery Invented the Church of the J. J. Thomson Anglican mass s Wright Brothers United Brethren in Airplane pectrometer Christ Wernher von Braun Lutheran Space Rocket Table 1 Citation: Mister Seun Ayoade. “How and why I Coined the Term “Cellular Dust”". Acta Scientific Gastrointestinal Disorders 4.5 (2021): 03-04. How and why I Coined the Term “Cellular Dust” 04 Hindu scientists include Bibliography Chandrasekhara Hindu Won Nobel prize in physics in 1. Ayoade MS. “A New Natural Law Proposed - S.A.L.L.T”. Anesthe- Venkata Raman 1930 for Raman effect siologist 1.1 (2019): 1002. [scattering of light] Srinivasa Hindu Landau-Ramanujan constant, 2. Mister Seun Ayoade. “Please Patiently Pick Per Person-Ped- Ramanujan Mock theta functions, adogue, Pretender, Plagiartist, Pilferer”. Biomedical Journal Ramanujan conjecture, of Scientific and Technical Research, Biomedical Research Net- work+, LLC 16.5 (2019): 12380-12382. Ramanujan prime, 3. Seun A. “A New Origin of Life and the Universe Proposed-Mi- Ramanujan-Soldner constant, crozymian!”. Peer Reviewed Journal of Forensic and Genetic Sci- Ramanujan theta function, ences 1.5 (2018). Ramanujan’s sum, 4. Seun Ayoade. “Microzyman Theory of Origin (MTO)/Cellular Rogers-Ramanujan identities, Dust Hypothesis (CDH)-Matters Arising”. Peer Reviewed Jour- Ramanujan’s master theorem, nal Of Forensic and Genetic Sciences 2.4 (2018): 142-143. Ramanujan-Sato series 5. Ayoade S. “Koch’s Postulates and Germ Terrain Dualism; Cel- Table 2 lular Dust as Yet Another Term for Microzymas”. Journal of Mo- lecular and Genetic Medicine 11 (2017): 297. Shintoist and Buddhist scientists include 6. Seun Ayoade. “Isaac Newton’s “Active Principles, Particles” and the Cellular Dust Hypothesis; Rewriting Cytology and Histol- Nobel Prize Shintoist/Buddhist ogy in the Light of S.A.M.S” (2020). Winner [Yes or Invention/Discovery Scientist No] Wasaburo Oishi No Jet Stream Hideki Yukawa Yes Mesons Susumu Tonegawa Yes Genetic principle for Assets from publication with us generation of antibody • Prompt Acknowledgement after receiving the article diversity • Thorough Double blinded peer review Hideki Shirakawa Yes Conductive polymers • Rapid Publication Osamu Shimomura Yes • protein Green fluorescent • High visibility of your Published work Akira Suzuki Yes Palladium-catalyzed Issue of Publication Certificate cross couplings in Website: organic synthesis Submit Article: www.actascientific.com/ Email us: Hiroshi Amano Yes www.actascientific.com/submission.php -emitting diodes Contact us: +91 9182824667 Efficient blue light [email protected] Yoichiro Nambu, Yes Mechanism of Makoto Kobayashi spontaneous broken and Toshihide symmetry in subatomic Maskawa physics Akira Yoshino Yes Lithium-ion batteries Tasuku Honjo Yes Cancer therapy by inhibition of negative immune regulation Table 3 Citation: Mister Seun Ayoade. “How and why I Coined the Term “Cellular Dust”". Acta Scientific Gastrointestinal Disorders 4.5 (2021): 03-04..
Recommended publications
  • Section 2 Contribution of Science and Technology to Global Issues
    Chapter 1 Progress in Science and Technology and Socioeconomic Changes Section 2 Contribution of Science and Technology to Global Issues From the end of the 19th century to the 20th century, science and technology has rapidly advanced. Chemical industry, electrical industry and heavy industry and so on emerged and we have advanced forward to ages of mass production and mass consumption, when goods could be transported in bulk to distant locations for a short period, as physical distribution, including railways, cars and airplanes, developed. This accompanied the mass disposal of goods and mass consumption of energy, highlighting the Chapter 1 risk of depletion of limited resources, global warming, the destruction of ecosystems and the crisis in the global environment. Science and technology that changed our lives were explained in Section 1 of this chapter, but as well as changing our lives in terms of key daily lifestyle elements, science and technology are also crucial to solve global issues such as climate change, natural resource depletion and energy. There are significant expectations as to how science and technology can contribute to solve global issues. This section addresses the social contribution of science and technology in Japan domestically and internationally. 1 Contribution to Global Warming Countermeasures ○ Global warming state Climate changes caused by global warming are Average global surface temperature (land + sea) anomaly one of the most urgent problems which the world faces. The Intergovernmental Panel on Climate Change (IPCC)1, awarded the Nobel Peace Prize Year in 2007, published the Synthesis Report of Fifth Changes in average global sea level Assessment Report in 2014.
    [Show full text]
  • Como Citar Este Artigo Número Completo Mais Informações Do
    Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação ISSN: 1518-2924 Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina STANFORD, Jailiny Fernanda Silva; SILVA, Fábio Mascarenhas e Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, vol. 26, e73786, 2021, Janeiro-Abril Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina DOI: https://doi.org/10.5007/1518-2924.2021.e73786 Disponível em: https://www.redalyc.org/articulo.oa?id=14768130002 Como citar este artigo Número completo Sistema de Informação Científica Redalyc Mais informações do artigo Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Site da revista em redalyc.org Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa acesso aberto Artigo Original Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Nobel Prize as an influencing factor in researchers' citations: an analysis of Chemistry and Physics laureates (2005 to 2015) Jailiny Fernanda Silva STANFORD Mestre em Ciência da Informação (PPGCI/UFPE) Bibliotecária-chefe Seminário Teológico Batista do Norte do Brasil (STBNB), Recife, Brasil [email protected] https://orcid.org/0000-0003-2112-6561 Fábio Mascarenhas e SILVA Doutor em Ciência da Informação (USP), Professor Associado Universidade Federal de Pernambuco, Departamento de Ciência da Informação, Recife, Brasil [email protected] https://orcid.org/0000-0001-5566-5120 A lista completa com informações dos autores está no final do artigo RESUMO Objetivo: Analisa a influência nos índices de citação por parte dos pesquisadores que foram contemplados pelo prêmio Nobel nas áreas da Física e Química no período de 2005 a 2015.
    [Show full text]
  • Passport to an International Career -True Globalism
    Passport to an international career̶True globalism ● Maki KAWAI Professor at Graduate School of Frontier Sciences, The University of Tokyo; RIKEN The Nobel Prize in Chemistry 2010 was awarded jointly to United States, it is rare for one to earn one’s Ph.D. in the United Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi for their con- States like Ei-ichi Negishi. Satoru Masamune left Japan to study tributions to the development of organic synthesis that is also at the University of California, Berkley in 1957 as a Fulbright important industrially. Since palladium-catalyzed cross coupling scholar, and later became professor at Massachusetts Institute of is an area in which Japan is strong and for which it had been Technology (MIT) nurturing many organic scientists. Hiroaki widely expected that someday someone would receive the award, Suga of the Department of Chemistry, School of Science, The I honor the three winners and at the same time appreciate having University of Tokyo, and Yukishige Ito of RIKEN, who is pres- the opportunity to learn of the achievements made by many ently working on glycotrilogy at Exploratory Research for researchers engaged in this area of study. It is well known that Advanced Technology (ERATO), have both studied at MIT’s many of the Nobel Prize winners pursue their research work in Masamune Laboratory. Kazuo Nakamoto (Professor Emeritus at the United States, and Japanese winners are no exception. Marquette University in the United States, deceased June 2011) Among the fifteen winners up to 2010, the five winners of Ei-ichi of infrared or Raman spectroscopies left for the United States in Negishi (Nobel Prize in Chemistry 2010), Osamu Shimomura 1958, and is famous for his editions of“ Infrared and Raman Spec- (Nobel Prize in Chemistry 2008), Yoichiro Nambu (Nobel Prize tra of Inorganic and Coordination Compounds,” with which I am in Physics 2008), Susumu Tonegawa (Nobel Prize in Physiology sure many of you are familiar.
    [Show full text]
  • HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
    For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program
    [Show full text]
  • Development of Microporous PE Films to Improve Lithium Ion Batteries
    Polymer Journal (2010) 42, 425–437 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/10 $32.00 www.nature.com/pj INVITED REVIEW Development of microporous PE films to improve lithium ion batteries Haruyuki Yoneda1, Yoshifumi Nishimura2, Yoshinao Doi3, Masahiko Fukuda4 and Mitsuo Kohno5,6 A microporous polyethylene (PE) film has been developed for use as the separator of a lithium (Li) ion secondary battery (LIB). LIBs are necessary in modern society as a power supply for portable equipment such as cellular phones and notebook computers. The greatest problem with using LIBs has been ensuring safety when using a Li compound and a flammable organic electrolytic solution. The most important point for ensuring the safety of LIBs has been using a separator to prevent contact between the cathode and the anode. The Asahi Kasei Corporation has developed the safety function of the separator and improved the performance of the LIB. The manufacture of battery separators made of microporous PE films was studied for PE- solvent systems (two-component phase-separation systems), as well as for new systems in which an inorganic powder was added to the PE and the solvent in this two-component system to produce three-component phase-separation systems. This method is based on thermally induced phase separation. Polymer Journal (2010) 42, 425–437; doi:10.1038/pj.2010.25; published online 21 April 2010 Keywords: LIB; microporous membrane; PE microporous film; phase separation; separator; thermally induced phase separation INTRODUCTION quently, Yoshino et al. found that, unlike polyacetylene, carbon that Details of LIB development and separator development has a special structure was an excellent anode in 1985.
    [Show full text]
  • The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
    Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • LB13 Osamu Shimomura 下村脩
    Osamu Shimomura Life Science Building BF LB13 Osamu Shimomura 下村脩 ■Purpose of Exhibition Dr. Osamu Shimomura was awarded the Nobel Prize in Chemistry in 2008 “for the discovery and development of the green fluorescent protein, GFP” in the jellyfish Aequorea victoria. GFP can be incorporated into the genome of any organism as a marker that emits light in the body of the organism. For this reason, it is now possible to observe various phenomena in the bodies of living organisms over time while the cells and organisms remain alive. GFP has become an essential tool in current life science research. ■Additional Knowledge Dr. Shimomura dedicated his life’s work to unraveling the discovered that GFP emits light in living nematodes. chemical mechanism behind luminescent creatures. Moreover, Dr. Roger Y. Tsien mutated the GFP gene to During his time as a researcher at Nagoya University, he create a variety of fluorescent colors besides the succeeded in crystallizing luciferin, a luminous original green. These two doctors were awarded the substance, from the sea firefly, Vargula hilgendorfii. He Nobel Prize together with Dr. Shimomura. then began researching the blue luminous Aequorea Bioimaging is a technique for observing phenomena in the jellyfish at Princeton University in the United States. He bodies of living organisms. The world of bioimaging has eventually discovered the luminous substance Aequorin grown significantly since the discovery of GFP. By in this jellyfish and determined its structure. In the incorporating the GFP found in jellyfish into the genes course of his study of Aequorin, GFP was discovered as a of other organisms, it is possible to visualize the by-product.
    [Show full text]
  • Nfap Policy Brief » October 2019
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.
    [Show full text]
  • UC Merced Final Handout
    5/5/15 Overview Overview Creative Strategies: § Recruiting strategies and planning Graduate Outreach and § Identifying recruitment needs § Grant writing Diversity Recruiting § Noteworthy Department Information § Fellowships § Promotional Materials § Admitted Student Visitations § Attending graduate and professional school fairs Thomas Cahoon § HBCU Pilot Program § Campus Collaborations – hosting visitors § Future steps Recruiting strategies Recruitment Planning Recruitment Planning § Determine the target population § What type of diversity is missing? § Set a budget for the year § Determine activities outside dept as well as § How do you increase applications from § Create a Recruitment plan inside department underrepresented groups? § Get approval from supervisors and faculty § Promotional Materials - giveaways § Form a departmental diversity committee – § How can you save money for the § Engaging current students get faculty support department? § Engaging Faculty § How can your department benefit from diversity recruiting? Noteworthy Department Uniqueness of Program Graduate Programs Information Chemistry and Biochemistry § What is special about your program? • Analytical • Structural and § Is it faculty? • Biophysics Computational Biology § Is it research? • Inorganic • Systems Biology • Organic • Metabolism, Aging and § Is it the fact that you offer full funding? • Materials and Nanoscience Development • Physical • Bioenergy and the § Is it rankings? • Theory/Computation Environment 1 5/5/15 NOBEL LAUREATES ! THE NOBEL PRIZE IS WIDELY REGARDED AS THE MOST PRESTIGIOUS AWARD AVAILABLE IN ! THE FIELDS OF CHEMISTRY, ECONOMICS, LITERATURE, MEDICINE, PEACE, AND PHYSICS. U.S. News and World Report rankings: UCLA CHEMISTRY & BIOCHEMISTRY HAS THE DISTINCTION OF HAVING THE MOST ! NOBEL LAUREATES (3 FACULTY + 3 ALUMNI, 6 TOTAL NOBEL LAUREATES) ! 60 professors pursuing research in all Chemistry (overall): 15th OF ALL OF THE UCLA DEPARTMENTS. fields of Chemistry and Biochemistry Organic Chemistry: 16th Dr.
    [Show full text]
  • Future of Electrochemistry in Light of History and the Present Conditions
    Journal of Solid State Electrochemistry (2020) 24:2089–2092 https://doi.org/10.1007/s10008-020-04585-3 FEATURE ARTICLE Future of electrochemistry in light of history and the present conditions György Inzelt1 Received: 26 March 2020 /Revised: 26 March 2020 /Accepted: 29 March 2020 / Published online: 15 April 2020 # The Author(s) 2020 General thoughts would not be financed or financed properly, the development of science and consequently that of the technology will stop or We may agree with the saying which is attributable to Niels at least will slow down. The decision makers want an imme- Bohr who said: “It is difficult to make predictions, especially diate success for the money of the taxpayers. The applied about the future.” Nevertheless, the past can give ideas in this research and especially the innovation phase needing the cap- respect and the present circumstances set the course. ital also for buildings and machines want orders of magnitude However, the great breakthroughs cannot be predicted. higher money than the grant for some thousand researchers at Without any exaggeration, we may declare that electro- the universities and institutes. chemistry has played, plays, and will play an important role The support of the basic research is not a wasted money, in the scientific and technological advancement, and conse- and it underlies the future. I would like to draw the attention to quently the quality of life of the people. We cannot imagine another important point: it is the proper education. The well- the everyday life without electricity. We have had electric prepared and competent researchers are essential for the prog- current for 220 years since Volta constructed his pile.
    [Show full text]
  • Conducting Polymers Forward
    editorial Conducting polymers forward Twenty years after the Nobel Prize in Chemistry for the discovery of conducting polymers, we refect on the open research questions and the status of commercial development of these materials. ften, in science, breakthroughs in this issue, Scott Keene and collaborators happen by making the most of showed that the electronic output of a Omistakes. A good example of this neuromorphic device made from an is Hideki Shirakawa, Alan MacDiarmid ion-responsive conjugated polymer can and Alan Heeger’s discovery that organic be controlled by the dopamine released polymers are able to transport electric by cells cultured on the polymer, realizing current1, which led to them sharing the 2000 a biohybrid synaptic connection. Ionic– Nobel Prize in Chemistry2. electronic interactions, however, further According to Shirakawa’s recount, in complicate the understanding of these their studies on acetylene polymerization materials: as recently examined by Jonathan he and his collaborator Hyung Chick Pyun Rivnay and colleagues6, ionic–electronic accidentally used a concentration of catalysts injection, transport and coupling play an that was a thousand times too high, obtaining Impact of iodine vapours on the conductivity of important role in the behaviour of organic a silver film composed of crystalline fibres. polyacetylene. Reproduced from ref. 1, RSC. mixed ionic–electronic conductors. Shirakawa continued to experiment on the In the race for materials commerciali- chemistry of polyacetylene films, trying to zation, researchers have explored application transform them into graphite by exposure semiconductors could be used in transistors spaces where the combination of good to halogen vapours — he paid less attention, and even emit light through charge injection4 electrical and mechanical properties, though, to what was happening to their further boosted research in the field, as well as the versatile processability of electrical properties.
    [Show full text]