Specific Objectives

Total Page:16

File Type:pdf, Size:1020Kb

Specific Objectives CHE 100/102 Specific Objectives: The student should be able to: Chapter 1 - What is Chemistry? 1. Define and use the terms in bold print. 2. Explain the difference between science and technology; the difference between science and chemistry. 3. Compare the relationships of matter as pure substances and mixtures. Use the illustrations on page 7 as a starting point. 4. Know and use the atomic symbols for common elements and to understand the significance of chemical formulas. 5. Distinguish between chemical and physical properties and changes. 6. Describe and use the scientific method and its components. Chapter 2 - The Numerical Side of Chemistry. 1. Distinguish between precision and accuracy. 2. Define and use significant figures appropriately to show uncertainty in measurements and mathematical results. 3. Convert numbers between normal and scientific (exponential) notation. 4. Distinguish between mass and weight. 5. Know and use the common SI Units in Chemistry ( page 43) and the derived SI units (page 44) 6. Know and use the Greek prefixes on page 44. 7. Use dimensional analysis to make conversions between metric units and between metric and English units. 8. Convert between Kelvin, Celsius (Centigrade), and Fahrenheit temperatures. 9. Define and make calculations involving density (specific gravity). Distinguish between intensive and extensive properties. 10. Know and use the energy units, understand specific heat and be able to calculate energy changes. Chapter 3 - The Evolution of Atomic Theory 1. State and apply the Law of Conservation of Matter. 2. State and apply the Law of Constant Composition using percent composition. 3. State and apply the Law of Multiple Proportions, using the ratios of small whole numbers. 4. Outline and discuss Dalton's postulates in his Atomic Theory. 5. Name and discuss the attributes of the major subatomic particles (protons, neutrons, and electrons) of the atom. 6. Discuss the set-up for and the major conclusions from Ernest Rutherford's alpha particle experiment. 7. Define isotope and discuss the make-up of atoms in terms of atomic number, atomic mass numbers, and atomic weights. Calculate the number of protons, electrons, and neutrons in atoms or ions and the weighted average atomic weight of an element from the atomic masses and abundances of isotopes of an element. 8. Discuss the importance of Mendeleev ordering the elements into the Periodic Table. 9. Define and discuss the important areas of the modern periodic table with respect to the properties of the elements. [Groups, periods, representative elements, transition metals, metals, nonmetals, metalloids, lanthanides, actinides, noble or rare gases, alkali metals, alkaline earth metals, halogens] 10. Define and discuss the ordering of the elements according to atomic size, ionization energy, and electron affinity across a period and down a group. Define cation and anion. 11. Discuss electromagnetic radiation with respect to wavelength, frequency, and energy. Calculate wavelength or frequency of electromagnetic radiation given the other. Calculate the energy of electromagnetic radiation given its wavelength or frequency. 12. Explain the difference between a continuous and line spectrum and the difference between and absorption and emission spectrum. SPECIFIC OBJECTIVES continued. The student should be able to: CHAPTER 4 - The Modern Model of the Atom. 1. Explain the concept of quantized energy and its relationship to Classical and Quantum physics. 2. Explain and use Bohr's ideas of quantized energy levels (orbits) for electrons in atoms and relate this idea to the principal quantum number - n (shells) for an electron in an atom. 3. Discuss the properties of Bohr's orbits including number of electrons and energy of electrons. Use these ideas to write "gross" (number of electrons in shells) electron configurations. 4. Determine the number of valence electrons in atoms of the representative elements and use the idea to explain the periodicity of the elements. 5. Distinguish between ground state and excited states for electrons in an atom and calculate energy differences between energy levels for a hydrogen atom. Use this information to explain the absorption and emission line spectra for hydrogen (and other elements) 6. Discuss the existence of subshells for electrons in atoms and generally explain the energy overlap of subshells for different shell levels. 7. Write complete electron configurations and rare gas abbreviation electron configurations for atoms and ions, that do not show anomalous behavior. Identify valence electrons. 8. Identify elements from the electron configurations of atoms or ions. 9. State the octet rule and use it to predict the chemical formulas of simple ionic compounds. 10. Redefine metals and nonmetals on the basis of valence electron behavior. 11. Discuss atomic size using the ideas developed in this chapter. 12. Explain the basic idea of orbitals, uncertainty, and probability that distinguish the quantum mechanical model of the atom from the Bohr model. Additional Material and Objectives for Chapter 4 - The Modern Model of the Atom. quantum mechanical picture of the atom emphasizes the wave properties of the very small particle, the electron. λ = h / mv, where λ is the wavelength exhibited by the particle, h is Planck's constant, m is the mass of the particle, and v is the velocity of the particle. For large particles, such a baseball, the wavelength is so small that it is completely out of the range of possible observation. For an electron, the wavelength is approximately of nm length (similar to the wavelength of x-rays). A standing wave is a stationary wave, as on the string of a musical instrument. In a simple picture of the quantum mechanical model, the electron in the atom can "occupy" energy levels that correspond to an integral number of wavelengths of the electron but not levels that correspond to fractional numbers of wavelengths (because of destructive interference). Erwin Schroedinger solved a wave equation that incorporated both the wavelike and particlelike behavior of the electron. In solving the equation, he obtained three quantum numbers that described the radial and angular momentum properties of acceptable energy levels for the electron in an atom. These quantum numbers are n = principal quantum number. As the Bohr quantum number it roughly describes the distance of the electron from the nucleus of an atom. It may have the integral values of 1, 2, 3, 4, … infinity. l = azimuthal or angular momentum quantum number. This quantum number describes the shape of the orbital. It may have the integral values of 0, 1, 2, 3, …. n-1. Thus l = 0 corresponds to s orbitals (spherical), l = 1, to p orbitals ("dumb bells" = 2 lobes), l = 2 to d orbital (mostly 4 equivalent lobes), l = 3 to f orbitals (generally 8 lobes), etc. ml = magnetic quantum number. This quantum number describes the orientation of the orbitals in space and in doing so, gives the number of each type of orbital. It may have integral values from -l ..0…+l. Thus for l = 0, ml must be 0 and there is only one s orbital for a given energy shell. For ml = 1, the possible values are -1, 0, +1; thus there are three p orbitals. For ml = 2, the possible values are -2, -1, 0, +1, +2 or 5 d orbitals. For ml = 3, the possible values are -3, -2, -1, 0, +1, +2, +3 or 7 f orbitals. A fourth quantum number needed to describe the electrons in the atom is ms = spin quantum number. This quantum number describes whether the spin angular momentum of an electron is aligned with or against the orbital angular momentum of the electron. It is often viewed as a clockwise or counterclockwise spin motion. The possible values for this quantum number are +/- 1/2. Three rules or principles that govern the electrons in an atom are 1. The Pauli Exclusion Principle, which says that no two electrons in an atom may have the same four quantum numbers. This means that the maximum number of electrons in any single orbital is 2. 2. The Aufbau Principle, which says that in the ground state, electrons occupy the lowest energy level available. This corresponds to the Bohr model as well. 3. Hund's Rule, which states that for degenerate (same energy) orbitals, electrons will fill first with the same spin and will "pair" only when all of the degenerate orbitals already have one electron. ("Bunk beds" and detailed orbital diagrams of the atoms.) Additional Specific Objectives: 1. Use quantum numbers to determine the number of each type of orbital that are found in an atom and the number of electrons that can occupy a set of orbitals. 2. Explain the kind of and number of each type of orbital at the various principal energy levels for an electron in an atom. 3. Draw "orbital diagrams" for detailed electron configurations of the elements. 4. Draw the general shapes of the various kinds of orbitals in an atom. Chapter 4 - One last additional objective. Discuss why ionization energies decrease down a group and generally increase across a period. This includes explaining why Group IIA is generally higher than Group IIIA and why Group VA is generally higher than Group VIA. Also to discuss how starting to fill a new, higher energy subshell or to pair electrons in a subshell affects the electron affinity of atoms. Chapter 5 - Bonding Between Atoms 1. Discuss the nature and properties of molecules and the covalent bonds that hold them together. 2. Use valence electrons and the octet (and duet) rules to draw electron dot structures for simple molecules. 3. Define and recognize lone pairs of electrons. 4. Define and use multiple bonds to make acceptable electron dot structures. 5. Define and use the concept of resonance when appropriate for electron dot structures. 6. Distinguish ionic and covalent bonds on the basis of whether electrons are transferred or shared.
Recommended publications
  • Structure and Bonding Electron Configurations in the Periodic Table
    Structure and Bonding The study of organic chemistry must at some point extend to the molecular level, for the physical and chemical properties of a substance are ultimately explained in terms of the structure and bonding of molecules. This module introduces some basic facts and principles that are needed for a discussion of organic molecules. Electronic Configurations Electron Configurations in the Periodic Table 1A 2A 3A 4A 5A 6A 7A 8A 1 2 H He 1 2 1s 1s 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 2 2 2 2 2 2 2 1s 1s 1s 1s 1s 1s 1s 1s 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 Four elements, hydrogen, carbon, oxygen and nitrogen, are the major components of most organic compounds. Consequently, our understanding of organic chemistry must have, as a foundation, an appreciation of the electronic structure and properties of these elements. The truncated periodic table shown above provides the orbital electronic structure for the first eighteen elements (hydrogen through argon). According to the Aufbau principle, the electrons of an atom occupy quantum levels or orbitals starting from the lowest energy level, and proceeding to the highest, with each orbital holding a maximum of two paired electrons (opposite spins). Electron shell #1 has the lowest energy and its s-orbital is the first to be filled.
    [Show full text]
  • VSEPR Theory
    VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet.
    [Show full text]
  • 8.3 Bonding Theories >
    8.3 Bonding Theories > Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Molecular Orbitals How are atomic and molecular orbitals related? 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • The model you have been using for covalent bonding assumes the orbitals are those of the individual atoms. • There is a quantum mechanical model of bonding, however, that describes the electrons in molecules using orbitals that exist only for groupings of atoms. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • When two atoms combine, this model assumes that their atomic orbitals overlap to produce molecular orbitals, or orbitals that apply to the entire molecule. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole. • A molecular orbital that can be occupied by two electrons of a covalent bond is called a bonding orbital. 5 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Sigma Bonds When two atomic orbitals combine to form a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a sigma bond is formed. • Its symbol is the Greek letter sigma (σ).
    [Show full text]
  • Chemical Bonding & Chemical Structure
    Chemistry 201 – 2009 Chapter 1, Page 1 Chapter 1 – Chemical Bonding & Chemical Structure ings from inside your textbook because I normally ex- Getting Started pect you to read the entire chapter. 4. Finally, there will often be a Supplement that con- If you’ve downloaded this guide, it means you’re getting tains comments on material that I have found espe- serious about studying. So do you already have an idea cially tricky. Material that I expect you to memorize about how you’re going to study? will also be placed here. Maybe you thought you would read all of chapter 1 and then try the homework? That sounds good. Or maybe you Checklist thought you’d read a little bit, then do some problems from the book, and just keep switching back and forth? That When you have finished studying Chapter 1, you should be sounds really good. Or … maybe you thought you would able to:1 go through the chapter and make a list of all of the impor- tant technical terms in bold? That might be good too. 1. State the number of valence electrons on the following atoms: H, Li, Na, K, Mg, B, Al, C, Si, N, P, O, S, F, So what point am I trying to make here? Simply this – you Cl, Br, I should do whatever you think will work. Try something. Do something. Anything you do will help. 2. Draw and interpret Lewis structures Are some things better to do than others? Of course! But a. Use bond lengths to predict bond orders, and vice figuring out which study methods work well and which versa ones don’t will take time.
    [Show full text]
  • Electron Configurations, Orbital Notation and Quantum Numbers
    5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room.
    [Show full text]
  • Atomic Structure and Bonding
    IM2665 Chemistry of Nanomaterials Atomic Structure and Bonding Assoc. Prof. Muhammet Toprak Division of Functional Materials KTH Royal Institute of Technology Background • Electromagnetic waves • Materials wave motion, • Quantified energy and – Louis de Broglie (1892-1987) photons • Uncertainity principle – Max Planck (1858-1947) – Werner Heisenberg (1901-1976) – Albert Einstein (1879-1955) • Schrödinger equation • Bohr’s atom model – Erwin Schrödinger (1887-1961) – Niels Bohr (1885-1962) IM2657 Nanostr. Mater. & Self Assembly 2 Electromagnetic Spectrum Visible light is only a small part of the Electromagnetic Spectrum IM2657 Nanostr. Mater. & Self Assembly 3 Electromagnetic Waves • Wavemotion is defined by • Calculations – ν = Frequency ( Hz) – c = ν × λ – λ = wavelength (m) – c = 3,00 × 108 m/s (speed of light) IM2657 Nanostr. Mater. & Self Assembly 4 Quantified Energy and Photons • E = h × ν; where h = 6,63 × 10-34 J s (Planck’s constant) • Photoelectric Effect (1905) IM2657 Nanostr. Mater. & Self Assembly 5 Thomson´s Pudding Model For a helium atom, the model proposes a large spherical cloud with two units of positive charge. Th e two electrons lie on a line through the center of the cloud. The loss of one electron produces the He+1 ion, with the remaining electron at the center of the cloud. The loss of a second electron prod uces He+2 , in which there is just a cloud of positive charge. IM2657 Nanostr. Mater. & Self Assembly 6 Rutherford’s Experiment The notion that atoms consist of very small nuclei containing protons and neutrons surrounded by a much larger cloud of electrons was IM2657 Nanostr. Mater. & Self Assembly 7 developed from an α particle scattering experiment.
    [Show full text]
  • VSEPR Molecular Geometry Tutorial
    Constructing Molecular Shapes A Tutorial on Writing the Shape of Molecules Dr. Fred Omega Garces Chemistry 100 Miramar College 1 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Valence Shell Electron-Pair Repulsion Theory Main premise of model- Valence electron pair repel each other in molecule with shapes the molecule Molecule assumes Geometry that minimizes electrostatic repulsion: Occurs when electron pair are far apart as possible. Driving force is the Pauli exclusion principle : 2 electrons with same spin can't occupy the same space. Electronic Geometry is the geometry around the central atom in which electron-electron repulsion is minimize. AEn (system) Molecular Geometry is geometry around central atom when electron pairs are replace by bonding atoms and the nonbonding electrons are ignored. ABmEn (system) 2 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 1) Determine the Lewis Structure. a) Valence electrons for each atom in the structure. b) Determine the atomic sequence, the number of bonds, remaining electrons c) Write Lewis structure with each atom obeying the octet rule Example: HNO3 ( See Lewis Structure Tutorial) O N O O H 3 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 2) Determine electronic geometry (AEn system) from Lewis structure. a) Count the electron domain (region) around the central atom. b) Arrange electron domain to minimize electron-electron repulsion. Occurs when electron pair are far apart as possible. c) 2-domainglinear, 3-domaingtrigonal, 4-domaingtetrahedral O N O Example: HNO3 O Central Atoms, N and O H O N O O N: Three electron domain AE3 Trigonal H O N O O: Four electron domain O AE4 Tetrahedral H 4 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 3) Determine molecule geometry (ABmEn) from electronic geometry.
    [Show full text]
  • Amine-Based Zinc(II), Copper(II), and Oxidovanadium(IV) Complexes: SOD Scavenging, DNA Binding, and Anticancer Activities
    Int. J. Electrochem. Sci., 7 (2012) 7526 - 7546 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis, Characterization, and Electrochemical Properties of Bis(2-benzimidazolylmethyl-6-sulfonate)amine-based zinc(II), copper(II), and oxidovanadium(IV) Complexes: SOD Scavenging, DNA binding, and Anticancer Activities Mohamed M. Ibrahim1,2, Gaber A. M. Mersal1,3, Samir A. El-Shazly4,5, Abdel-Motaleb M. Ramadan2 1 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia 2 Departmentof Chemistry, Faculty of Science, Kafr El-Sheikh University, Egypt 3 Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt 4 Departmentof Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Egypt 5 Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia *E-mail: [email protected] Received: 8 June 2012 / Accepted: 9 July 2012 / Published: 1 August 2012 The synthesis of a tridentate ligand, bis(2-benzimidazolylmethyl-6-sulfonate)amine H2SBz is described together with its zinc(II), copper(II), and oxidovanadium(IV) complexes [SBz-M(H2O)2] (M = Zn2+ 1, Cu2+ 2, and VO2+ 3). The ligand and its metal complexes 1-3 were characterized based on elemental analysis, conductivity measurements, spectral, and magnetic studies. The magnetic and spectroscopic data indicate a square pyramidal geometry is proposed for all complexes. The redox properties of the ligand and its complexes 1-3 were extensively investigated by using cyclic voltammetry. Complexes 1 and 2 exhibited quasi-reversible single electron transfer process. Whereas in complex 3, only one electron oxidation peak was observed at + 0.72 V, which is due to the oxidation of VIV to VV.
    [Show full text]
  • Loudon Ch. 3 Review: Acids/Bases/Curved Arrows Jacquie Richardson, CU Boulder – Last Updated 9/16/2020
    Loudon Ch. 3 Review: Acids/Bases/Curved Arrows Jacquie Richardson, CU Boulder – Last updated 9/16/2020 There are two different definitions of acids and bases that show up in this chapter: 1. Lewis acids (a.k.a. electrophiles, E or E +) accept an electron pair; Lewis bases (a.ka. nucleophiles, Nu or Nu -) donate an electron pair 2. Brønsted-Lowry acids (a.k.a. acids ) donate a proton (H + ion); Brønsted-Lowry bases (a.k.a. bases ) accept a proton Brønsted-Lowry acids/bases are a subset of Lewis acids/bases. If something is a Brønsted- Lowry base it must also be a Lewis base but the reverse is not true. When an organic chemist says “acid” or “base”, what we normally mean is Brønsted-Lowry acid or base. We use the terms nucleophile for Lewis bases (things that love nuclei), and electrophile for Lewis acids (things that love electrons). Confusingly, chemists will often use “nucleophile” to mean “only- nucleophile-but-not-a-base”. Officially, though, bases are a subset of nucleophiles, and acids are a subset of electrophiles. We’re going to look some more at the differences between them, but first, here are some tools to help explain what’s going on during a reaction: curved arrows, and frontier molecular orbitals. Curved Arrows Show Electron Movement We can show the flow of electrons to a Lewis acid by using curved arrows. These are used to show the movement of electrons only , not anything else! Two electrons moving as a pair (like in a reaction between a Lewis acid and base) are shown as a full-headed arrow.
    [Show full text]
  • Coherent Spin Dynamics of Radical Pairs in Weak Magnetic Fields
    Coherent Spin Dynamics of Radical Pairs in Weak Magnetic Fields by Hannah J. Hogben A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Trinity Term 2011 University of Oxford Department of Chemistry Physical and Theoretical Chemistry Laboratory Oriel College Abstract Coherent Spin Dynamics of Radical Pairs in Weak Magnetic Fields Hannah J. Hogben Department of Chemistry Physical and Theoretical Chemistry Laboratory and Oriel College Abstract of a thesis submitted for the degree of Doctor of Philosophy Trinity Term 2011 The outcome of chemical reactions proceeding via radical pair (RP) intermediates can be in- fluenced by the magnitude and direction of applied magnetic fields, even for interaction strengths far smaller than the thermal energy. Sensitivity to Earth-strength magnetic fields has been sug- gested as a biophysical mechanism of animal magnetoreception and this thesis is concerned with simulations of the effects of such weak magnetic fields on RP reaction yields. State-space restriction techniques previously used in the simulation of NMR spectra are here applied to RPs. Methods for improving the efficiency of Liouville-space spin dynamics calculations are presented along with a procedure to form operators directly into a reduced state-space. These are implemented in the spin dynamics software Spinach. Entanglement is shown to be a crucial ingredient for the observation of a low field effect on RP reaction yields in some cases. It is also observed that many chemically plausible initial states possess an inherent directionality which may be a useful source of anisotropy in RP reactions. The nature of the radical species involved in magnetoreception is investigated theoretically.
    [Show full text]
  • Chapter 5 Molecular Orbitals
    Chapter 5 Molecular Orbitals Molecular orbital theory uses group theory to describe the bonding in molecules ; it comple- ments and extends the introductory bonding models in Chapter 3 . In molecular orbital theory the symmetry properties and relative energies of atomic orbitals determine how these orbitals interact to form molecular orbitals. The molecular orbitals are then occupied by the available electrons according to the same rules used for atomic orbitals as described in Sections 2.2.3 and 2.2.4 . The total energy of the electrons in the molecular orbitals is compared with the initial total energy of electrons in the atomic orbitals. If the total energy of the electrons in the molecular orbitals is less than in the atomic orbitals, the molecule is stable relative to the separate atoms; if not, the molecule is unstable and predicted not to form. We will first describe the bonding, or lack of it, in the first 10 homonuclear diatomic molecules ( H2 through Ne2 ) and then expand the discussion to heteronuclear diatomic molecules and molecules having more than two atoms. A less rigorous pictorial approach is adequate to describe bonding in many small mole- cules and can provide clues to more complete descriptions of bonding in larger ones. A more elaborate approach, based on symmetry and employing group theory, is essential to under- stand orbital interactions in more complex molecular structures. In this chapter, we describe the pictorial approach and develop the symmetry methodology required for complex cases. 5.1 Formation of Molecular Orbitals from Atomic Orbitals As with atomic orbitals, Schrödinger equations can be written for electrons in molecules.
    [Show full text]
  • Lecture B2 VSEPR Theory Covalent Bond Theories
    Lecture B2 VSEPR Theory Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation. 2. Valence Bond theory. A more advanced description of orbitals in molecules. We emphasize just one aspect of this theory: Hybrid atomic orbitals. Works especially well for organic molecules, which is the reason we don’t scrap it entirely for MO theory. 3. Molecular Orbital theory. The most modern and powerful theory of bonding. Based upon QM. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation. 2. Valence Bond theory. A more advanced description of orbitals in molecules. We emphasize just one aspect of this theory: Hybrid atomic orbitals. Works especially well for organic molecules, which is the reason we don’t scrap it entirely for MO theory. 3. Molecular Orbital theory. The most modern and powerful theory of bonding. Based upon QM. G. N. Lewis tried to develop a geometrical model for atoms and chemical bonding -- but failed. G. N. Lewis 1875-1946 Gillespie and Nyholm devised a simple scheme for geometry based on the Lewis dot structure (VSEPR). Valence shell electron pair repulsion (VSEPR) theory is a model in chemistry used to predict the shape of individual molecules based upon the extent of electron-pair electrostatic repulsion. It is also named Gillespie-Nyholm* theory after its two main developers. The acronym "VSEPR" is pronounced "vesper" for ease of pronunciation.
    [Show full text]