Passport to Science Exploration Chemistry Connections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CNSC Research Report 2016-17
The Science of Safety: CNSC Research Report 2016–17 © Canadian Nuclear Safety Commission (CNSC) 2018 Cat. No. CC171-24E-PDF ISSN 2369-4351 Extracts from this document may be reproduced for individual use without permission provided the source is fully acknowledged. However, reproduction in whole or in part for purposes of resale or redistribution requires prior written permission from the Canadian Nuclear Safety Commission. Également publié en français sous le titre : La science de la sûreté : Rapport de recherche de la CCSN 2016-2017 Document availability This document can be viewed on the CNSC website. To request a copy of the document in English or French, please contact: Canadian Nuclear Safety Commission 280 Slater Street P.O. Box 1046, Station B Ottawa, Ontario K1P 5S9 CANADA Tel.: 613-995-5894 or 1-800-668-5284 (in Canada only) Facsimile: 613-995-5086 Email: [email protected] Website: nuclearsafety.gc.ca Facebook: facebook.com/CanadianNuclearSafetyCommission YouTube: youtube.com/cnscccsn Twitter: @CNSC_CCSN Publishing History June 2018 Edition 1.0 Table of contents Message from the President .......................................................................................................................... 1 Introduction ................................................................................................................................................... 2 Ensuring the safety of nuclear power plants ................................................................................................. 6 Protecting -
Source of Atomic Hydrogen for Ion Trap Experiments: Review and Basic Properties
WDS'15 Proceedings of Contributed Papers — Physics, 155–161, 2015. ISBN 978-80-7378-311-2 © MATFYZPRESS Source of Atomic Hydrogen for Ion Trap Experiments: Review and Basic Properties A. Kovalenko, Š Roučka, S. Rednyk, T. D. Tran, D. Mulin, R. Plašil, J. Glosík Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The H-atom source was used to produce atomic hydrogen for study of ion-molecule reactions relevant to astrochemistry at low temperatures. H atoms were cooled and formed into an effusive beam, passing through a 22-pole ion trap. Here we present the basic operating principles of the H-atom source and give a review of this apparatus with some calculations of vacuum conditions and parameters of the produced H-atom beam. Introduction Hydrogen is the most abundant element in the Universe [Field et al., 1966]. It is the main component of stars, giant planets and interstellar clouds. Reactions with atomic or molecular hydrogen are important for understanding the processes which occur in the interstellar medium and during the formation of the new stars. There are three isotopes of hydrogen: protium, deuterium and tritium. The reactions of ions with H atoms have to be studied for better understanding of formation and destruction of more complex ions and molecules observed in interstellar medium. There are regions in space called H I and H II regions where hydrogen is mostly neutral in H I regions, rather than ionized or molecular in the H II regions. The atomic hydrogen plays fundamental role in many astrophysical contexts especially in formation H2 molecules [Habart et al., 2005; Sternberg et al., 2014]. -
Structure and Bonding Electron Configurations in the Periodic Table
Structure and Bonding The study of organic chemistry must at some point extend to the molecular level, for the physical and chemical properties of a substance are ultimately explained in terms of the structure and bonding of molecules. This module introduces some basic facts and principles that are needed for a discussion of organic molecules. Electronic Configurations Electron Configurations in the Periodic Table 1A 2A 3A 4A 5A 6A 7A 8A 1 2 H He 1 2 1s 1s 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 2 2 2 2 2 2 2 1s 1s 1s 1s 1s 1s 1s 1s 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 Four elements, hydrogen, carbon, oxygen and nitrogen, are the major components of most organic compounds. Consequently, our understanding of organic chemistry must have, as a foundation, an appreciation of the electronic structure and properties of these elements. The truncated periodic table shown above provides the orbital electronic structure for the first eighteen elements (hydrogen through argon). According to the Aufbau principle, the electrons of an atom occupy quantum levels or orbitals starting from the lowest energy level, and proceeding to the highest, with each orbital holding a maximum of two paired electrons (opposite spins). Electron shell #1 has the lowest energy and its s-orbital is the first to be filled. -
VSEPR Theory
VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet. -
Crystal Chemistry of Perovskite-Type Hydride Namgh3: Implications for Hydrogen Storage
Chem. Mater. 2008, 20, 2335–2342 2335 Crystal Chemistry of Perovskite-Type Hydride NaMgH3: Implications for Hydrogen Storage Hui Wu,*,†,‡ Wei Zhou,†,‡ Terrence J. Udovic,† John J. Rush,†,‡ and Taner Yildirim†,§ NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau DriVe, MS 6102, Gaithersburg, Maryland 20899-6102, Department of Materials Science and Engineering, UniVersity of Maryland, College Park, Maryland 20742-2115, and Department of Materials Science and Engineering, UniVersity of PennsylVania, 3231 Walnut Street, Philadelphia, PennsylVania 19104-6272 ReceiVed NoVember 26, 2007. ReVised Manuscript ReceiVed January 11, 2008 The crystal structure, lattice dynamics, and local metal-hydrogen bonding of the perovskite hydride NaMgH3 were investigated using combined neutron powder diffraction, neutron vibrational spectroscopy, and first-principles calculations. NaMgH3 crystallizes in the orthorhombic GdFeO3-type perovskite structure (Pnma) with a-b+a- octahedral tilting in the temperature range of 4 to 370 K. In contrast with previous structure studies, the refined Mg-H lengths and H-Mg-H angles indicate that the MgH6 octahedra maintain a near ideal configuration, which is corroborated by bond valence methods and our DFT calculations, and is consistent with perovskite oxides with similar tolerance factor values. The temperature dependences of the lattice distortion, octahedral tilting angle, and atomic displacement of H are also consistent with the recently observed high H mobility at elevated temperature. The stability and dynamics of NaMgH3 are discussed and rationalized in terms of the details of our observed perovskite structure. Further experiments reveal that its perovskite crystal structure and associated rapid hydrogen motion can be used to improve the slow hydrogenation kinetics of some strongly bound light-metal-hydride systems such as MgH2 and possibly to design new alloy hydrides with desirable hydrogen-storage properties. -
Highly Conductive Antiperovskites with Soft Anion Lattices 12 January 2021, by I
Highly conductive antiperovskites with soft anion lattices 12 January 2021, by I. Mindy Takamiya, Mari Toyama 'cation." They also have numerous intriguing properties, including superconductivity and, in contrast to most materials, contraction upon heating. Lithium- and sodium-rich antiperovskites, such as Li3OCl and Na3OCl, have been attracting much attention due to their high ionic conductivity and alkali metal concentration, making them promising candidates to replace liquid electrolytes used in lithium ion batteries. "But achieving a comparable lithium ion conductivity in solid materials has been challenging," explains iCeMS solid-state chemist Hiroshi Kageyama, who led the study. Soft anions, like sulfur ions (S2-), provide an ideal conduction path for sodium (Na+) and lithium (Li+) ions, Kageyama and his team synthesized a new family with the hydride ions (H-) helping to stabilize the of lithium- and sodium-rich antiperovskites that compound's structure. Credit: Mindy Takamiya/Kyoto begins to overcome this issue. Instead of 'hard' University iCeMS oxygen and halogen anions, their antiperovskites contain a hydrogen anion, called a hydride, and 'soft' chalcogen anions like sulfur. A new structural arrangement of atoms shows The scientists conducted a wide range of promise for developing safer batteries made with theoretical and experimental investigations on solid materials. Scientists at Kyoto University's these antiperovskites, and found that the soft anion Institute for Integrated Cell-Material Sciences lattice provides an ideal conduction path for lithium (iCeMS) designed a new type of 'antiperovskite' and sodium ions, which can be further enhanced by that could help efforts to replace the flammable chemical substitutions. organic electrolytes currently used in lithium ion batteries. -
8.3 Bonding Theories >
8.3 Bonding Theories > Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Molecular Orbitals How are atomic and molecular orbitals related? 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • The model you have been using for covalent bonding assumes the orbitals are those of the individual atoms. • There is a quantum mechanical model of bonding, however, that describes the electrons in molecules using orbitals that exist only for groupings of atoms. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • When two atoms combine, this model assumes that their atomic orbitals overlap to produce molecular orbitals, or orbitals that apply to the entire molecule. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole. • A molecular orbital that can be occupied by two electrons of a covalent bond is called a bonding orbital. 5 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Sigma Bonds When two atomic orbitals combine to form a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a sigma bond is formed. • Its symbol is the Greek letter sigma (σ). -
Chemical Bonding & Chemical Structure
Chemistry 201 – 2009 Chapter 1, Page 1 Chapter 1 – Chemical Bonding & Chemical Structure ings from inside your textbook because I normally ex- Getting Started pect you to read the entire chapter. 4. Finally, there will often be a Supplement that con- If you’ve downloaded this guide, it means you’re getting tains comments on material that I have found espe- serious about studying. So do you already have an idea cially tricky. Material that I expect you to memorize about how you’re going to study? will also be placed here. Maybe you thought you would read all of chapter 1 and then try the homework? That sounds good. Or maybe you Checklist thought you’d read a little bit, then do some problems from the book, and just keep switching back and forth? That When you have finished studying Chapter 1, you should be sounds really good. Or … maybe you thought you would able to:1 go through the chapter and make a list of all of the impor- tant technical terms in bold? That might be good too. 1. State the number of valence electrons on the following atoms: H, Li, Na, K, Mg, B, Al, C, Si, N, P, O, S, F, So what point am I trying to make here? Simply this – you Cl, Br, I should do whatever you think will work. Try something. Do something. Anything you do will help. 2. Draw and interpret Lewis structures Are some things better to do than others? Of course! But a. Use bond lengths to predict bond orders, and vice figuring out which study methods work well and which versa ones don’t will take time. -
Electron Configurations, Orbital Notation and Quantum Numbers
5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room. -
Atomic Structure and Bonding
IM2665 Chemistry of Nanomaterials Atomic Structure and Bonding Assoc. Prof. Muhammet Toprak Division of Functional Materials KTH Royal Institute of Technology Background • Electromagnetic waves • Materials wave motion, • Quantified energy and – Louis de Broglie (1892-1987) photons • Uncertainity principle – Max Planck (1858-1947) – Werner Heisenberg (1901-1976) – Albert Einstein (1879-1955) • Schrödinger equation • Bohr’s atom model – Erwin Schrödinger (1887-1961) – Niels Bohr (1885-1962) IM2657 Nanostr. Mater. & Self Assembly 2 Electromagnetic Spectrum Visible light is only a small part of the Electromagnetic Spectrum IM2657 Nanostr. Mater. & Self Assembly 3 Electromagnetic Waves • Wavemotion is defined by • Calculations – ν = Frequency ( Hz) – c = ν × λ – λ = wavelength (m) – c = 3,00 × 108 m/s (speed of light) IM2657 Nanostr. Mater. & Self Assembly 4 Quantified Energy and Photons • E = h × ν; where h = 6,63 × 10-34 J s (Planck’s constant) • Photoelectric Effect (1905) IM2657 Nanostr. Mater. & Self Assembly 5 Thomson´s Pudding Model For a helium atom, the model proposes a large spherical cloud with two units of positive charge. Th e two electrons lie on a line through the center of the cloud. The loss of one electron produces the He+1 ion, with the remaining electron at the center of the cloud. The loss of a second electron prod uces He+2 , in which there is just a cloud of positive charge. IM2657 Nanostr. Mater. & Self Assembly 6 Rutherford’s Experiment The notion that atoms consist of very small nuclei containing protons and neutrons surrounded by a much larger cloud of electrons was IM2657 Nanostr. Mater. & Self Assembly 7 developed from an α particle scattering experiment. -
VSEPR Molecular Geometry Tutorial
Constructing Molecular Shapes A Tutorial on Writing the Shape of Molecules Dr. Fred Omega Garces Chemistry 100 Miramar College 1 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Valence Shell Electron-Pair Repulsion Theory Main premise of model- Valence electron pair repel each other in molecule with shapes the molecule Molecule assumes Geometry that minimizes electrostatic repulsion: Occurs when electron pair are far apart as possible. Driving force is the Pauli exclusion principle : 2 electrons with same spin can't occupy the same space. Electronic Geometry is the geometry around the central atom in which electron-electron repulsion is minimize. AEn (system) Molecular Geometry is geometry around central atom when electron pairs are replace by bonding atoms and the nonbonding electrons are ignored. ABmEn (system) 2 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 1) Determine the Lewis Structure. a) Valence electrons for each atom in the structure. b) Determine the atomic sequence, the number of bonds, remaining electrons c) Write Lewis structure with each atom obeying the octet rule Example: HNO3 ( See Lewis Structure Tutorial) O N O O H 3 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 2) Determine electronic geometry (AEn system) from Lewis structure. a) Count the electron domain (region) around the central atom. b) Arrange electron domain to minimize electron-electron repulsion. Occurs when electron pair are far apart as possible. c) 2-domainglinear, 3-domaingtrigonal, 4-domaingtetrahedral O N O Example: HNO3 O Central Atoms, N and O H O N O O N: Three electron domain AE3 Trigonal H O N O O: Four electron domain O AE4 Tetrahedral H 4 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 3) Determine molecule geometry (ABmEn) from electronic geometry. -
Amine-Based Zinc(II), Copper(II), and Oxidovanadium(IV) Complexes: SOD Scavenging, DNA Binding, and Anticancer Activities
Int. J. Electrochem. Sci., 7 (2012) 7526 - 7546 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis, Characterization, and Electrochemical Properties of Bis(2-benzimidazolylmethyl-6-sulfonate)amine-based zinc(II), copper(II), and oxidovanadium(IV) Complexes: SOD Scavenging, DNA binding, and Anticancer Activities Mohamed M. Ibrahim1,2, Gaber A. M. Mersal1,3, Samir A. El-Shazly4,5, Abdel-Motaleb M. Ramadan2 1 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia 2 Departmentof Chemistry, Faculty of Science, Kafr El-Sheikh University, Egypt 3 Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt 4 Departmentof Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Egypt 5 Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia *E-mail: [email protected] Received: 8 June 2012 / Accepted: 9 July 2012 / Published: 1 August 2012 The synthesis of a tridentate ligand, bis(2-benzimidazolylmethyl-6-sulfonate)amine H2SBz is described together with its zinc(II), copper(II), and oxidovanadium(IV) complexes [SBz-M(H2O)2] (M = Zn2+ 1, Cu2+ 2, and VO2+ 3). The ligand and its metal complexes 1-3 were characterized based on elemental analysis, conductivity measurements, spectral, and magnetic studies. The magnetic and spectroscopic data indicate a square pyramidal geometry is proposed for all complexes. The redox properties of the ligand and its complexes 1-3 were extensively investigated by using cyclic voltammetry. Complexes 1 and 2 exhibited quasi-reversible single electron transfer process. Whereas in complex 3, only one electron oxidation peak was observed at + 0.72 V, which is due to the oxidation of VIV to VV.