Springer Congratulates the ICM 2010 Award Winners!

Total Page:16

File Type:pdf, Size:1020Kb

Springer Congratulates the ICM 2010 Award Winners! ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Springer Congratulates the of the American Mathematical Society ICM 2010 Award Winners! November 2010 Volume 57, Number 10 Springer is happy to announce that the winners of the Fields Medals 2010 are all Springer authors Cédric Villani was awarded the Fields Medal for his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation. Books Cédric Villani published with Springer 7 Optimal Transport: Old and New 7 Entropy Methods for the Boltzmann Equation 7 Optimal Transportation and Applications Villani has also published articles in Inventiones Mathe maticae, Numerische Mathematik, Mathematische Zeitschrift, Probability and Related Fields. He is also an editor of Inventiones Mathematicae and serves on the board of the Birkhäuser book series, Frontiers in Mathematics. Ngô Bảo Châu received the Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. Châu is an Editor-in-Chief for the series Grundlehren der Mathematischen Wissenschaften and has published articles in Publications Mathématiques de L’IHÉS and Inventiones Mathematicae. Elon Lindenstrauss was awarded the Fields Medal for his results on measure rigidity in ergodic theory, and their applications to number theory. Lindenstrauss has published articles in the following journals: Israel Journal of Mathematics, Journal d’ Analyse Mathematique, Inventiones Mathematicae, Geometric and Functional Analysis, and Selecta Mathematica. Stanislav Smirnov was honored with the Fields Medal for the proof of conformal invariance of percolation and the planar Ising model in statistical physics. Smirnov has published articles in Inventiones Mathematicae, Letters in Mathematical Physics, Theoretical and Mathe matical Physics, and Probability and Related Fields. Nevanlinna Prize Winner Volume 57, Number 10, Pages 1241–1384, November 2010 Daniel A. Spielman has been chosen for the Rolf Nevanlinna Prize for smoothed analysis of linear programming, algorithms for graph-based codes and applications of graph theory to numerical computing. A second major contribution of Spielman is in the area About the Cover: The public lectures in Hyderabad (see page 1276) of coding. Spielman has published articles in Mathematical Programming. Gauss Prize Winner Yves Meyer The Mathematics of Earthquakes and has been selected for the Gauss Prize for fundamental contributions to number theory, operator theory and harmonic analysis, and his pivotal role in the development of wavelets and multiresolution analysis. Animal Behavior: An Weatherquakes: Mathematics Meyer has published in the Lecture Notes in Mathematics series and in the Journal of Fourier Analysis and Applications. Interdisciplinary Dialogue and Climate Change Chern Prize Winner page 1248 page 1278 Louis Nirenberg has been selected to be the first recipient of the Chern Medal for his role in the formulation of the modern theory of Environmental Problems, non-linear elliptic partial differential equations and for mentoring numerous students and post-docs in this area. Ilya Piatetski-Shapiro, Nirenberg has published articles in Selecta Mathematica, Nonlinear Differential Equations and Applications published In Memoriam Uncertainty, and by Birkhäuser. 014809x page 1260 Mathematical Modeling page 1286 Trim: 8.25" x 10.75" 144 pages on 40 lb Velocity • Spine: 5/32" • Print Cover on 9pt Carolina.
Recommended publications
  • Homogeneous Flows, Moduli Spaces and Arithmetic
    CLAY MATHEMATICS INSTITUTE SUMMER SCHOOL 2007 Homogeneous Flows, Moduli Spaces and Arithmetic at the Centro di Ricerca Matematica Designed for graduate students and mathematicians within Ennio De Giorgi, Pisa, Italy five years of their PhD, the program is an introduction to the theory of flows on homogeneous spaces, moduli spaces and their many applications. These flows give concrete examples of dynamical systems with highly interesting behavior and a rich and powerful theory. They are also a source of many interesting problems and conjectures. Furthermore, understanding the dynamics of such a concrete system lends to numerous applications in number theory and geometry regarding equidistributions, diophantine approximations, rational billiards and automorphic forms. The school will consist of three weeks of foundational courses Photo: Peter Adams and one week of mini-courses focusing on more advanced topics. June 11th to July 6th 2007 Lecturers to include: Organizing Committee Nalini Anantharaman, Artur Avila, Manfred Einsiedler, Alex Eskin, Manfred Einsiedler, David Ellwood, Alex Eskin, Dmitry Kleinbock, Elon Svetlana Katok, Dmitry Kleinbock, Elon Lindenstrauss, Shahar Mozes, Lindenstrauss, Gregory Margulis, Stefano Marmi, Peter Sarnak, Hee Oh, Akshay Venkatesh, Jean-Christophe Yoccoz Jean-Christophe Yoccoz, Don Zagier Foundational Courses Graduate Postdoctoral Funding Unipotent flows and applications Funding is available to graduate students and postdoctoral fellows (within 5 Alex Eskin & Dmitry Kleinbock years of their PhD). Standard
    [Show full text]
  • Diagonalizable Flows on Locally Homogeneous Spaces and Number
    Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract.We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50 Keywords. invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found numerous applications throughout mathematics. The spaces we consider are of the form Γ\G where G is a locally compact group and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H < G acts on Γ\G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G.
    [Show full text]
  • REPORT of the INTERNATIONAL ADVISORY BOARD for DEPARTMENT of MATHEMATICS HIGHER SCHOOL of ECONOMICS (MOSCOW)
    REPORT OF THE INTERNATIONAL ADVISORY BOARD for DEPARTMENT OF MATHEMATICS HIGHER SCHOOL OF ECONOMICS (MOSCOW) Naming conventions: • Department = Department of Mathematics, Higher School of Economics • Board = International Advisory Board for the Department. Members of the Board: • Pierre Deligne (Institute for Advanced Study, USA) • Sergey Fomin (University of Michigan, USA) • Sergei Lando (HSE, Dean of the Department, ex officio) • Tetsuji Miwa (Kyoto University, Japan) • Andrei Okounkov (Columbia University, USA) • Stanislav Smirnov (University of Geneva, Switzerland, and St. Petersburg State University, Russia). Chairman of the Board: Stanislav Smirnov (elected February 17, 2013). Members of the Board visited the Department in Winter 2013. They met with faculty members, both junior and senior ones, and with students, both undergraduate and graduate. During these meetings, conducted in the absence of departmental administration, the students and professors freely expressed their opinions regarding the current state of affairs in the Department, commenting on its achievements, its goals, and its most pressing needs and problems. The visiting members of the Board met with the key members of the departmental leadership team, including the Dean, several Associate Deans, and representatives of the main graduate programs. Lively and substantive discussions concerned all aspects of departmental life, as well as the Department's prospects for the future. On February 18, 2013, four members of the Board (S. Fomin, S. Lando, T. Miwa, and S. Smirnov) had a 1.5-hour-long meeting with the leadership of the HSE, including the Rector Prof. Ya. I. Kuzminov, Academic Supervisor Prof. E. G. Yasin, First Vice- Rector V. V. Radaev, and Vice-Rectors S.
    [Show full text]
  • Notices of the Ams 421
    people.qxp 2/27/01 4:00 PM Page 421 Mathematics People Bigelow and Lindenstrauss The Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics was created for the Receive Blumenthal Prize purpose of assisting the Department of Mathematics of the University of Missouri at Columbia, where Leonard The Leonard M. and Eleanor B. Blumenthal Award for the Blumenthal served as professor for many years. Its second Advancement of Research in Pure Mathematics has been awarded to STEPHEN J. BIGELOW of the University of Melbourne purpose is to recognize distinguished achievements and ELON B. LINDENSTRAUSS of Stanford University and the in the field of mathematics through the Leonard M. and Institute for Advanced Study. The awards were presented Eleanor B. Blumenthal Award for the Advancement of at the Joint Mathematics Meetings in New Orleans in January Research in Pure Mathematics, which was originally 2001. funded from the Eleanor B. Blumenthal Trust upon Mrs. Stephen Bigelow was born in September 1971 in Blumenthal’s death on July 12, 1987. Cambridge, England. He received his B.S. degree in 1992 and The Trust, which is administered by the Financial his M.S. degree in 1994, both from the University of Melbourne. He recently received his Ph.D. from the University Management and Trust Services Division of Boone County of California at Berkeley, where he wrote a dissertation National Bank in Columbia, Missouri, pays its net income solving a long-standing open problem in the area of braid to the recipient of the award each year for four years. An groups.
    [Show full text]
  • Child of Vietnam War Wins Top Maths Honour 19 August 2010, by P.S
    Child of Vietnam war wins top maths honour 19 August 2010, by P.S. Jayaram Vietnamese-born mathematician Ngo Bao Chau Presented every four years to two, three, or four on Thursday won the maths world's version of a mathematicians -- who must be under 40 years of Nobel Prize, the Fields Medal, cementing a journey age -- the medal comes with a cash prize of 15,000 that has taken him from war-torn Hanoi to the Canadian dollars (14,600 US dollars). pages of Time magazine. The only son of a physicist father and a mother who Ngo, 38, was awarded his medal in a ceremony at was a medical doctor, Ngo's mathematical abilities the International Congress of Mathematicians won him a place, aged 15, in a specialist class of meeting in the southern Indian city of Hyderabad. the Vietnam National University High School. The other three recipients were Israeli In 1988, he won a gold medal at the 29th mathematician Elon Lindenstrauss, Frenchman International Mathematical Olympiad and repeated Cedric Villani and Swiss-based Russian Stanislav the same feat the following year. Smirnov. After high school, he was offered a scholarship by Ngo, who was born in Hanoi in 1972 in the waning the French government to study in Paris. He years of the Vietnam war, was cited for his "brilliant obtained a PhD from the Universite Paris-Sud in proof" of a 30-year-old mathematical conundrum 1997 and became a professor there in 2005. known as the Fundamental Lemma. Earlier this year he became a naturalised French The proof offered a key stepping stone to citizen and accepted a professorship at the establishing and exploring a revolutionary theory University of Chicago.
    [Show full text]
  • 2004 Research Fellows
    I Institute News 2004 Research Fellows On February 23, 2004, the Clay Mathematics Institute announced the appointment of four Research Fellows: Ciprian Manolescu and Maryam Mirzakhani of Harvard University, and András Vasy and Akshay Venkatesh of MIT. These outstanding mathematicians were selected for their research achievements and their potential to make signifi cant future contributions. Ci ian Man lescu 1 a nati e R mania is c m letin his h at Ha a ni Ciprian Manolescu pr o (b. 978), v of o , o p g P .D. rv rd U - versity under the direction of Peter B. Kronheimer. In his undergraduate thesis he gave an elegant new construction of Seiberg-Witten Floer homology, and in his Ph.D. thesis he gave a remarkable gluing formula for the Bauer-Furuta invariants of four-manifolds. His research interests span the areas of gauge theory, low-dimensional topology, symplectic geometry and algebraic topology. Manolescu will begin his four-year appointment as a Research Fellow at Princeton University beginning July 1, 2004. Maryam Mirzakhani Maryam Mirzakhani (b. 1977), a native of Iran, is completing her Ph.D. at Harvard under the direction of Curtis T. McMullen. In her thesis she showed how to compute the Weil- Petersson volume of the moduli space of bordered Riemann surfaces. Her research interests include Teichmuller theory, hyperbolic geometry, ergodic theory and symplectic geometry. As a high school student, Mirzakhani entered and won the International Mathematical Olympiad on two occasions (in 1994 and 1995). Mirzakhani will conduct her research at Princeton University at the start of her four-year appointment as a Research Fellow beginning July 1, 2004.
    [Show full text]
  • ISRAEL MATTERS! MATTERS! Publication of the Israel Affairs Committee of Temple Beth Sholom
    ISRAELISRAEL MATTERS! MATTERS! Publication of the Israel Affairs Committee of Temple Beth Sholom Issue Number 40 October 2010 Israel Begins Peace Negotiations; Demands Palestinians Recognize Israel as Jewish State In remarks at the September relaunch of peace negotiations, Israeli Prime Minister Benjamin Netanyahu opened by saying, “I began with a Hebrew word for peace, “shalom.” Our goal is shalom. Our goal is to forge a secure and durable peace between Israelis and Palestinians. We don’t seek a brief interlude between two wars. We don’t seek a tempo- rary respite between outbursts of terror. We seek a peace that will end the conflict between us once and for all. We seek a peace that will last for generations -- our generation, our children’s generation, and the next.” Continuing, he said, “… a defensible peace requires security arrangements that can withstand the test of time and the many chal- lenges that are sure to confront us. … Let us not get bogged down by every dif- ference between us. Let us direct our courage, our thinking, and our decisions at those historic decisions that lie ahead.” Concluding, Netanyahu said, “President Abbas, we cannot erase the past, but it is within our power to change the future. Thousands of years ago, on these very hills where Israelis and Palestinians live today, the Jewish prophet Isaiah and the other prophets of my people envisaged a future of lasting peace for all mankind. Let today be an auspicious step in our joint effort to realize that ancient vision for a better future.” Israeli prime minister Benjamin Netanyahu, left, Against that background, Netanyahu has maintained the fundamental demand and Palestinian president Mahmoud Abbas, right, at that the Palestinians must recognize Israel as a Jewish state in his remarks the opening session of peace talks hosted by US secretary of state Hillary Clinton.
    [Show full text]
  • From Russia with Math
    HERBHigher Education in Russia and Beyond From Russia with Math ISSUE 4(6) WINTER 2015 Dear colleagues, We are happy to present the sixth issue of Higher Education in Russia and Beyond, a journal that is aimed at bringing current Russian, Central Asian and Eastern European educational trends to the attention of the international higher education research community. The new issue unfolds the post-Soviet story of Russian mathematics — one of the most prominent academic fields. We invited the authors who could not only present the post-Soviet story of Russian math but also those who have made a contribution to its glory. The issue is structured into three parts. The first part gives a picture of mathematical education in the Soviet Union and modern Russia with reflections on the paths and reasons for its success. Two papers in the second section are devoted to the impact of mathematics in terms of scientific metrics and career prospects. They describe where Russian mathematicians find employment, both within and outside the academia. The last section presents various academic initiatives which highlight the specificity of mathematical education in contemporary Russia: international study programs, competitions, elective courses and other examples of the development of Russian mathematical school at leading universities. ‘Higher Education in Russia and Beyond’ editorial team Guest editor for this issue – Vladlen Timorin, professor and dean of the Faculty of Mathematics at National Research University Higher School of Economics. HSE National Research University Higher School of Economics Higher School of Economics incorporates 49 research is the largest center of socio-economic studies and one of centers and 14 international laboratories, which are the top-ranked higher education institutions in Eastern involved in fundamental and applied research.
    [Show full text]
  • Random Walks on Locally Homogeneous Spaces
    RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES ALEX ESKIN AND ELON LINDENSTRAUSS Dedicated to the memory of Maryam Mirzakhani Abstract. Let G be real Lie group, and Γ a discrete subgroup of G. Let µ be a measure on G. Under a certain condition on µ, we classify the finite µ-stationary measures on G=Γ. We give an alternative argument (which bypasses the Local Limit Theorem) for some of the breakthrough results of Benoist and Quint in this area. Contents 1. Introduction1 2. General cocycle lemmas 15 3. The inert subspaces Ej(x) 30 4. Preliminary divergence estimates 37 5. The action of the cocycle on E 39 6. Bounded subspaces and synchronized exponents 44 7. Bilipshitz estimates 62 8. Conditional measures. 64 9. Equivalence relations on W + 67 10. The Eight Points 68 11. Case II 84 12. Proof of Theorem 1.2. 101 References 106 Index of Notation 109 1. Introduction 1.1. Random walks and stationary measures. Let G0 be a real algebraic Lie Group, let g0 denote the Lie algebra of G0, and let Γ0 be a discrete subgroup of G0. Let µ be a probablity measure on G0 with finite first moment. Let ν be an µ-stationary Research of the first author is partially supported by NSF grants DMS 1201422, DMS 1500702 and the Simons Foundation. Research of the second author is partially supported by the ISF (891/15). 1 2 ALEX ESKIN AND ELON LINDENSTRAUSS measure on G0=Γ0, i.e. Z µ ν = ν; where µ ν = gν dµ(g). ∗ ∗ G0 We assume ν(G0=Γ0) = 1, and also that ν is ergodic (i.e.
    [Show full text]
  • An Invitation to Mathematics Dierk Schleicher R Malte Lackmann Editors
    An Invitation to Mathematics Dierk Schleicher r Malte Lackmann Editors An Invitation to Mathematics From Competitions to Research Editors Dierk Schleicher Malte Lackmann Jacobs University Immenkorv 13 Postfach 750 561 24582 Bordesholm D-28725 Bremen Germany Germany [email protected] [email protected] ISBN 978-3-642-19532-7 e-ISBN 978-3-642-19533-4 DOI 10.1007/978-3-642-19533-4 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011928905 Mathematics Subject Classification (2010): 00-01, 00A09, 00A05 © Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents Preface: What is Mathematics? ............................... vii Welcome! ..................................................... ix Structure and Randomness in the Prime Numbers ............ 1 Terence Tao How to Solve a Diophantine Equation .......................
    [Show full text]
  • From Rational Billiards to Dynamics on Moduli Spaces
    FROM RATIONAL BILLIARDS TO DYNAMICS ON MODULI SPACES ALEX WRIGHT Abstract. This short expository note gives an elementary intro- duction to the study of dynamics on certain moduli spaces, and in particular the recent breakthrough result of Eskin, Mirzakhani, and Mohammadi. We also discuss the context and applications of this result, and connections to other areas of mathematics such as algebraic geometry, Teichm¨ullertheory, and ergodic theory on homogeneous spaces. Contents 1. Rational billiards 1 2. Translation surfaces 3 3. The GL(2; R) action 7 4. Renormalization 9 5. Eskin-Mirzakhani-Mohammadi's breakthrough 10 6. Applications of Eskin-Mirzakhani-Mohammadi's Theorem 11 7. Context from homogeneous spaces 12 8. The structure of the proof 14 9. Relation to Teichm¨ullertheory and algebraic geometry 15 10. What to read next 17 References 17 1. Rational billiards Consider a point bouncing around in a polygon. Away from the edges, the point moves at unit speed. At the edges, the point bounces according to the usual rule that angle of incidence equals angle of re- flection. If the point hits a vertex, it stops moving. The path of the point is called a billiard trajectory. The study of billiard trajectories is a basic problem in dynamical systems and arises naturally in physics. For example, consider two points of different masses moving on a interval, making elastic collisions 2 WRIGHT with each other and with the endpoints. This system can be modeled by billiard trajectories in a right angled triangle [MT02]. A rational polygon is a polygon all of whose angles are rational mul- tiples of π.
    [Show full text]
  • Dear Friends of Mathematics, and Translations to Complement the Original Source Material
    Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson. the web. Part of this project, which will play out over time, is to provide online annotation, commentary, Dear Friends of Mathematics, and translations to complement the original source material. The same will be done with the results of an earlier project to digitize the 888 AD copy of For the past five years, the annual meeting of the Euclid’s Elements. See www.claymath.org/library/ Clay Mathematics Institute has been a one-after- historical. noon event, held each November in Cambridge, Massachusetts, devoted to presentation of the Mathematics has a millennia-long history during Clay Research Awards and to talks on the work which creative activity has waxed and waned. of the recipients.
    [Show full text]