Lake Baringo Experience and Lessons Learned Brief
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Overview of Gases Discharged from Menengai and Olkaria High Temperature Geothermal Fields, Kenya
Proceedings 5th African Rift geothermal Conference Arusha, Tanzania, 29-31 October 2014 Comparative Overview of Gases Discharged from Menengai and Olkaria High Temperature Geothermal Fields, Kenya 1Jeremiah K., Ochieng L., Mibei G., Kanda K. and Suwai J. Geothermal Development Company P.O.Box 17700 – 20100, Nakuru Kenya [email protected] Key words: Menengai, reservoir characteristics, Olkaria, discharge vapors, triangular diagrams ABSTRACT An analogy of representative gas compositions from wells drilled into the Menengai and Olkaria volcanic geothermal systems is presented in this paper with a view of drawing parallels as well as identifying variances in the characteristics of the reservoirs tapped by the wells. This contribution seeks to provide an insight into the possible processes that govern the composition of well discharge vapors as well as characterize the Menengai and Olkaria geothermal reservoirs. To achieve this, triangular diagrams comprising two major chemical constituents, H2O and CO2, together with other gas species H2S, H2, CH4 and N2 were employed to compare the chemical characteristics of vapors discharged from these two systems. It is found that the Olkaria reservoir fluids generally exhibit high H2O/CO2 ratios relative to the Menengai fluids. This is attributed to variations in CO2 gas content. High H2S content seems to characterize Menengai wells, particularly those that discharge from the vapor dominated zones. This inference is indicative of either a higher flux of magmatic gas or enhanced boiling in the reservoir as a consequence of a higher heat flux. The latter is found to be common in the wells as this inference is also complemented by the significantly high H2 content reported. -
Conserving Wildlife in African Landscapes Kenya’S Ewaso Ecosystem
Smithsonian Institution Scholarly Press smithsonian contributions to zoology • number 632 Smithsonian Institution Scholarly Press AConserving Chronology Wildlife of Middlein African Missouri Landscapes Plains Kenya’sVillage Ewaso SitesEcosystem Edited by NicholasBy Craig J. M. Georgiadis Johnson with contributions by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines. -
George Muia the “Turkana Grits”: Potential Hydrocarbon Reservoirs
THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Sciences de la Terre Ecole Doctorale Sciences de la Matière présentée par George Muia Préparée à l’unité de recherche UMR 6118 Géosciences Rennes Observatoire des Sciences de l’Univers de Rennes Thèse soutenue à Rennes The “Turkana Grits”: le 24/07/2015 Potential Hydrocarbon devant le jury composé de : Jean-Luc POTDEVIN Reservoirs Professeur, Université de Lille 1 / rapporteur of the Northern Stéphane DUCROCQ Directeur de Recherche, and Central Kenya Rifts CNRS-Université de Poitiers / rapporteur Jean-Yves REYNAUD Professeur, Université de Lille 1 / examinateur Mathieu SCHUSTER Chargé de Recherche, CNRS Université de Strasbourg / examinateur Peter R. COBBOLD Directeur de Recherche Emérite, CNRS Université de Rennes 1/ examinateur Jean-Jacques TIERCELIN Directeur de Recherche, CNRS-Université de Rennes 1 / directeur de thèse Erwan HALLOT Maître de Conférences Université de Rennes 1 / co-directeur de thèse The “Turkana Grits”: Potential Hydrocarbon Reservoirs of the Northern and Central Kenya Rifts 3 Table of contents Acknowledgements 6 Abstract 8 General Introduction 9 Chapter I 21 1. Introduction 30 2. Field study, sampling and analytical methods 35 3. Regional background of the Central and Northern Kenya Rifts 37 3.1. Physiography and climate of the Central and Northern Kenya Rifts 37 3.2. Geological outline of the Kerio and Baringo Basins 40 3.3. Geological outline of the North Kerio Basin 43 4. The Kimwarer Formation 45 4.1. Lithostratigraphy 45 4.1.1. The “Lower Kimwarer Formation” 47 4.1.2. -
"Afrika-Studien" Edited by Ifo-Institut Für Wirtschafts- Forschung E
© Publication series "Afrika-Studien" edited by Ifo-Institut für Wirtschafts- forschung e. V., München, in connexion with Prof. Dr. PETER VON BLANCKENBURG, Berlin Prof. Dr. HEINRICH KRAUT, Dortmund Prof. Dr. OTTO NEULOH, Saarbriicken Prof. Dr. Dr. h. c. RUDOLP STUCKEN, Erlangen Prof. Dr. HANS WILBRANDT, Gottingen Prof. Dr. EMIL WOERMANN, Gottingen Editors in Cbief: Dr. phil. WILHELM MARQUARDT, München, Afrilca-Studienstelle im Ifo-Institut Prof. Dr. HANS RUTHENDERG, Stuttgart-Hohenheim, Institut für Auslandische Landwirtscliafl AFRIKA-STUDIENSTELLE MWEA An Irrigated Rice Settlement in Kenya Edited by ROBERT CHAMBERS and JON MORIS WELTFORUM VERLAG • MÜNCHEN M. The Perkerra Irrigation Scheme: A Contrasting Case by ROBERT CHAMBERS I. Historical Narrative 345 II. The Problems Experienced 352 1. Construction and Irrigation Problems 352 2. Production and Marketing Problems 353 3. Problems of Tenants and Staff 355 4. Problems of Organisation and Control 358 III. Some Concluding Lessons 361 List of Tables 1. Development Targets and Adiievements 349 2. Finance and Settlement 350 3. Onion Acreages and Yields 354 4. The Perkerra Local Committee 360 It is difficult to appreciate adequately a single development project con- sidered in isolation from its environment and from the record of similar projects elsewhere. To give a sharper focus to our review in this book of the achievements of the Mwea Irrigation Settlement, this chapter describes the very different history of effort and expenditure on a sister scheme whidi was started at the same time and for much the same reasons as Mwea. The Per- kerra Irrigation Scheme is located in the Rift Valley north of Nakuru (see Chapter A, Fig. -
Biogeochemistry of Kenyan Rift Valley Lake Sediments
Geophysical Research Abstracts Vol. 15, EGU2013-9512, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License. Biogeochemistry of Kenyan Rift Valley Lake Sediments Sina Grewe (1) and Jens Kallmeyer (2) (1) University of Potsdam, Institute of Earth and Environmental Sciences, Geomicrobiology Group, Potsdam, Germany ([email protected]), (2) German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam, Germany ([email protected]) The numerous lakes in the Kenyan Rift Valley show strong hydrochemical differences due to their varying geologic settings. There are freshwater lakes with a low alkalinity like Lake Naivasha on the one hand and very salt-rich lakes with high pH values like Lake Logipi on the other. It is known that the underlying lake sediments are influenced by the lake chemistry and by the microorganisms in the sediment. The aim of this work is to provide a biogeochemical characterization of the lake sediments and to use these data to identify the mechanisms that control lake chemistry and to reconstruct the biogeochemical evolution of each lake. The examined rift lakes were Lakes Logipi and Eight in the Suguta Valley, Lakes Baringo and Bogoria south of the valley, as well as Lakes Naivasha, Oloiden, and Sonachi on the Kenyan Dome. The porewater was analysed for different ions and hydrogen sulphide. Additionally, alkalinity and salinity of the lake water were determined as well as the cell numbers in the sediment, using fluorescent microscopy. The results of the porewater analysis show that the overall chemistry differs considerably between the lakes. In some lakes, concentrations of fluoride, chloride, sulphate, and/or hydrogen sulphide show strong concentration gradients with depth, whereas in other lakes the concentrations show only minor variations. -
RIFT VALLEY LAKES-LEVEL RISE and FLOOD CHALLENGES Lakes Nakuru, Bogoria, Baringo Onywere, Et Al Kenyatta University [email protected] [email protected]
Understanding the Environment, Promoting Health in Lake Baringo and Bogoria Drainage Basin RIFT VALLEY LAKES-LEVEL RISE AND FLOOD CHALLENGES Lakes Nakuru, Bogoria, Baringo Onywere, et al Kenyatta University [email protected] [email protected] Onywere et al (2013) - KU NACOSTI - Project participants • Prof. Simon M Onywere – Kenyatta University and Team Leader (geospatial mapping and environmental health analysis) • Prof. Chris Shisanya – Kenyatta University (Biodiversity assessment, irrigation agriculture and water quality) • Prof. Joy Obando – Kenyatta University (Community livelihood systems and health) • Dr. Daniel Masiga – ICIPE (Bacteriological analysis) • Mr . Zephania Irura – Division of Diseases Surveillance and Response (DDSR), Ministry of Public Health and Sanitation – (health implications of consumption of contaminated waters) • Dr. Nicholas Mariita – Kengen (geophysical survey and mapping of shallow aquifers) • Mr. Huron Maragia - Mines and Geology (Chemical analysis, geochemistry and geohazards • Mr. Antony Oduya Ndubi - FAO Somalia, SWALIM Project (Image Data analysis) Onywere et al (2013) - KU Unprecedented lakes level rise in the Rift Valley • Are we prepared for the consequences? • Recent events in the rift valley in Kenya and at least since the long rains of 2011 have seen a consistent and increased recharge into all the Rift Valley lakes • This has lead to the lake levels rising to unprecedented levels since 1963 when the event was last observed. • Historical records also indicate a flooded lake environment in -
Wetlands of Kenya
The IUCN Wetlands Programme Wetlands of Kenya Proceedings of a Seminar on Wetlands of Kenya "11 S.A. Crafter , S.G. Njuguna and G.W. Howard Wetlands of Kenya This one TAQ7-31T - 5APQ IUCN- The World Conservation Union Founded in 1948 , IUCN— The World Conservation Union brings together States , government agencies and a diverse range of non - governmental organizations in a unique world partnership : some 650 members in all , spread across 120 countries . As a union , IUCN exists to serve its members — to represent their views on the world stage and to provide them with the concepts , strategies and technical support they need to achieve their goals . Through its six Commissions , IUCN draws together over 5000 expert volunteers in project teams and action groups . A central secretariat coordinates the IUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources , as well as providing a range of services . The Union has helped many countries to prepare National Conservation Strategies , and demonstrates the application of its knowledge through the field projects it supervises . Operations are increasingly decentralized and are carried forward by an expanding network of regional and country offices , located principally in developing countries . IUCN — The World Conservation Union - seeks above all to work with its members to achieve development that is sustainable and that provides a lasting improvement in the quality of life for people all over the world . IUCN Wetlands Programme The IUCN Wetlands Programme coordinates and reinforces activities of the Union concerned with the management of wetland ecosystems . -
Nature [October 12, 1929
574 NATURE [OCTOBER 12, 1929 The alkali reserve of Lake N aivasha, expressed in Letters to the Editor. normality, was 0·004 (cf. Cambridge tap water 0·0042 N.), but instead of calcium, as in English hard waters, [The Editor does not hold himself responsible for the base was sodium derived from the surrounding opinions expressed by his correspondents. Neither alkaline lavas. This may have had a specific effect, can he undertake to return, nor to correspond with as in increasing concentrations the alkalinity appeared the writers of, rejected manuscripts intended for this to effect a marked reduction in quantity of both fauna or any other part of NATURE. No notice is taken and flora. The other lakes illustrated this, since their of anonymous communications.] alkalinity increased in the order: L. Baringo (0·01 N.), Crater Lake (0·11 N.), L. Elmenteita (0·22 N.), and L. Biology of Lakes in Kenya. Nakuru (0·27 N.). This increase raised the hydrogen WESENBURG-LUND, Thienemann, and others have ion concentration from pH 9·0 to about pH ll·2. for years been emphasising the need for more detailed Lake Baringo contained Crustacea, Rotifera, insect studies of tropical fresh waters. Having recently larvre, and fish, and also Microcystis sp., but no higher plants were seen. The three others, ' soda ' lakes, contained chiefly Roti fera and insect larvre, Lake Nakuru having apparently only one species of Brachionus. They were further characterised by the presence of a very abundant blue - green alga, Spirulina sp., in the plankton and an entire absence of shore vegetation, which was replaced by foul, barren mud, largely admixed with flamingo excreta. -
Implications of the Distribution of Seismicity Near Lake Bogoria in the Kenya Rift
Geophys. J. Int. (1991) 105, 665-674 Implications of the distribution of seismicity near Lake Bogoria in the Kenya Rift P. A. V. Young,'" P. K. H. Maguire,' N. d'A. Laffoley' and J. R. Evans2 'Department of Geology, Leicester University, University Road, Leicester LE1 7RH, UK 'British Geological Survey, Murchbon House, West Mains Road, Edinburgh EH9 3LA, UK Accepted 1991 January 2. Received 1990 July 19; in original form 1988 May 5 SUMMARY Previous seismicity studies in the Kenya Rift have not been able to determine accurately depths of earthquakes, nor have most of them determined epicentres precisely enough to allow correlation of the seismicity with particular surface features. We operated a small dense seismic array for 3 months near Lake Bogoria in the Kenya Rift with the aim of locating microearthquakes in 3-D. 572 earthquakes, 81 per cent with ML< 1.0, have been located. The majority of the events are associated with the larger older faults on the Rift shoulder rather than the young 'grid' faults in the centre of the Rift. Seismic activity in the central trough cannot be related directly to the surface faulting; we infer that it indicates the presence of deep buried faults. This possibility has important implications for extension estimates and models of the Rift. Most of the activity occurs at depths less than 12 km, and no normal activity is deeper than 16 km. There is a peak in seismic activity at a depth of 9-10 km and the cut-off depth for brittle failure is taken at 12 km. -
RTJRC24.10 (Baringo GTI Hall, Kabarnet)
Seattle University School of Law Seattle University School of Law Digital Commons The Truth, Justice and Reconciliation I. Core TJRC Related Documents Commission of Kenya 10-24-2011 Public Hearing Transcripts - Rift Valley - Baringo - RTJRC24.10 (Baringo GTI Hall, Kabarnet) Truth, Justice, and Reconciliation Commission Follow this and additional works at: https://digitalcommons.law.seattleu.edu/tjrc-core Recommended Citation Truth, Justice, and Reconciliation Commission, "Public Hearing Transcripts - Rift Valley - Baringo - RTJRC24.10 (Baringo GTI Hall, Kabarnet)" (2011). I. Core TJRC Related Documents. 107. https://digitalcommons.law.seattleu.edu/tjrc-core/107 This Report is brought to you for free and open access by the The Truth, Justice and Reconciliation Commission of Kenya at Seattle University School of Law Digital Commons. It has been accepted for inclusion in I. Core TJRC Related Documents by an authorized administrator of Seattle University School of Law Digital Commons. For more information, please contact [email protected]. ORAL SUBMISSIONS MADE TO THE TRUTH, JUSTICE AND RECONCILIATION COMMISSION ON MONDAY, 24 TH OCTOBER, 2011 AT BARINGO GTI HALL, KABARNET PRESENT Tom Ojienda - The Presiding Chair, Kenya Ahmed Farah - Commissioner, Kenya Berhanu Dinka - Commissioner, Ethiopia Ronald Slye - Commissioner, USA Margaret Shava - Commissioner, Kenya Gertrude Chawatama - Commissioner, Zambia SECRETARIAT Patrick Njue - Leader of Evidence IN ATTENDANCE Dr. Samuel Tororei - Commissioner, KNCHR Rev. Lawrence Bomet - Commissioner, NCIC (Opening Prayers) (The Commission commenced at 10.05 a.m.) The Presiding Chair (Commissioner Ojienda): Thank you all once again. As part of the process, I want to specifically welcome the dancers from the Ilchamus community who are here to invite the Commission. -
Displacement Situation at Arabal Division and Sibilo Locations In
Displacement situation at Arabal Division and Sibilo Locations in Marigat and Baringo North Districts of Baringo County: - Kenya Initial Rapid Assessment Report Visited the affected areas (Arabal and Sibilo areas) on 22nd and 23rd January 2013 and triangulated it with Secondary Data from Kenya Red Cross Society and Government of Kenya officers CONTEXT: Brief description of the event and the location To undertake a multi-sector rapid assessment in line with the Kenya Initial Rapid Assessment (KIRA) process in areas hosting displaced communities Mission objectives To conduct a multi-sectoral rapid assessment following insecurity in Muchongoi division of Marigat district to identify gaps that need to be addressed in terms of humanitarian needs. Meet with GOK and Partners taking part in resolving issues surrounding the conflict in Marigat and Baringo north Districts Review sectoral issues of the IDP’s and host community and make recommendation on action to be taken Identify the reasons behind the displacement and highlight coping mechanisms of the community and their proposed solutions Mission dates 22nd and 23rd January 2013 Spatial coverage The mission will cover Marigat and Baringo north District the site of the recent cattle rustling incident that resulted in mass displacement of local population Mission team composition Paul Mutinda Kituku 0723 251828 [email protected] (Team leader) Lorraine Ombech 0728 602541 [email protected] Gabriel Wambua 0723 747676 [email protected] Stella Chumo 0722 475693 [email protected] Carlos, Based in Marigat 0721 929112 [email protected] Charlotte Mathysse 0732 436713 [email protected] Dr. S. Wanguru 0720 940577 [email protected] Faith Muriuki 0721 822232 [email protected] Joe Shields 0732 436716 Marigat District Background Information The larger Baringo county is divided into four administrative districts namely: Baringo Central, Baringo North, Marigat and East Pokot. -
Kenyas Geothermal Prospects Outside Olkaria
Mwangi, M.: Geothermal in Kenya and Africa Reports 2005 Number 4, 41-50 GEOTHERMAL TRAINING PROGRAMME LECTURE 4 KENYA’S GEOTHERMAL PROSPECTS OUTSIDE OLKARIA: STATUS OF EXPLORATION AND DEVELOPMENT Godwin M. Mwawongo Kenya Electricity Generating Company Ltd, Olkaria Geothermal Project P.O. Box 785, Naivasha 20117 KENYA [email protected] ABSTRACT Implementation of the geothermal resource assessment program (GRA) has resulted in exploration studies being done in five other prospects in the Kenyan rift between 2004 and 2005. The same studies in all the geothermal prospects north of Lake Baringo will be complete by 2010. So far Menengai is ranked first followed by Longonot and Suswa. For prospects with no central volcano, L Baringo is ranked last after L Bogoria and Arus. Over 6,838 MWt is lost naturally from the already explored geothermal prospects in the rift. Areas of heat leakages in the rift are controlled by NW-SE trending faults. At Olkaria, over 84,800 GWH have been generated from geothermal resulting to a saving of over 4,900 million US$ in foreign exchange. 1. INTRODUCTION Kenya is located in the eastern part of Africa with 14 geothermal prospects identified in the Kenya rift starting from Barrier in the north to L Magadi in the south with an estimated potential of over 2000 MWe (Omenda et al., 2000). Studies done in the rift in mid 1960 identified Olkaria as the most economical prospect to develop (KPC, 1994). Exploration and field development was then done leading to the establishment of sectors which form the Great Olkaria Geothermal area (GOGA) currently with an installed capacity of 130 MWe.