entropy Article Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality Evgeny M. Mirkes 1,2,∗ , Jeza Allohibi 1,3 and Alexander Gorban 1,2 1 School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7HR, UK;
[email protected] (J.A.);
[email protected] (A.G.) 2 Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University, 603105 Nizhny Novgorod, Russia 3 Department of Mathematics, Taibah University, Janadah Bin Umayyah Road, Tayba, Medina 42353, Saudi Arabia * Correspondence:
[email protected] Received: 4 August 2020; Accepted: 27 September 2020; Published: 30 September 2020 Abstract: The curse of dimensionality causes the well-known and widely discussed problems for machine learning methods. There is a hypothesis that using the Manhattan distance and even fractional lp quasinorms (for p less than 1) can help to overcome the curse of dimensionality in classification problems. In this study, we systematically test this hypothesis. It is illustrated that fractional quasinorms have a greater relative contrast and coefficient of variation than the Euclidean norm l2, but it is shown that this difference decays with increasing space dimension. It has been demonstrated that the concentration of distances shows qualitatively the same behaviour for all tested norms and quasinorms. It is shown that a greater relative contrast does not mean a better classification quality. It was revealed that for different databases the best (worst) performance was achieved under different norms (quasinorms). A systematic comparison shows that the difference in the performance of kNN classifiers for lp at p = 0.5, 1, and 2 is statistically insignificant.