Extra Super Duralumin and Zero Fighter -History of Extra Super Duralumin- Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Extra Super Duralumin and Zero Fighter -History of Extra Super Duralumin- Part 2 住友軽金属技報一解… 第54巷第1号一説… (2013) 264-326 超々ジュラルミンと零戦 -超々ジュラルミン開発物語- (その2) * 雄権移 青 田 英 Sumitomo Light Metal Technical Reports, Vol. No. l (20 13), pp. 264. 326 54 Extra Super Duralumin and Zero Fighter -History of Extra Super Duralumin- Part 2 Hideo Y oshida The history of the development of the Extra 8uper Duralumin is divided in three stages; first pre-history before the invention of the E8D, next, the invention of the E8D and its commerCial production during World War!I, and finally, the development of high strength aluminum alloys after World War 1L The pr・e-history was summarized in a preceding issue. In this issue, the second and third stages are summarized. ln the second stage, aluminum was introduced into Japan in 1886 and 8umitomo began to produce aluminum sheets in 1898. 1n World War 1, 8umitomo received part of the frame of the Zeppelin airship from the Japanese Navy in 1916 and produced Duralumin in 1919. To produce the Duralumin, 8umitomo sent engineers to Dürener Metallwerke after the World War 1 as compensation for the war. Sumitomo also cooperated with Alcoa on manufactur ing equipment and it was possible to produce 8uper Duralumin (8D) , similar to 248, which was used in the Mitsubishi Navy Type 96 Carrier-Based Fighter. The Japanese Navy demanded a higher strength aluminum alloy than 248. Dr. 19arashi and his cooperators invented Extra Super Duralumin (E8D) with a tensile strength of 60kgfjmm ' within 1936 within a short time of period 1mmediately, this new alloy, E8D, was applied to the main wing of the Zero Fighter, which be­ came the main fighter for J apan in World War 1L To produce Duralumin, 8D and E8D in large amounts, Sumitomo developed a new continuous casting facility, and b山lt a new pl出1t in Nagoya and then introduced new rolling mills, new extruding presses, etc. E8D was invented by so1ving the problem of season cracking (now called stress corrosion cracking) , which was prevented by the ad dition of chromium to the AI-Zn-Mg-Cu alloys. However, U8 forces found the secret of E8D by in­ vestigating a downed Zero Fighter. Based on E8D, Alcoa developed the 7075 alloy in 1943, which is even now a typical aluminum alloy for aircrafts and is available all over the world. After World War II, high strength aluminum alloys were needed for railway cars, motorcycles and automobiles instead of aircraft in Japan. 1n the railway cars, weldable Al-Zn-Mg alloys were noted in Europe and USA, which were already developed as good extruding alloys during the war and known as Honda Duralumin (HD) in Japan. 1n 8umitomo, Dr. Baba found through basic research that zir conium decreases the quench sensitivity compared to chromium in the AI- Zn-Mg alloys and pre­ vents the weld crack and stress corrosion cracking, and he and his coworker invented a new AI-Zn Mg alloy containing zirconium instead of chromium for the first time in the world. He then invented a new extruding AI-Zn-Mg alloy, 7003, with a good extrudability and medium strength the s田ne as the 6061 alloy by air cooling. These alloys were used for the body structure of railway 阻四回d rims, frames of motorcycles and the bumper reinforcement of automobiles. On the other hand, high strength aluminum alloys for aircrafts were used for the front fork of motorcycles and 264 Vol.54 No.1 超々 ジュラJレミ ンと零戦 …超々 ジュラJレ ミ ン開発物語 (その 2) 265 baseball bats. For airplanes, Dr. Baba and his coworkers invented the 7075 alloy sheet with fine grains for the taper-rolled stringer of the B767. Recently, the 2013 alloy with a good workability was invented in cooperation with Kawasaki Heavy Indus七ries. This alloy sheet is formed in T4 and it is possible to omit the quenching after forming and correction processinιMoreover it is possi­ ble to extrude hollow section and form integrated structures with this alloy. Therefore, this alloy has contributed to saving processing costs and reduce the weight. Hereafter, we are expected to de velop aluminum alloys av剖lable for the Japanese aircraft industries in cooperation with govern­ ment and academia, taking over the tradition of ESD. きた。 彼は NPL (National Physical Laboratory) の 3. 超々ジュラルミンの開発 ローゼンハイ ン (W. Rosenhain) に 師事 していて英国 3. 1 アルミヱウムの日本への導入1,2,3) の7;レミニウ ム製造技術を把握していたことによる。 ホ ーノレとエノレーが7;レ ミニウムの霞解精錬法を発明 し 1922年1月から 8 ヶ月間, 住友伸鋼所に嘱託と して採 た1886 年の翌年には, 少量の アノレ ミニウ ムが陸軍砲兵 用され, 鋳造, 圧延, 押出, 抽伸の各部門 と波板と形材 工廠に輪入 され, 貴重品扱いで金庫に保管さ れたよ うで の製造方法について指導 した。 また, 初めて傾斜鋳造法 ある。 その後, 箪需用器物と して使用されたのは 1894 が紹介され, 従来造塊方法である 「平流 し法J あるいは 年か らである。 住友伸銅場は1897 年安治川 に関設され, 「縦流 し法」 が改め られた。 傾斜鋳造法は, ローゼンハ 翌年一 陸軍砲兵工廠から地金を受取 り, アノレミニウムを イン博士の考案によるもの で, Fig. 1に示すよ うに傾斜 圧延 して納入 した。 1913年7月, 住友伸鋼所 (同年 6 させた鋳塊をハ ンドノレ操作で機械的に立てながら鋳込む 月に伸銅場か ら仰鋼所と改称) は農商務省技師で金属製 方式である。 ベーガン氏はハンド ノレ操作の代わ りに鋳型 品の分析 ・ 試験に従事 し ていた杉浦湖三 (しげぞう) 氏 の下の隅をチ ェイ ンブロ ックで吊 り下げ, 鋳裂を傾斜さ を招いて試験係に任 じた。 1916 年には, 杉浦氏 は「自 せ, 格湯を注ぎ込みながら徐々 に鋳型を立ててい くよう 身で研究開発 しなければ, 何時ま でたっても外国の下位 に改良 した。 これによりジュラノレ ミ ン鋳塊は板用が厚さ . に立たねばな らないJ, , 工場に研究か専隠することによっ 2.25" (57mm), 捺用が直径 35"(89mm) となった。 焼 て, 官立の試験所では出来ないような工場規撲の研究が 入れにも彼の指導で硝石炉を使用するようになった。 行え る」 と発案し研究課が設けられた。 日本で工場に研 究課が設置されたのはこれが最初である。 1916 年末, この年の 4月中島式ブレゲー型飛行機の機体構造には 海軍艦政本部, 大阪海軍監督官長経由でツェッペリ ンの じめて伸鋼所製ジュラノレミ ンを使った。 「軽銀」 号と命 残骸が住友伸縮所に持ち込まれ, 翌年 この材料の調査を 名された。 ジュラノレミ ン使用 の全金属機が生産されたの 行ったのが研究課の杉浦氏であ った。 その分析結果や英 は1925年のことである。 Fig. 2は東京上野で開催され 罰金属学会誌 JIM (Journal Institute of Metals) の 文献を もとに, 工場における試作研究を開始 し, 1919 年工場試作が完了 L, 1住友軽銀J, .ラルミ ン (ジュラルミ ンとノレピ がふ ら れた) と命名された。 この当時のジュラノレミ ンの 』。百EO制宮古ωzc。ωbwoE苦ω』自主 成分 はCu 4 %, Mg 0.5%, Mn l.0%, Al 残である。 \ 海軍か ら住友伸鋼所にこの調査依頼 した経緯は明らかで ないが, 杉浦は「当時は金属に関する研究機関が少なし 住友伸銅所は一つの独立 し た金属専門の研究部門を持っ ていたためではないか」 と述べている。 1921 年伸鋼所 ‘、、 は初めて ジュ ラノレミ ンの工業生産を行い, 横須賀海軍工 廠において国産化 した英国 ピッカース社製SS型軟式飛 Shaft for opening mold 行船の 吊 り 船やそのほかの構造材料と し て板管棒計 1ト ン余り を受注した4,5 )。 当時のジュ ラノレミ ン製造技術はきわめて初歩的な もの であったため, 海軍は飛行艇を建造するため招轄 した技 術者の中で, ベーガン (Pagan) 氏を伸鋼所に推薦 して 本稿はア ルトピア, Vol.42 (201幻, No.12, Vol.43 (初回), No.1 � 7に掲載したものに加筆して転載したも白 日研究開発センター 顧問, 工学博士 Inclined Casting1) Fig.l 265 266 住友軽金属技報 2013 L, この鋳塊を 1000 トン竪型水圧機で鍛造後, 帯状圧 延しようとする製造法である。 しかし, この計画は工場 移転の議が起こ り, 1928 年の桜島新工場移転まで持ち 越された。 この間, 1926 年住友合資会社よ り分離して 住友伸銅鋼管株式会社が設史され, アノレコア社との提携 が1928 年成立した。 7Jレコアネ土は地金販路拡大のため, 日本の加工会社と の提携を模索 しており, 1925 年株式 Fig.2 Breguet 14も ype aircraft, named "Keigin" 会社住友電線製造所 との提携が成立, この関係か ら{申銅 fabricated by Nakajima Aircraft Indus� 七n e喝ltd 鋼管 もアノレコアと提携し, 溶解炉とアノレミ板専用の圧延 (http : /fw ww.ne.j p/ asahif airpl田 e/ 工場を建設す る こととなった。 なお, アノレコ7は1928 museumjnakaj imajnakaj ima.html) 年5月, カ ナダ法人の アノレミニウム ・リミティッド (ア ノレキ ャン) を設立したため提携先も海外事業を主とする た平和博覧会に展示古れたジュラノレミ ンを使用した 「中 アノレキ ャンに変わ った。 1930 年, アノレキ ャンとの合弁 島式 B-6型 (ブレゲー 14 型) 軽銀号J である6)。 で桜島の板工場 と八尾の箔工場を母体に住友アル ミニウ ム株式会社 〔現, 東洋アルミ ニウム) が設立された。 同年, 第一次世界大戦が終わり, 日本は戦勝国 として 桜島移転に伴い, プロペラ麹素材やク ランクシャフ ト ドイ ツから賠償の lっとして何百台かの飛行機を受け取 などの大型鍛造品, 薄板を板曲げとダイ 拙伸で製造す る ることになっていたが, í飛行機を得るのは全く の一時 プロフィノレ品, また鋳造, 庄延, 押出ならびに抽伸に関 の利得であり, むしろ, その製作技術, 例えば機体の設 する設備の拡充と新技術の採用が行われた。 当時の飛行 計とか軽合金の製法を習得する方が国家百年の大計であ 船などの骨組みに使用されたのはジュ ラルミ ン板を曲げ る」 とされ, その結果ジュ ラノレミ ン製造技術習得団が派 加工 したプロ フィノレで, 押出形材の最小肉厚は3mm 遣される ことになったロ 1922年3月, 習得団は, 海軍 が限度であ ったため, 板か らのプロフィノレが用いられた。 造機大佐石川登喜治を団長 とし, 陸海軍それぞれ若干名 プロフィノレは厚さが 0.4-0.6mm 程度, 長さが4- 5m と住友伸鋼所の技術者 4名をもって組織 された。 住友伸 である。 1939 年頃になると押出最小肉厚は 1.2mm とな 鋼所か らは, 工作諜の藤井成美氏, 管棒工場の野本徳次 り, これよ り薄くする場合には圧延と抱伸で仕上げた。 郎氏, 小板工場の柴田吉三郎氏, 鋳造工場の山本正雄氏 (1) 鋳造技術 が参加 した。 1922年4月初 日出発, 7月下旬デュ レン この桜島新工場の鋳造設備は, 可傾炉 4基, t甘禍炉 に到着 し, 9月中旬まで, デュ レ ナ・メタノレヴェノレケ社 48 基であ る。 最初 は80kg 角型鋳塊, 直径 140mm の (Dürener Metallwerke A. G.) でジュラJレミ ン製造技 40kg 鋳塊が傾斜鋳造法で鋳込まれたが, 1931 年には, 術を実習, その後ドイツ, 英国の工場を見学して, 翌年 鍛造素材用 に11- 13" 角型鋳塊 (110- 120kg) が, 管 2月 23日帰国 した。 デュ レ ナ・メタノレヴェノレケ社では 用には直径 150mm の 30kg 鋳塊または直径 9 " の 50kg 「向社の作業員と同様に勤務して習得 した内容を毎週取 鋳塊が造塊され, 逐次大型化に移行した。 溶解炉はアノレ りまとめ, 同社提供の ジュラノレミ ン製造方法習得警 と照 キャンと 協議 した結果9 ト ン反射炉を初めて採用 した。 合検討のよ,疑問点は質問 し て技術の真髄を習得す るよ 反射炉の前には傾斜鋳造機が 4列, 計16基が配霞され, うに努めた」 とのことである。 なお,同社は ウイJレムの 朝8時半か ら鋳込み開始 し午後 3 時半鋳込み終了, 炉内 特許を工業化L, 当時, 英米仏等の諸国に特許を分譲 し 清掃 し, 夜間に 11 トン溶解する一日ー溶解方式であっ ていた関係か ら, 一行の技術習得に関 して住友の名にお た。 鋳型は ブッ クモール ドで, 鋳造方法は反射炉よ り 溶 いて有償契約の締結が要望され, その結果, 陸海軍関係 湯を取鍋に入れ, 60 度傾斜している鋳型に鋳込み始め, 者も形式上は住友派遣員 として実習した。 なお, ジュラ 鋳型を徐々に閉転させ垂直にな っ て鋳込みが終了する。 ノレ ミ ン製造技術習得団と ともに金属機体製造技術管得団 この当 時の板用鋳塊寸法は 4.5" (厚み) 11" 24" (約 x x も渡独している。 ジュラJレミ ンに関しては, 古河電工も 53kg) であった。 1931 年には反射炉を利用 してジュラ 1922 年研究を開始 し 1926 年陸軍か ら試作品の製造を命 ノレ ミ ンの祷解 ・ 鋳造の実験が行われた。 じられた。 1928 年, プロペラ麹素材の鍛造が始ま り, 大型鋳塊 の必要が生 じた。 プロペラ麹鍛造用鋳塊はバケ ツ型で, 3. 2 住友 におけるジュラルミン製造技術の確立 1931 年頃は上部直径 330mm, 下部直径 305mm, 高さ (桜 島新工場建設) 483mm, 110kg で, これが次第に大 きくなっ て, 1942 1,2,3) 1923 年, ベーガンの指導と 「ジュ ラノレミ ン製造技術 年頃には, 上部直径が 600mm, 下部直径が 800mm, 習得回」 によってもたらされた技術を組み合わせること 500kg 鋳塊が用 いられている。 材質は 25S(Al-4.5%Cu によって, 新しい製造設備を起業す る計画が立て られた。 0.8%Si-0.8%Mn) である。 圧風式可傾炉を用い 8 "角型鋳塊を傾斜鋳造機で造塊 1931- 1940 年, 鋳型を木炭で加熱後, 反射炉か ら注 266 Vo1.54 No.l 超々ジュラルミンと零戦ー超々ジュラルミン開発ド物語一(そ白2) 267 /易 L, 空タ ンク内に入れ, 鋳型の下部を周囲か ら放水し ここで特徴的なことは, 鋳塊を その厚吉の2/ 3程度 て冷却 し, 逐次, 放水を鋳裂上部に移して凝固させる方 に圧延 し,面自Ijし庇を除去後再加熱し, 通常の熱悶圧延 式を採用 しており, 水冷鋳型法と称した。 問題は鋳塊の を行う 押え圧延である。 押え圧延の考え方は, 戦後の高 中心に巨大金属関化合物が生じやすいことである。 こ れ 靭性高強度合金の開発の中で提唱された中間加工熱処理 を改良す るためにFig.3 に示すよ う な加熱水冷式鋳造 の考え方の原型となる もので, 鋳造組織を鍛錬によ って 法 (SKS- II式, SKS: Sumitomo Kinzoku Shindosho 如何に壊すかというこ とが課題であ る。 当時, 他社では の目的が開発された。 溶湯を入れた鉄製取鍛を木製水槽 熱間鍛造で行われていた。 クラッ ド材については, 鋳塊 の中に徐々に降下させ冷却 させるが, 水槽 に入 るまでを の両面に所定の厚さ に圧延 し た皮材を被捜 し, 鉄のバ ン ガスバーナーと水スプレ で冷却速度を調節す る方式で ドで締め付 けたあと熱悶圧延で圧着 したが, 後に鋳造時 ある。 に皮材を溶着させてか らは皮付 き鋳塊を用いて前述の工 (2)庄延技術 程で熱間庄延された。 な お新設の三段熱隠圧延機は主に 板工場の主要設備は三段熱間圧延機 1基, 大型二段圧 銅及び黄鋼板に用いられたが, プロ フィル用にも用いら 延機 10 基, 小型二段圧延機 12 基, 板引張矯正機 l基, れた。 石炭炉 10 基であ った。 内, 新設 したものは幅 4' 迄圧 冷問圧延では, 大板は 3'X6', 4'X8', 5'XlQ'な 延可能 なKrupp 社製三段熱間圧延機, 英国 Robertson らびに 1000 2000mm の4種類, 小板は 400 1200mm, x x 社製小稿用圧延機, 石炭炉は
Recommended publications
  • Isothermes Kurzzeitermüdungsverhalten Der
    i N Osama Khalil u2Mg1,5 C l A ISOTHERMES KURZZEITERMÜDUNGS- VERHALTEN DER HOCHWARMFESTEN ALUMINIUM-KNETLEGIERUNG 2618A verhalten von (AlCu2Mg1,5Ni) SCHRIFTENREIHE DES INSTITUTS FÜR ANGEWANDTE MATERIALIEN BAND 34 Isothermes Kurzzeitermüdungs O. KHALIL Osama Khalil Isothermes Kurzzeitermüdungsverhalten der hochwarm- festen Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) Schriftenreihe des Instituts für Angewandte Materialien Band 34 Karlsruher Institut für Technologie (KIT) Institut für Angewandte Materialien (IAM) Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buches. Isothermes Kurzzeitermüdungs- verhalten der hochwarmfesten Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) von Osama Khalil Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Maschinenbau Tag der mündlichen Prüfung: 15. Januar 2014 Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2014 ISSN 2192-9963 ISBN 978-3-7315-0208-1 DOI 10.5445/KSP/1000040485 Isothermes Kurzzeitermüdungsverhalten der hochwarmfesten Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) Zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften an der Fakultät für Maschinenbau des Karlsruher Institut für Technologie (KIT) genehmigte Dissertation von Dipl.-Ing.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • Advantages of Aluminium
    Aluminium Information Advantages of Aluminium Advantages of Aluminium A unique combination of properties makes aluminium and its alloys one of the most versatile engineering and construction materials available today. Lightweight Aluminium is one of the lightest available commercial metals with a density approximately one third that of steel or copper. Its high strength to weight ratio makes it particularly important to transportation industries allowing increased payloads and fuel savings. Catamaran ferries, petroleum tankers and aircraft are good examples of aluminium’s use in transport. In other fabrications, aluminium’s lightweight can reduce the need for special handling or lifting equipment. Excellent Corrosion Resistance Aluminium has excellent resistance to corrosion due to the thin layer of aluminium oxide that forms on the surface of aluminium when it is exposed to air. In many applications, aluminium can be left in the mill finished condition. Should additional protection or decorative finishes be required, then aluminium can be either anodised or painted. Strong Although tensile strength of pure aluminium is not high, mechanical properties can be markedly increased by the addition of alloying elements and tempering. You can choose the alloy with the most suitable characteristics for your application. Typical alloying elements are manganese, silicon, copper and magnesium. Strong at Low Temperatures Where as steel becomes brittle at low temperatures, aluminium increases in tensile strength and retains excellent toughness. 1 © Capral Aluminium Limited Aluminium Information Advantages of Aluminium Easy to Work Aluminium can be easily fabricated into various forms such as foil, sheets, geometric shapes, rod, tube and wire. It also displays excellent machinability and plasticity ideal for bending, cutting, spinning, roll forming, hammering, forging and drawing.
    [Show full text]
  • Modeling, Optimization and Performance Evaluation of Tic/Graphite Reinforced Al 7075 Hybrid Composites Using Response Surface Methodology
    materials Article Modeling, Optimization and Performance Evaluation of TiC/Graphite Reinforced Al 7075 Hybrid Composites Using Response Surface Methodology Mohammad Azad Alam 1,* , Hamdan H. Ya 1,*, Mohammad Yusuf 2 , Ramaneish Sivraj 1, Othman B. Mamat 1, Salit M. Sapuan 3,4, Faisal Masood 5 , Bisma Parveez 6 and Mohsin Sattar 1 1 Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] (R.S.); [email protected] (O.B.M.); [email protected] (M.S.) 2 Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] 3 Laboratory of Biocomposite Technology, Institute of Tropical Forest, and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 4 Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia 5 Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] 6 Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia; [email protected] * Correspondence: [email protected] (M.A.A.); [email protected] (H.H.Y.) Citation: Alam, M.A.; Ya, H.H.; Abstract: The tenacious thirst for fuel-saving and desirable physical and mechanical properties Yusuf, M.; Sivraj, R.; Mamat, O.B.; of the materials have compelled researchers to focus on a new generation of aluminum hybrid Sapuan, S.M.; Masood, F.; Parveez, B.; composites for automotive and aircraft applications. This work investigates the microhardness Sattar, M. Modeling, Optimization behavior and microstructural characterization of aluminum alloy (Al 7075)-titanium carbide (TiC)- and Performance Evaluation of graphite (Gr) hybrid composites.
    [Show full text]
  • Residual Stress, Microstructure and Mechanical Properties in Thick 6005A-T6 Aluminium Alloy Friction Stir Welds
    metals Article Residual Stress, Microstructure and Mechanical Properties in Thick 6005A-T6 Aluminium Alloy Friction Stir Welds 1, 2, 3 4 5 1 Xiaolong Liu y, Pu Xie y , Robert Wimpory , Wenya Li , Ruilin Lai , Meijuan Li , Dongfeng Chen 1, Yuntao Liu 1 and Haiyan Zhao 6,* 1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China 2 CRRC Changchun Railway Vehicles Co. Ltd., Changchun 130000, China 3 Helmholtz-Zentrum Berlin für Energie und Materialien, Hahn Meitner Platz 1, 14109 Berlin, Germany 4 Shanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China 5 Department of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China 6 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China * Correspondence: [email protected]; Tel.: +86-10-6278-4578 These authors contributed equally to this work and should be considered as co-first authors. y Received: 3 July 2019; Accepted: 18 July 2019; Published: 21 July 2019 Abstract: Plates (37 mm thick) of 6005A-T6 aluminum alloy were butt joined by a single-sided and double-sided friction stir welding (FSW). The 3D residual stresses in the joints were determined using neutron diffraction. The microstructures were characterized by a transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). In the single-sided FSW specimen, there were acceptable mechanical properties with a tensile strength of 74.4% of base metal (BM) and low residual stresses with peak magnitudes of approximately 37.5% yield strength of BM were achieved.
    [Show full text]
  • Age Hardening of Extruded AA 6005A Aluminium Alloy Powders
    Article Age Hardening of Extruded AA 6005A Aluminium Alloy Powders Iria Feijoo 1,*, Marta Cabeza 1, Pedro Merino 1, Gloria Pena 1 and Pilar Rey 2 1 Department of Materials Engineering, Applied Mechanical and Construction, ENCOMAT Group, University of Vigo, EEI, E36310 Vigo, Spain 2 AIMEN, Technological Centre, Polígono de Cataboi, E36418 Porriño, Pontevedra, Spain * Correspondence: [email protected]; Tel.: +34-986-81-22-29 Received: 14 June 2019; Accepted: 18 July 2019; Published: 19 July 2019 Abstract: Pre-alloyed micron-sized 6005A Al alloy (AA 6005A) powders, with a Mg/Si atomic ratio of 0.75, obtained by high pressure inert gas atomization were consolidated by uniaxial cold pressing at 200 MPa into cylindrical Al containers and hot extruded at 450, 480 and 500 °C with an extrusion rate of 7:1, followed by artificial T6 precipitation hardening. Ageing conditions were varied between 170 °C and 190 °C and times of 6, 7 and 8 hours. The microstructure of the extruded profiles was analysed using X-Ray diffractometry (XRD), light optical microscopy (LOM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) was used to study the possible phase transformations. After our results, the peak-aging hardness condition was achieved at 180 °C for 6 h. Mechanical properties of the powder metallurgy (P/M) aluminium alloys consolidated by hot extrusion were superior to those of the extruded profiles of wrought alloy using conventional ingot metallurgy (I/M) billets. AA 6005A wrought P/M alloy via T6 heat treatment shown yield stress of 317 MPa and elongation of 21% at the extrusion pre-heating temperature of 500 °C.
    [Show full text]
  • Aluminium Sheet, Coil, Plate, Treadplate & Extrusions
    Aluminium Sheet, Coil, Plate, Treadplate & Extrusions & & Treadplate , luminium Sheet, Coil, Plate Coil, Sheet, luminium A Extrusions 8 8 Photography courtesy of Alcoa Aluminium and INCAT. www.atlassteels.com.au Atlas Steels – Product Reference Manual Section 8 – Aluminium Sheet, Coil, Plate, Treadplate & Extrusions Aluminium Advantages of using Aluminium 1 Light weight – approximately /3 the density of steel. Strength – some alloys can be substantially strengthened by work or by heat treatment. Workability – easy formability, machinability and readily welded. Corrosion resistance – varies depending on the alloy; the best resist marine exposure. Non-toxic – often used in contact with food. Non-magnetic and non-sparking. Electrical conductivity – very high; sometimes used for electrical conductors. Thermal conductivity – high. Reflectivity – bright finish options available. Specifications Flat rolled aluminium alloy products stocked by Atlas generally comply with ASTM B209M or ASTM B928M with dimensions in ANSI H35.2. There is very close agreement between these standards and Australian/New Zealand standard AS/NZS 1734 and again close agreement with European standard EN 573. Aluminium Association publication “Aluminium standards and data” gives a very accessible summary of both specified data and useful information. Aluminium products are often cited as compliant with “AA specs” based on this. Treadplate is specified in ASTM B632M but this does not cover the product well. Most mills produce to their own specifications and particularly
    [Show full text]
  • Program Book
    PROGRAM BOOK 6TH INTERNATIONAL CONFERENCE ON ELECTRIC VEHICULAR TECHNOLOGY NOVEMBER 18-21, 2019 FOUR POINTS BY SHERATON BALI, UNGASAN BALI, INDONESIA 4TH ICEVT 2017 I 1 ORGANIZED BY SUPPORTED BY 2 6th ICEVT 2019 SECRETARIAT Website : http://icevt.org/ E-mail : [email protected] NCSTT Head Office (Institut Teknologi Bandung) CRCS Building, 2nd Floor Jl Ganesha 10, Bandung, 40132 Website : http://ncstt.itb.ac.id/ 3 WELCOMING MESSAGES The 6th International Conference on Electric Vehicular Technology (ICEVT) 2019 is organized by the National Center for Sustainable Transportation Technology (NCSTT), Institut Teknologi Bandung, and Universitas Udayana. The 6th ICEVT 2019 will be the part of Automotive Engineering Week 2019 which consists of 11th ASEAN Automobile Safety Forum, 4th International Conference of Sustainable Mobility, and Stop the Crash 2019. Altogether, the event will feature the presentations from all around the world in the newest development in electric vehicle and sustainable mobility research. The aim of the conference is to provide opportunities for the different areas delegates in the field of Electric Vehicle (EV) technology to exchange new ideas and application experiences and to establish friendly relation among peers for future global collaboration. All accepted and presented papers will be forwarding for consideration to be published in the IEEE Xplore Digital Library (Normally will be indexed in SCOPUS database), and non-presented papers will be pulled from submission to IEEE Xplore (Catalog Number: CFP19N65-ART). Selected good quality papers will be considered to be published in International Journal of Sustainable Transportation Technology (IJSTT) with normal review process by the journal editor. This conference will be held in Four Points by Sheraton Bali, Ungasan Indonesia.
    [Show full text]
  • Integrated Modeling of Friction Stir Welding of 6Xxx Series Al Alloys: Process, Microstructure and Properties A
    Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties A. Simar, Y. Brechet, B. de Meester, A. Denquin, C. Gallais, T. Pardoen To cite this version: A. Simar, Y. Brechet, B. de Meester, A. Denquin, C. Gallais, et al.. Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Progress in Materials Science, Elsevier, 2012, 57 (1), pp.95-183. 10.1016/j.pmatsci.2011.05.003. hal-00664802 HAL Id: hal-00664802 https://hal.archives-ouvertes.fr/hal-00664802 Submitted on 7 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties a b a c c a A. Simar , Y. Bréchet , B. de Meester , A. Denquin , C. Gallais , T. Pardoen a Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium b SIMaP/INP Grenoble, Domaine Universitaire, 1130 rue de la Piscine, B.P. 75, 38 402 Saint Martin d’Heres Cedex, France c ONERA, BP72 – 29 avenue de la Division Leclerc, 92322 Chatillon Cedex, France Compared to most thermomechanical processing methods, friction stir welding (FSW) is a recent technique which has not yet reached full maturity.
    [Show full text]
  • Influence of Residual Stress on Fatigue Weak Areas and Simulation
    metals Article Influence of Residual Stress on Fatigue Weak Areas and Simulation Analysis on Fatigue Properties Based on Continuous Performance of FSW Joints Guoqin Sun 1,*, Xinhai Wei 1, Jiangpei Niu 2, Deguang Shang 1 and Shujun Chen 1 1 College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China; [email protected] (X.W.); [email protected] (D.S.); [email protected] (S.C.) 2 Production R&D center, CRRC Tangshan Co. Ltd., No.3 Changqian Rd, Tangshan 064000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-6739-6888 Received: 1 February 2019; Accepted: 26 February 2019; Published: 2 March 2019 Abstract: The fatigue weak area of aluminum alloy for a friction stir-welded joint is investigated based on the hardness profile, the residual stress measurement and the simulation analysis of fatigue property. The maximum residual stresses appeared at the heat-affected zone of the joint in the fatigue damage process, which was consistent with the fracture location of the fatigue specimen. The fatigue joint model of continuous performance is established ignoring the original negative residual stress; considering that it will be relaxed soon when the joint is under tension-tension cyclic loading. The fatigue parameters of joint model is based on the static mechanical properties of the joint that obtained from the micro-tensile tests and four-point correlation method. The predicted results for the fatigue weak locations and fatigue lives based on the continuous performance joint model are closer to the fatigue experimental results by comparison with the simulation results of the partitioned performance joint model.
    [Show full text]
  • Bor Dergisi 19 Journal of Boron
    BORON 4 (2), 100 - 106, 2019 ULUSAL BOR ARAŞTIRMA ENSTİTÜSÜ ISSN: 2149-9020 NATIONAL BORON RESEARCH INSTITUTE BOR DE RGİSİ JOURNAL OF BORON CİLT/VOL SAYI/ISSUE YIL/YEAR 04 01 20 BOR DERGİSİ 19 JOURNAL OF BORON http://dergipark.org.tr/boron The effect of 4B C amount on wear behaviors of Al-Graphite/B4C hybrid composites produced by mechanical alloying İjlal Şimşek* Karabuk University, TOBB Technical Sciences Vocational School, Department of Machinery and Metal Technology, 78050, Karabuk, Turkey, ORCID ID orcd.org/ 0000-0001-6542-8567 ARTICLE INFO ABSTRACT Article history: In this study, wear behavior of composite materials produced by mechanical alloying Received 22 April 2019 method adding different amounts of 4B C in the Al-Gr matrix were investigated. After Revised form 31 May 2019 adding 2% (vol.) graphite to the aluminum matrix, 3 different amounts (3%, 6% and Accepted 19 June 2019 9%) of B4C were added. The composite powders prepared were mechanically alloyed Available online 30 June 2019 for 60 minutes. The milled powders were cold-pressed under 700 MPa pressure. The green compacts produced were sintered at 600 °C for 120 minutes. The sintered B C Review Article 4 reinforced aluminum composite materials were characterized by the Scanning Elec - DOI: 10.30728/boron.556707 tron Microscope, X-ray diffraction, and hardness and density measurements. Wear tests were performed on a standard pin-on-disc wear testing device with a load of 20 Keywords: N at a sliding speed of 0.5 ms-1 and four different sliding distances (between 250-1000 Aluminum matrix composites, Friction coefficient, m) according to ASTM G99 standard.
    [Show full text]
  • Aleaciones De Aluminio 11
    ALEACIONES DE ALUMINIO 11 pág. Aluminio puro 11A. 2 1050 - 1200 Aluminio - cobre 11A. 6 2011 - 2014 - 2017A - 2024 Aluminio - manganeso 11A. 14 3003 - 3004 Aluminio - magnesio 11A. 18 5005A - 5019 - 5052 - 5056A - 5083 - 5086 - 5154A - 5251 - 5754 Aluminio - magnesio - silicio 11A. 34 6005A - 6026 - 6060 - 6061 - 6063 - 6082 - 6101 - 6262 - X6262 Aluminio - zinc 11A. 48 7020 - 7022 - 7075 Aleaciones a eliminar 11A. 53 2007 - 2030 - 6012 - 6262 Aleaciones especiales 11A. 57 Aluplanmag - Moldealtok - Aluplanzinc Características mecánicas de los productos extruidos y calibrados 11B. 0 Comparación de las características de otros metales 11B. 15 Características mecánicas de los productos laminados 11B. 17 Diccionario técnico 11C. 0 ALEACIÓN: ALUMINIO PURO (99,5 %) PRODUCTOS: Barras, alambre, perfiles extruidos, tubos, chapas, planchas, cospeles, etc. PURALTOK 99,5 10 5 0 1050 COMPOSICIÓN QUÍMICA % Si Fe Cu Mn Mg Cr Zn Ti Otros elementos Al Mínimo Máximo 0,25 0,40 0,05 0,05 0,05 0,07 0,05 0,03 99,98 EQUIVALENCIAS INTERNACIONALES Austria -Önorm Canadá - C.N.D. E.E.U.U. - A.A. España - U.N.E. Francia - Afnor Reino Unido - B.S. Italia - U.N.I. Japón - J.I.S. Al 99,5 995 1050 L-3051 / 38.114 A - 5 / 57.350 1 B 4507 / 900-P2 A 1x1 Hungría - M.S.Z. Noruega - N.S. Polonia - P.L. Alemania - D.I.N. Suecia - S.I.S. Suiza - V.S.M. Rusia - G.O.S.T. E.N. Al 99,5 17.010 A -1 Al 99,5 / 3.0255 4007 Al 99,5 A - 5 EN-AW-1050 EQUIVALENCIAS NACIONALES, NORMAS Y NOMBRES COMERCIALES ISO ESPAÑA ALEMANIA CANADA E.E.U.U.
    [Show full text]