Measurable Functions and Simple Functions

Total Page:16

File Type:pdf, Size:1020Kb

Measurable Functions and Simple Functions Measure theory class notes - 8 September 2010, class 9 1 Measurable functions and simple functions The class of all real measurable functions on (Ω, A ) is too vast to study directly. We identify ways to study them via simpler functions or collections of functions. Recall that L is the set of all measurable functions from (Ω, A ) to R and E⊆L are all the simple functions. ∞ Theorem. Suppose f ∈ L is bounded. Then there exists an increasing sequence {fn}n=1 in E whose uniform limit is f. Proof. First assume that f takes values in [0, 1). We divide [0, 1) into 2n intervals and use this to construct fn: n− 2 1 k − k k+1 fn = 1f 1 n , n 2n ([ 2 2 )) Xk=0 k k+1 k Whenever f takes a value in 2n , 2n , fn takes the value 2n . We have • For all n, fn ≤ f. 1 • For all n, x, |fn(x) − f(x)|≤ 2n . This is clear from the construction. • fn ∈E, since fn is a finite linear combination of indicator functions of sets in A . k 2k 2k+1 • fn ≤ fn+1: For any x, if fn(x)= 2n , then fn+1(x) ∈ 2n+1 , 2n+1 . ∞ So {fn}n=1 is an increasing sequence in E converging uniformly to f. Now for a general f, if the image of f lies in [a,b), then let f − a1 g = Ω b − a (note that a1Ω is the constant function a) ∞ Im g ⊆ [0, 1), so by the above we have {gn}n=1 from E increasing uniformly to g. Let fn = a1Ω +(b − a)gn ∞ Then {fn}n=1 is a sequence from E increasing uniformly to f. Theorem. Suppose f ∈ L is nonnegative (that is, f(x) ≥ 0 for all x ∈ Ω). Then there exists an ∞ increasing sequence {fn}n=1 in E whose pointwise limit is f. 1 Proof. As in the previous proof, we divide the range of f into intervals of length 2n . However, f could be unbounded and we may need infinitely many of such intervals, which will not help in defining a simple function. So at the nth stage, we divide only [0,n), and not the entire [0, ∞). More precisely, let n− n2 1 k − k k+1 fn = 1f 1 n , n 2n ([ 2 2 )) Xk=0 • For all n, fn ≤ f. This is clear from the construction of fn (note that f ≥ 0). 1 • For all n, x, if f(x) <n, then |fn(x) − f(x)| < 2n . Measure theory class notes - 8 September 2010, class 9 2 • fn ∈E, since fn is a finite linear combination of indicator functions of sets in A . • fn ≤ fn+1: if fn(x) = 0 then clearly fn(x) ≤ fn+1(x), otherwise f(x) <n<n +1 and from the construction it is easy to see that fn(x) ≤ fn+1(x). 1 Now for any x ∈ Ω, there is some integer m such that m>f(x). For all n ≥ m, |fn(x)−f(x)| < 2n , and so limn→∞ fn(x)= f(x). For f : Ω → R, define f +,f − : Ω → R f +(x) = max{f(x), 0} f −(x)= − min{f(x), 0} Both f + and f − are nonnegative, and f = f + − f −. If f is measurable, so are both f + and f −. Every measurable function is the difference of two nonnegative measurable functions. This is useful because by the above theorem, nonnegative measurable functions are easier to deal with than general measurable functions. Theorem. Suppose Ω is a nonempty set and A is a σ-field on it. F is a field such that σ(F )= A . Suppose F is a collection of real measurable functions on Ω which is a vector space under the natural operations and closed under monotone pointwise limits. Suppose for all A ∈ F , 1A ∈ F . Then F = L, the set of all real measurable functions. Proof. We first show that indicator functions of all sets in A belong to F . Let B = {A ∈ A :1A ∈ F } We are given that F ⊆ B. Since F is closed under monotone pointwise limits, B is a monotone class. By the monotone class theorem, B is a σ-field, and so B = A . So F has: • 1A for all A ∈ A . • By taking finite linear combinations of the above (since F is a vector space), all simple functions. • By taking increasing pointwise limits of simple functions, all nonnegative measurable func- tions. • By taking differences of nonnegative measurable functions, all measurable functions. Sometimes we are concerned only about bounded measurable functions. We have a similar theorem for that case. We need a definition first. R ∞ Definition. A sequence of Ω → functions {fn}n=1 is said to converge bounded pointwise (ab- breviated as bp) to f : Ω → R if ∞ • {fn}n=1 converges to f pointwise. • There is a C ∈ R such that for all n and x, |fn(x)|≤ C. Measure theory class notes - 8 September 2010, class 9 3 In other words, bounded pointwise convergence is just pointwise convergence along with uniform boundedness of the sequence of functions. Here are some examples of [0, 1] → R functions which illustrate various modes of convergence. n fn gn hn 1 1 n 1 1 0n 1 0 1 0n 1 ∞ ∞ {fn}n=1 converges to the zero function pointwise, but not bounded pointwise or uniformly. {gn}n=1 ∞ converges to the zero function uniformly and bounded pointwise. {hn}n=1 converges to the zero function bounded pointwise but not uniformly. Theorem. Suppose Ω is a nonempty set and A is a σ-field on it. F is a field such that σ(F )= A . Suppose F is a collection of bounded real measurable functions on Ω which is a vector space under the natural operations and closed under bounded pointwise limits. Suppose for all A ∈ F ,1A ∈ F . Then F is the set of all bounded real measurable functions. Proof. As before, we first show that indicator functions of all sets in A belong to F . Let B = {A ∈ A :1A ∈ F } We are given that F ⊆ B. Since F is closed under bounded pointwise limits, B is a monotone class (all indicator functions are bounded by 1). By the monotone class theorem, B is a σ-field, and so B = A . So F has: • 1A for all A ∈ A . • By taking finite linear combinations of the above (since F is a vector space), all simple functions. • By taking increasing bounded pointwise limits of simple functions, all nonnegative bounded measurable functions (if |f(x)| ≤ C for all x, we can get an increasing sequence of simple functions converging to it pointwise (even uniformly, in fact), all of which take values between 0 and C). • By taking differences of nonnegative bounded measurable functions, all bounded measurable functions (if f is bounded, so are f + and f −). Measure theory class notes - 8 September 2010, class 9 4 Defining integration We have studied the properties of the class of measurable functions, now we define their integrals. A R Suppose (Ω, ,µ) is a measure space, and f : Ω → is measurable. How can we define Ω fdµ? If we could define the integral for f + and f −, we could define R fdµ = f +dµ − f −dµ ZΩ ZΩ ZΩ because we want integration to be a linear operation. So we have reduced the problem from general measurable functions to nonnegative measurable functions. If f is nonnegative, how can we define Ω fdµ? If s is a nonnegative simple function, say taking values a1,...,ak, then we can define R k −1 sdµ = aiµ f ({ai}) Z Ω Xi=1 (this corresponds to our notion of “area under the curve”) Since we want integration to be monotonic, we should have fdµ ≥ sup sdµ : s simple ,s ≤ f ZΩ ZΩ Since f is nonnegative, we know that nonnegative simple functions s with s ≤ f exist, in fact we can get a sequence of them converging to f. Though it is not immediately clear, it makes sense to define the integral of f by taking the above equation to be an equality. We will see this in the next class..
Recommended publications
  • Integration 1 Measurable Functions
    Integration References: Bass (Real Analysis for Graduate Students), Folland (Real Analysis), Athreya and Lahiri (Measure Theory and Probability Theory). 1 Measurable Functions Let (Ω1; F1) and (Ω2; F2) be measurable spaces. Definition 1 A function T :Ω1 ! Ω2 is (F1; F2)-measurable if for every −1 E 2 F2, T (E) 2 F1. Terminology: If (Ω; F) is a measurable space and f is a real-valued func- tion on Ω, it's called F-measurable or simply measurable, if it is (F; B(<))- measurable. A function f : < ! < is called Borel measurable if the σ-algebra used on the domain and codomain is B(<). If the σ-algebra on the domain is Lebesgue, f is called Lebesgue measurable. Example 1 Measurability of a function is related to the σ-algebras that are chosen in the domain and codomain. Let Ω = f0; 1g. If the σ-algebra is P(Ω), every real valued function is measurable. Indeed, let f :Ω ! <, and E 2 B(<). It is clear that f −1(E) 2 P(Ω) (this includes the case where f −1(E) = ;). However, if F = f;; Ωg is the σ-algebra, only the constant functions are measurable. Indeed, if f(x) = a; 8x 2 Ω, then for any Borel set E containing a, f −1(E) = Ω 2 F. But if f is a function s.t. f(0) 6= f(1), then, any Borel set E containing f(0) but not f(1) will satisfy f −1(E) = f0g 2= F. 1 It is hard to check for measurability of a function using the definition, because it requires checking the preimages of all sets in F2.
    [Show full text]
  • LEBESGUE MEASURE and L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References
    LEBESGUE MEASURE AND L2 SPACE. ANNIE WANG Abstract. This paper begins with an introduction to measure spaces and the Lebesgue theory of measure and integration. Several important theorems regarding the Lebesgue integral are then developed. Finally, we prove the completeness of the L2(µ) space and show that it is a metric space, and a Hilbert space. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References 9 1. Measure Spaces Definition 1.1. Suppose X is a set. Then X is said to be a measure space if there exists a σ-ring M (that is, M is a nonempty family of subsets of X closed under countable unions and under complements)of subsets of X and a non-negative countably additive set function µ (called a measure) defined on M . If X 2 M, then X is said to be a measurable space. For example, let X = Rp, M the collection of Lebesgue-measurable subsets of Rp, and µ the Lebesgue measure. Another measure space can be found by taking X to be the set of all positive integers, M the collection of all subsets of X, and µ(E) the number of elements of E. We will be interested only in a special case of the measure, the Lebesgue measure. The Lebesgue measure allows us to extend the notions of length and volume to more complicated sets. Definition 1.2. Let Rp be a p-dimensional Euclidean space . We denote an interval p of R by the set of points x = (x1; :::; xp) such that (1.3) ai ≤ xi ≤ bi (i = 1; : : : ; p) Definition 1.4.
    [Show full text]
  • 1 Measurable Functions
    36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Dol´eans-Dade; Sec 1.3 and 1.4 of Durrett. 1 Measurable Functions 1.1 Measurable functions Measurable functions are functions that we can integrate with respect to measures in much the same way that continuous functions can be integrated \dx". Recall that the Riemann integral of a continuous function f over a bounded interval is defined as a limit of sums of lengths of subintervals times values of f on the subintervals. The measure of a set generalizes the length while elements of the σ-field generalize the intervals. Recall that a real-valued function is continuous if and only if the inverse image of every open set is open. This generalizes to the inverse image of every measurable set being measurable. Definition 1 (Measurable Functions). Let (Ω; F) and (S; A) be measurable spaces. Let f :Ω ! S be a function that satisfies f −1(A) 2 F for each A 2 A. Then we say that f is F=A-measurable. If the σ-field’s are to be understood from context, we simply say that f is measurable. Example 2. Let F = 2Ω. Then every function from Ω to a set S is measurable no matter what A is. Example 3. Let A = f?;Sg. Then every function from a set Ω to S is measurable, no matter what F is. Proving that a function is measurable is facilitated by noticing that inverse image commutes with union, complement, and intersection.
    [Show full text]
  • Lecture 3 the Lebesgue Integral
    Lecture 3:The Lebesgue Integral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 3 The Lebesgue Integral The construction of the integral Unless expressly specified otherwise, we pick and fix a measure space (S, S, m) and assume that all functions under consideration are defined there. Definition 3.1 (Simple functions). A function f 2 L0(S, S, m) is said to be simple if it takes only a finite number of values. The collection of all simple functions is denoted by LSimp,0 (more precisely by LSimp,0(S, S, m)) and the family of non-negative simple Simp,0 functions by L+ . Clearly, a simple function f : S ! R admits a (not necessarily unique) representation n f = ∑ ak1Ak , (3.1) k=1 for a1,..., an 2 R and A1,..., An 2 S. Such a representation is called the simple-function representation of f . When the sets Ak, k = 1, . , n are intervals in R, the graph of the simple function f looks like a collection of steps (of heights a1,..., an). For that reason, the simple functions are sometimes referred to as step functions. The Lebesgue integral is very easy to define for non-negative simple functions and this definition allows for further generalizations1: 1 In fact, the progression of events you will see in this section is typical for measure theory: you start with indica- Definition 3.2 (Lebesgue integration for simple functions). For f 2 tor functions, move on to non-negative Simp,0 R simple functions, then to general non- L+ we define the (Lebesgue) integral f dm of f with respect to m negative measurable functions, and fi- by nally to (not-necessarily-non-negative) Z n f dm = a m(A ) 2 [0, ¥], measurable functions.
    [Show full text]
  • Measure, Integrals, and Transformations: Lebesgue Integration and the Ergodic Theorem
    Measure, Integrals, and Transformations: Lebesgue Integration and the Ergodic Theorem Maxim O. Lavrentovich November 15, 2007 Contents 0 Notation 1 1 Introduction 2 1.1 Sizes, Sets, and Things . 2 1.2 The Extended Real Numbers . 3 2 Measure Theory 5 2.1 Preliminaries . 5 2.2 Examples . 8 2.3 Measurable Functions . 12 3 Integration 15 3.1 General Principles . 15 3.2 Simple Functions . 20 3.3 The Lebesgue Integral . 28 3.4 Convergence Theorems . 33 3.5 Convergence . 40 4 Probability 41 4.1 Kolmogorov's Probability . 41 4.2 Random Variables . 44 5 The Ergodic Theorem 47 5.1 Transformations . 47 5.2 Birkho®'s Ergodic Theorem . 52 5.3 Conclusions . 60 6 Bibliography 63 0 Notation We will be using the following notation throughout the discussion. This list is included here as a reference. Also, some of the concepts and symbols will be de¯ned in subsequent sections. However, due to the number of di®erent symbols we will use, we have compiled the more archaic ones here. lR; lN : the real and natural numbers lR¹ : the extended natural numbers, i.e. the interval [¡1; 1] ¹ lR+ : the nonnegative (extended) real numbers, i.e. the interval [0; 1] ­ : a sample space, a set of possible outcomes, or any arbitrary set F : an arbitrary σ-algebra on subsets of a set ­ σ hAi : the σ-algebra generated by a subset A ⊆ ­. T : a function between the set ­ and ­ itself Á, Ã : simple functions on the set ­ ¹ : a measure on a space ­ with an associated σ-algebra F (Xn) : a sequence of objects Xi, i.
    [Show full text]
  • Lecture 4 Chapter 1.4 Simple Functions
    Math 103: Measure Theory and Complex Analysis Fall 2018 09/19/18 Lecture 4 Chapter 1.4 Simple functions Aim: A function is Riemann integrable if it can be approximated with step functions. A func- tion is Lebesque integrable if it can be approximated with measurable simple functions.A measurable simple function is similar to a step function, just that the supporting sets are ele- ments of a σ algebra. Picture Denition 1 (Simple functions) A function s : X ! C is called a simple function if it has nite range. We say that s is a non-negative simple function (nnsf) if s(X) ⊂ [0; +1). Note 2 If s(X) 6= f0g, then s(X) = fa1; a2; a3; : : : ; ang and let Ai = fx 2 X j s(x) = aig. Then s is measurable if and only if Ai 2 M for all i 2 f1; 2; : : : ; ng. In this case we have that n X 1 (1) s = ai · Ai : i=1 We can furthermore assume that the (Ai)i are mutually disjoint. This representation as a linear combination of characteristic functions is unique, if the (ai)i are distinct and non-zero. In this case we call it the standard representation of s. Theorem 3 (Approximation by simple functions) For any function f :(X; M) ! [0; +1], there are nnsfs (sn)n2N on X, such that a) 0 ≤ s1 ≤ s2 ≤ ::: ≤ f. b) For all x 2 X, we have limn!1 sn(x) = f(x). Furthermore, if f is measurable, then the (sn)n can be chosen measurable as well.
    [Show full text]
  • Representations and Positive Spectral Measures
    Master's Thesis Positive C(K)-representations and positive spectral measures On their one-to-one correspondence for reflexive Banach lattices Author: Supervisor: Frejanne Ruoff dr. M.F.E. de Jeu Defended on January 30, 2014 Leiden University Faculty of Science Mathematics Specialisation: Applied Mathematics Mathematical Institute, Leiden University Abstract Is there a natural one-to-one correspondence between positive representations of spaces of continuous functions and positive spectral measures on Banach lattices? That is the question that we have investigated in this thesis. Representations and spectral measures are key notions throughout all sections. After having given precise definitions of a positive spectral measure, a unital positive spectral measure, a positive representation, and a unital positive representation, we prove that there is a one-to-one relationship between the positive spectral measures and positive representations, and the unital positive spectral measures and unital positive representations, respectively. For example, between a unital positive representation ρ : C(K) !Lr(X) and a unital positive spectral measure E :Ω !Lr(X), where K is a compact Hausdorff space, Ω ⊆ P(K) the Borel σ-algebra, X a reflexive Banach lattice, and Lr(X) the space of all regular operators on X. The map ρ : C(K) !Lr(C(K)), where K is a compact Hausdorff space, defined as pointwise multiplication on C(K), is a unital positive representation. The subspace ρ[f] := ρ(C(K))f ⊆ C(K), for an f 2 C(K), has two partial orderings. One is inherited from C(K), the other is newly defined. Using the defining property of elements of ρ[f], we prove that they are equal.
    [Show full text]
  • 1. Σ-Algebras Definition 1. Let X Be Any Set and Let F Be a Collection Of
    1. σ-algebras Definition 1. Let X be any set and let F be a collection of subsets of X. We say that F is a σ-algebra (on X), if it satisfies the following. (1) X 2 F. (2) If A 2 F, then Ac 2 F. 1 (3) If A1;A2; · · · 2 F, a countable collection, then [n=1An 2 F. In the above situation, the elements of F are called measurable sets and X (or more precisely (X; F)) is called a measurable space. Example 1. For any set X, P(X), the set of all subsets of X is a σ-algebra and so is F = f;;Xg. Theorem 1. Let X be any set and let G be any collection of subsets of X. Then there exists a σ-algebra, containing G and smallest with respect to inclusion. Proof. Let S be the collection of all σ-algebras containing G. This set is non-empty, since P(X) 2 S. Then F = \A2SA can easily be checked to have all the properties asserted in the theorem. Remark 1. In the above situation, F is called the σ-algebra generated by G. Definition 2. Let X be a topological space (for example, a metric space) and let B be the σ-algebra generated by the set of all open sets of X. The elements of B are called Borel sets and (X; B), a Borel measurable space. Definition 3. Let (X; F) be a measurable space and let Y be any topo- logical space and let f : X ! Y be any function.
    [Show full text]
  • Real Analysis a Comprehensive Course in Analysis, Part 1
    Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Real Analysis A Comprehensive Course in Analysis, Part 1 http://dx.doi.org/10.1090/simon/001 Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 26-01, 28-01, 42-01, 46-01; Secondary 33-01, 35-01, 41-01, 52-01, 54-01, 60-01. For additional information and updates on this book, visit www.ams.org/bookpages/simon Library of Congress Cataloging-in-Publication Data Simon, Barry, 1946– Real analysis / Barry Simon. pages cm. — (A comprehensive course in analysis ; part 1) Includes bibliographical references and indexes. ISBN 978-1-4704-1099-5 (alk. paper) 1. Mathematical analysis—Textbooks. I. Title. QA300.S53 2015 515.8—dc23 2014047381 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright.
    [Show full text]
  • Probability Theory
    Probability Theory "A random variable is neither random nor variable." Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = fΩ; F;P g: • Ω is its sample space •F its σ-algebra of events • P its probability measure Remarks: (1) The sample space Ω is the set of all possible samples or elementary events !: Ω = f! j ! 2 Ωg. (2)The σ-algebra F is the set of all of the considered events A, i.e., subsets of Ω: F = fA j A ⊆ Ω;A 2 Fg. (3) The probability measure P assigns a probability P (A) to every event A 2 F: P : F! [0; 1]. Stochastic Systems, 2013 2 Sample space The sample space Ω is sometimes called the universe of all samples or possible outcomes !. Example 1. Sample space • Toss of a coin (with head and tail): Ω = fH;T g. • Two tosses of a coin: Ω = fHH;HT;TH;TT g. • A cubic die: Ω = f!1;!2;!3;!4;!5;!6g. • The positive integers: Ω = f1; 2; 3;::: g. • The reals: Ω = f! j ! 2 Rg. Note that the !s are a mathematical construct and have per se no real or scientific meaning. The !s in the die example refer to the numbers of dots observed when the die is thrown. Stochastic Systems, 2013 3 Event An event A is a subset of Ω. If the outcome ! of the experiment is in the subset A, then the event A is said to have occurred.
    [Show full text]
  • Math212a1413 the Lebesgue Integral
    Real valued measurable functions. The integral of a non-negative function. Fatou's lemma. The monotone convergence theorem. The space L1(X ; R). The dominated convergence theorem. Riemann integrability. The Beppo-Levi theorem. L1 is complete. Dense subsets of L1(R; R). The Riemann-Lebesgue Lemma and the Cantor-Lebesgue theorem. Fubini's theorem. The Borel transform. Math212a1413 The Lebesgue integral. Shlomo Sternberg October 28, 2014 Shlomo Sternberg Math212a1413 The Lebesgue integral. Real valued measurable functions. The integral of a non-negative function. Fatou's lemma. The monotone convergence theorem. The space L1(X ; R). The dominated convergence theorem. Riemann integrability. The Beppo-Levi theorem. L1 is complete. Dense subsets of L1(R; R). The Riemann-Lebesgue Lemma and the Cantor-Lebesgue theorem. Fubini's theorem. The Borel transform. Simple functions. In what follows, (X ; F; m) is a space with a σ-field of sets, and m a measure on F. The purpose of today's lecture is to develop the theory of the Lebesgue integral for functions defined on X . The theory starts with simple functions, that is functions which take on only finitely many non-zero values, say fa1;:::; ang and where −1 Ai := f (ai ) 2 F: In other words, we start with functions of the form n X φ(x) = ai 1Ai Ai 2 F: (1) i=1 Shlomo Sternberg Math212a1413 The Lebesgue integral. Real valued measurable functions. The integral of a non-negative function. Fatou's lemma. The monotone convergence theorem. The space L1(X ; R). The dominated convergence theorem. Riemann integrability. The Beppo-Levi theorem.
    [Show full text]
  • Real Analysis
    Real Analysis Part I: MEASURE THEORY 1. Algebras of sets and σ-algebras For a subset A ⊂ X, the complement of A in X is written X − A. If the ambient space X is understood, in these notes we will sometimes write Ac for X − A. In the literature, the notation A′ is also used sometimes, and the textbook uses A˜ for the complement of A. The set of subsets of a set X is called the power set of X, written 2X . Definition. A collection F of subsets of a set X is called an algebra of sets in X if 1) ∅,X ∈F 2) A ∈F⇒ Ac ∈F 3) A,B ∈F⇒ A ∪ B ∈F In mathematics, an “algebra” is often used to refer to an object which is simulta- neously a ring and a vector space over some field, and thus has operations of addition, multiplication, and scalar multiplication satisfying certain compatibility conditions. How- ever the use of the word “algebra” within the phrase “algebra of sets” is not related to the preceding use of the word, but instead comes from its appearance within the phrase “Boolean algebra”. A Boolean algebra is not an algebra in the preceding sense of the word, but instead an object with operations AND, OR, and NOT. Thus, as with the phrase “Boolean algebra”, it is best to treat the phrase “algebra of sets” as a single unit rather than as a sequence of words. For reference, the definition of a Boolean algebra follows. Definition. A Boolean algebra consists of a set Y together with binary operations ∨, ∧, and a unariy operation ∼ such that 1) x ∨ y = y ∨ x; x ∧ y = y ∧ x for all x,y ∈ Y 2) (x ∨ y) ∨ z = x ∨ (y ∨ z); (x ∧ y) ∧ z = x ∧ (y ∧ z) forall x,y,z ∈ Y 3) x ∨ x = x; x ∧ x = x for all x ∈ Y 4) (x ∨ y) ∧ x = x; (x ∧ y) ∨ x = x for all x ∈ Y 5) x ∧ (y ∨ z)=(x ∧ y) ∨ (x ∧ z) forall x,y,z ∈ Y 6) ∃ an element 0 ∈ Y such that 0 ∧ x = 0 for all x ∈ Y 7) ∃ an element 1 ∈ Y such that 1 ∨ x = 1 for all x ∈ Y 8) x ∧ (∼ x)=0; x ∨ (∼ x)=1 forall x ∈ Y Other properties, such as the other distributive law x ∨ (y ∧ z)=(x ∨ y) ∧ (x ∨ z), can be derived from the ones listed.
    [Show full text]