Lecture 3 the Lebesgue Integral
Lecture 3:The Lebesgue Integral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 3 The Lebesgue Integral The construction of the integral Unless expressly specified otherwise, we pick and fix a measure space (S, S, m) and assume that all functions under consideration are defined there. Definition 3.1 (Simple functions). A function f 2 L0(S, S, m) is said to be simple if it takes only a finite number of values. The collection of all simple functions is denoted by LSimp,0 (more precisely by LSimp,0(S, S, m)) and the family of non-negative simple Simp,0 functions by L+ . Clearly, a simple function f : S ! R admits a (not necessarily unique) representation n f = ∑ ak1Ak , (3.1) k=1 for a1,..., an 2 R and A1,..., An 2 S. Such a representation is called the simple-function representation of f . When the sets Ak, k = 1, . , n are intervals in R, the graph of the simple function f looks like a collection of steps (of heights a1,..., an). For that reason, the simple functions are sometimes referred to as step functions. The Lebesgue integral is very easy to define for non-negative simple functions and this definition allows for further generalizations1: 1 In fact, the progression of events you will see in this section is typical for measure theory: you start with indica- Definition 3.2 (Lebesgue integration for simple functions). For f 2 tor functions, move on to non-negative Simp,0 R simple functions, then to general non- L+ we define the (Lebesgue) integral f dm of f with respect to m negative measurable functions, and fi- by nally to (not-necessarily-non-negative) Z n f dm = a m(A ) 2 [0, ¥], measurable functions.
[Show full text]