The Channel Catfish Genome Sequence Provides Insights Into The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volume III, Chapter 9 Channel Catfish
Volume III, Chapter 9 Channel Catfish TABLE OF CONTENTS 9.0 Channel Catfish (Ictalurus punctatus) ........................................................................ 9-1 9.1 Introduction................................................................................................................. 9-1 9.2 Life History & Requirements...................................................................................... 9-2 9.2.1 Spawn Timing & Conditions................................................................................ 9-2 9.2.2 Incubation ............................................................................................................ 9-3 9.2.3 Larvae & Juveniles .............................................................................................. 9-3 9.2.4 Adult..................................................................................................................... 9-4 9.2.5 Movements ........................................................................................................... 9-5 9.3 Status & Abundance.................................................................................................... 9-5 9.3.1 Abundance............................................................................................................ 9-5 9.3.2 Productivity.......................................................................................................... 9-5 9.3.3 Supplementation.................................................................................................. -
Channel Catfish Life History and Biology
SRAC Publication No. 180 Southern Regional Aquaculture Center December, 1988 . Channel Catfish Life History and Biology Thomas L. Wellborn* Channel cattish, Ictalurus punctatus Rocky Mountains. Since then chan- is located on the back between the (Rafinesque), is the most important nel catfish have been widely intro- dorsal and caudal fins (Fig. 1). One species of aquatic animal commer- duced throughout the United States conspicuous characteristic of all cially cultured in the United States. and the world. catfish is the presence of barbels It belongs to the family Ictaluridae, around the mouth. The barbels are order Siluriformes. Members of the Physical characteristics arranged in a definite pattern with order Siluriformes are found in fresh Like all native North American cat- four under the jaw and one on each and salt water worldwide. There are fishes, a channel catfish has a body tip of the maxilla (upper jaw). at least 39 species of catfish in North that is cylindrical in cross-section, America, but only six have been cul- and lacks scales. Fins are soft-rayed The channel catfish is the only tured or have potential for commer- except for the dorsal and pectoral spotted North American catfish with cial production. They are the blue fins which have sharp, hard spines a deeply forked tail. There are 24-29 catfish, Ictalurus furcatus (LeSueur); that can inflict a nasty, painful rays in the anal fin. They are general- the white catfish, Ictalurus catus wound if a catfish is handled care- ly olivaceous to blue on the back, (Linnaeus); the black bullhead, Ic- lessly. -
Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3. -
In Silico Analysis of Single Nucleotide Polymorphism (Snps) in Human RAG1 and RAG2 Genes of Severe Combined Immunodeficiency
Central JSM Bioinformatics, Genomics and Proteomics Bringing Excellence in Open Access Research Article *Corresponding author Mona Shams Aldeen S. Ali, Department of Applied Bioinformatics, Africa City of Technology, Khartoum, In silico Analysis of Single Sudan, Tel: 249121784688; Email: Submitted: 26 May 2016 Nucleotide Polymorphism Accepted: 17 June 2016 Published: 27 June 2016 (SNPs) in Human RAG1 and Copyright © 2016 Ali et al. RAG2 Genes of Severe OPEN ACCESS Keywords Combined Immunodeficiency • Severe combined immunodeficiency • Primary immunodeficiency Mona Shams Aldeen S. Ali1,2*, Tomador Siddig MZ1,2, Rehab A. • T lymphocytes Elhadi1,2, Muhammad Rahama Yousof2, Siddig Eltyeb Yousif • Recombinase activating genes • non synonymous Single Nucleotide Polymorphisms Abdallah1, Maiada Mohamed Yousif Ahmed2, Nosiba Yahia Mohamed Hassen1, Sulum Omer Masoud Mohamed1, Marwa Mohamed Osman2, and Mohamed A. Hassan2 1Department of Rheumatology, Omdurman Teaching Hospital, Sudan 2Department of Applied Bioinformatics, Africa City of Technology, Sudan Abstract Severe combined immunodeficiency is an inherited Primary immunodeficiency PID, which is characterized by the absence or dysfunction of T lymphocytes. Defects in RAG1 and RAG2 are known to cause a T-B-NK+ form of SCID. Recombinase activating genes RAG1 and RAG2 (OMIM 179615,179616 respectively) are expressed exclusively in lymphocytes and mediate the creation of double-strand. DNA breaks at the sites of recombination and in signal sequences during T− and B− cell receptor gene rearrangement. This study was focused on the effect of nonsynonymous single nucleotide polymorphisms in the function and structure of RAG1& RAG2 genes using In silico analysis. Only nsSNPs and 3’UTR SNPs were selected for computational analysis. Predictions of deleterious nsSNPs were performed by bioinformatics software. -
Genome Sequence of the Progenitor of the Wheat D Genome Aegilops Tauschii Ming-Cheng Luo1*, Yong Q
OPEN LETTER doi:10.1038/nature24486 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii Ming-Cheng Luo1*, Yong Q. Gu2*, Daniela Puiu3*, Hao Wang4,5,6*, Sven O. Twardziok7*, Karin R. Deal1, Naxin Huo1,2, Tingting Zhu1, Le Wang1, Yi Wang1,2, Patrick E. McGuire1, Shuyang Liu1, Hai Long1, Ramesh K. Ramasamy1, Juan C. Rodriguez1, Sonny L. Van1, Luxia Yuan1, Zhenzhong Wang1,8, Zhiqiang Xia1, Lichan Xiao1, Olin D. Anderson2, Shuhong Ouyang2,8, Yong Liang2,8, Aleksey V. Zimin3, Geo Pertea3, Peng Qi4,5, Jeffrey L. Bennetzen6, Xiongtao Dai9, Matthew W. Dawson9, Hans-Georg Müller9, Karl Kugler7, Lorena Rivarola-Duarte7, Manuel Spannagl7, Klaus F. X. Mayer7,10, Fu-Hao Lu11, Michael W. Bevan11, Philippe Leroy12, Pingchuan Li13, Frank M. You13, Qixin Sun8, Zhiyong Liu8, Eric Lyons14, Thomas Wicker15, Steven L. Salzberg3,16, Katrien M. Devos4,5 & Jan Dvořák1 Aegilops tauschii is the diploid progenitor of the D genome of We conclude therefore that the size of the Ae. tauschii genome is about hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and 4.3 Gb. an important genetic resource for wheat2–4. The large size and To assess the accuracy of our assembly, sequences of 195 inde- highly repetitive nature of the Ae. tauschii genome has until now pendently sequenced and assembled AL8/78 BAC clones8, which precluded the development of a reference-quality genome sequence5. contained 25,540,177 bp in 2,405 unordered contigs, were aligned to Here we use an array of advanced technologies, including ordered- Aet v3.0. Five contigs failed to align and six extended partly into gaps, clone genome sequencing, whole-genome shotgun sequencing, accounting for 0.25% of the total length of the contigs. -
Tennessee Fish Species
The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7 -
"Colombian Shark Catfish" Ariopsis Seemanni in Water of Different Salinities 1Lury N
Evaluation of the survival and growth of the ornamental "Colombian shark catfish" Ariopsis seemanni in water of different salinities 1Lury N. García, 1Jean P. Lozano, 2Frank A. Chapman 1 Programa de Tecnología en Acuicultura, Universidad del Pacífico, Buenaventura, Valle del Cauca, Colombia; 2 Fisheries & Aquatic Sciences-SFRC, University of Florida, Florida, USA. Corresponding author: F. A. Chapman, [email protected] Abstract. Ariopsis seemanni is one of the few marine catfish in the ornamental fish trade. In Colombia, its country of origin, this catfish is being overfished. The most immediate threat to their populations occurs during their collection and commercialization, in which they are treated as a freshwater fish. The fish are collected in water of varying salinities then immediately placed in freshwater that compromises their health and typically causes mass mortalities. In this study, we evaluated the growth and survival of small juveniles of this catfish raised in water of different salinities (0, 10, 20 ppt), over a period of 60 days. The average weight and length of the catfish at the beginning of the experiment were 2.6±0.1 g and 60.9±2.7 mm, respectively. At the end of the experiment, the catfish reared in salt water (10 and 20 ppt) grew significantly (p < 0.05) from their initial values and were significantly larger (e.g., 6.0±1.3 g and 82±7.4 mm; p < 0.05) than those maintained in freshwater; which did not gain significant weight (e.g., 2.6±0.5 g, p > 0.05). The average size of fish was similar (p > 0.5), within the two salinity treatments. -
Genomes:Genomes: Whatwhat Wewe Knowknow …… Andand Whatwhat Wewe Don’Tdon’T Knowknow
Genomes:Genomes: WhatWhat wewe knowknow …… andand whatwhat wewe don’tdon’t knowknow Complete draft sequence 2001 OctoberOctober 15,15, 20072007 Dr.Dr. StefanStefan Maas,Maas, BioSBioS Lehigh Lehigh U.U. © SMaas 2007 What we know Raw genome data © SMaas 2007 The range of genome sizes in the animal & plant kingdoms !! NoNo correlationcorrelation betweenbetween genomegenome sizesize andand complexitycomplexity © SMaas 2007 What accounts for the often massive and seemingly arbitrary differences in genome size observed among eukaryotic organisms? The fruit fly The mountain grasshopper Drosophila melanogaster Podisma pedestris 180 Mb 18,000 Mb The difference in genome size of a factor of 100 is difficult to explain in view of the apparently similar levels of evolutionary, developmental and behavioral complexity of these organisms. © SMaas 2007 ComplexityComplexity doesdoes notnot correlatecorrelate withwith genomegenome sizesize 3.4 × 10 9 bp 6.7 × 1011 bp Homo sapiens Amoeba dubia © SMaas 2007 ComplexityComplexity doesdoes notnot correlatecorrelate withwith genegene numbernumber ~31,000~31,000 genesgenes ~26,000~26,000 genesgenes ~50,000~50,000 genesgenes © SMaas 2007 IsIs anan ExpansionExpansion inin GeneGene NumberNumber drivingdriving EvolutionEvolution ofof HigherHigher Organisms?Organisms? Vertebrata 30,000 Urochordata 16,000 Arthropoda 14,000 Nematoda 21,000 Fungi 2,000 – 13,000 Vascular plants 25,000 – 60,000 Unicellular sps. 5,000 – 10,000 Prokaryotes 500 - 7,000 © SMaas 2007 Structure of DNA Watson and Crick in 1953 proposed that DNA is a double helix in which the 4 bases are base paired, Adenine (A) with Thymine (T) and Guanine (G) with Cytosine (C). © SMaas 2007 © SMaas 2007 © SMaas 2007 Steps in the folding of DNA to create an eukaryotic chromosome 30 nm fiber (6 nucleosomes per turn) FactorFactor ofof condensation:condensation: Ca.Ca. -
Fisheries and Aquaculture
Ministry of Agriculture, Livestock and Irrigation 7. GOVERNMENT OF THE REPUBLIC OF THE UNION OF MYANMAR Formulation and Operationalization of National Action Plan for Poverty Alleviation and Rural Development through Agriculture (NAPA) Working Paper - 4 FISHERIES AND AQUACULTURE Yangon, June 2016 5. MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture TABLE OF CONTENTS ACRONYMS 3 1. INTRODUCTION 4 2. BACKGROUND 5 2.1. Strategic value of the Myanmar fisheries industry 5 3. SPECIFIC AREAS/ASPECTS OF THEMATIC AREA UNDER REVIEW 7 3.1. Marine capture fisheries 7 3.2. Inland capture fisheries 17 3.3. Leasable fisheries 22 3.4 Aquaculture 30 4. DETAILED DISCUSSIONS ON EACH CULTURE SYSTEM 30 4.1. Freshwater aquaculture 30 4.2. Brackishwater aquaculture 36 4.3. Postharvest processing 38 5. INSTITUTIONAL ENVIRONMENT 42 5.1. Management institutions 42 5.2. Human resource development 42 5.3. Policy 42 6. KEY OPPORTUNITIES AND CONSTRAINTS TO SECTOR DEVELOPMENT 44 6.1. Marine fisheries 44 6.2. Inland fisheries 44 6.3. Leasable fisheries 45 6.4. Aquaculture 45 6.5. Departmental emphasis on management 47 6.6. Institutional fragmentation 48 6.7. Human resource development infrastructure is poor 49 6.8. Extension training 50 6.9. Fisheries academies 50 6.10. Academia 50 7. KEY OPPORTUNITIES FOR SECTOR DEVELOPMENT 52 i MYANMAR: National Action Plan for Agriculture (NAPA) Working Paper 4: Fisheries and Aquaculture 7.1. Empowerment of fishing communities in marine protected areas (mpas) 52 7.2. Reduction of postharvest spoilage 52 7.3. Expansion of pond culture 52 7.4. -
Androgen Receptor Interacting Proteins and Coregulators Table
ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al. -
Lake Tahoe Fish Species
Description: o The Lohonton cutfhroot trout (LCT) is o member of the Solmonidqe {trout ond solmon) fomily, ond is thought to be omong the most endongered western solmonids. o The Lohonton cufihroot wos listed os endongered in 1970 ond reclossified os threotened in 1975. Dork olive bdcks ond reddish to yellow sides frequently chorocterize the LCT found in streoms. Steom dwellers reoch l0 inches in length ond only weigh obout I lb. Their life spon is less thon 5 yeors. ln streoms they ore opportunistic feeders, with diets consisting of drift orgonisms, typicolly terrestriol ond oquotic insects. The sides of loke-dwelling LCT ore often silvery. A brood, pinkish stripe moy be present. Historicolly loke dwellers reoched up to 50 inches in length ond weigh up to 40 pounds. Their life spon is 5-14yeors. ln lokes, smoll Lohontons feed on insects ond zooplonkton while lorger Lohonions feed on other fish. Body spots ore the diognostic chorocter thot distinguishes the Lohonion subspecies from the .l00 Poiute cutthroot. LCT typicolly hove 50 to or more lorge, roundish-block spots thot cover their entire bodies ond their bodies ore typicolly elongoted. o Like other cufihroot trout, they hove bosibronchiol teeth (on the bose of tongue), ond red sloshes under their iow (hence the nome "cutthroot"). o Femole sexuol moturity is reoch between oges of 3 ond 4, while moles moture ot 2 or 3 yeors of oge. o Generolly, they occur in cool flowing woier with ovoiloble cover of well-vegetoted ond stoble streom bonks, in oreos where there ore streom velocity breoks, ond in relotively silt free, rocky riffle-run oreos. -
The Marine Catfish Genidens Barbus (Ariidae)
An Acad Bras Cienc (2020) 92(Suppl. 2): e20180450 DOI 10.1590/0001-3765202020180450 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal BIOLOGICAL SCIENCES The marine catfi sh Genidens barbus (Ariidae) Running title: MARINE CATFISH fi sheries in the state of São Paulo, southeastern FISHERY IN SOUTHEASTERN BRAZIL Brazil: diagnosis and management suggestions JOCEMAR T. MENDONÇA, SAMUEL BALANIN & DOMINGOS GARRONE-NETO Academy Section: BIOLOGICAL Abstract : In this study we analyzed data on fi shing landings of Genidens barbus in the SCIENCES state of São Paulo, Brazil, from 2000 to 2014. An estimation of the total production was obtained through the analysis of 781,856 landings, among which 87% were categorized as artisanal and 13% as industrial. The abundance index showed some stability in the e20180450 period. However, due to the high number of production units, the fi shing effort need to be maintained, given that there is a risk that increased production might affect the abundance of G. barbus. Thus, as alternatives to maintaining marine catfi sh exploitation 92 in southeastern Brazil under control, the following management actions can be (Suppl. 2) suggested: i) prohibition of fi shing activity by the industrial sector; ii) strengthening of 92(Suppl. 2) inspection of the fl eet that is not allowed to participate in the marine catfi sh fi sheries, with emphasis on purse seiners; and iii) maintenance of a closed season for G. barbus, performing an adaptive management of fi shing prohibition according to the reproductive biology of the species and with the support of artisanal fi shers.