Model Transformation Languages Under a Magnifying Glass:A Controlled Experiment with Xtend, ATL, And

Total Page:16

File Type:pdf, Size:1020Kb

Model Transformation Languages Under a Magnifying Glass:A Controlled Experiment with Xtend, ATL, And CORE Metadata, citation and similar papers at core.ac.uk Provided by The IT University of Copenhagen's Repository Model Transformation Languages under a Magnifying Glass: A Controlled Experiment with Xtend, ATL, and QVT Regina Hebig Christoph Seidl Thorsten Berger Chalmers | University of Gothenburg Technische Universität Braunschweig Chalmers | University of Gothenburg Sweden Germany Sweden John Kook Pedersen Andrzej Wąsowski IT University of Copenhagen IT University of Copenhagen Denmark Denmark ABSTRACT NamedElement name : EString In Model-Driven Software Development, models are automatically processed to support the creation, build, and execution of systems. A large variety of dedicated model-transformation languages exists, Project Package Class StructuralElement modifiers : Modifier promising to efficiently realize the automated processing of models. [0..*] packages To investigate the actual benefit of using such specialized languages, [0..*] subpackages [0..*] elements Modifier [0..*] classes we performed a large-scale controlled experiment in which over 78 PUBLIC STATIC subjects solve 231 individual tasks using three languages. The exper- FINAL Attribute Method iment sheds light on commonalities and differences between model PRIVATE transformation languages (ATL, QVT-O) and on benefits of using them in common development tasks (comprehension, change, and Figure 1: Syntax model for source code creation) against a modern general-purpose language (Xtend). Our results show no statistically significant benefit of using a dedicated 1 INTRODUCTION transformation language over a modern general-purpose language. In Model-Driven Software Development (MDSD) [9, 35, 38] models However, we were able to identify several aspects of transformation are automatically processed to support creation, build and execution programming where domain-specific transformation languages do of systems. Transformations are, among others, used to compute appear to help, including copying objects, context identification, views on models, to validate models [25], to refactor models [43], to and conditioning the computation on types. interpret or otherwise execute models [28, 30], to implement model debuggers [24], to transform models to lower-level models [31], and CCS CONCEPTS to implement model-management operations such as versioning [2]. • Software and its engineering → Context specific languages; To support the multitude of processing tasks, many specialized General programming languages; model-transformation languages have been developed as a result of a substantial research effort [12, 26]. Outside MDSD, the trans- KEYWORDS formation languages are also gaining importance; in the program- ming-language [10, 11, 19, 36] and the data-processing community Model Transformation Languages, Experiment, Xtend, ATL, QVT (see for example http://www.cloveretl.com). Transformation languages come with an implicit promise to be ACM Reference Format: Regina Hebig, Christoph Seidl, Thorsten Berger, John Kook Pedersen, and An- easier to use and more efficient for specifying transformations than drzej Wąsowski. 2018. Model Transformation Languages under a Magni- general-purpose programming languages (GPLs). However, does fying Glass: A Controlled Experiment with Xtend, ATL, and QVT. In Pro- this promise hold? We heard this question multiple times in inter- ceedings of the 26th ACM Joint European Software Engineering Conference actions with industrial software teams. Unfortunately, little system- and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18), atic knowledge exists to respond, besides experience reports from November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, case studies [16]. This hampers choosing between a GPL, which 11 pages. https://doi.org/10.1145/3236024.3236046 can solve many tasks, and a specialized language that promises efficiency gains, but requires highly specialized programmers. As the automation of software-engineering tasks is a growing Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed trend, and as software projects mix increasingly many languages for profit or commercial advantage and that copies bear this notice and the full citation and formats, we can only expect that the time spent by developers on the first page. Copyrights for components of this work owned by others than the on creating transformation programs will be growing, and so will author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission the amount and importance of transformations. The transformation and/or a fee. Request permissions from [email protected]. languages promise to positively contribute to this effort. It is, thus, ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA key that we develop understanding on how programmers use trans- © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-5573-5/18/11...$15.00 formation languages, what problems they face, and what aspects https://doi.org/10.1145/3236024.3236046 of these languages emerge as particularly useful or problematic. ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA R. Hebig, C.Seidl, T. Berger, J. Kook Pedersen, A. Wąsowski We settled to answer some of these questions in a controlled packages subpackages :Project :Package :Package experiment with three established model transformation languages, name = "CustomerManagement" name = "p1" name = "p2" employed in program-comprehension, program-modification, and classes classes program-creation tasks. We recruited 78 graduate students from :Class :Class Chalmers | University of Gothenburg and Technische Universität name = "Customer" name = "Order" elements elements Braunschweig, and observed how they cope with the languages: :Attribute :Attribute name = "age" name = "date" ATL [17], QVT-O [23], and Xtend [8]—the first two dedicated and modifiers = {PUBLIC, STATIC} modifiers = {PUBLIC} elements elements established model transformation languages, the third a high-level :Attribute :Method name = "name" name = "confirm" GPL. Analyzing solutions of 231 tasks, we found that: modifiers = {PUBLIC} modifiers = {PUBLIC} elements • Handling multi-valued features (collections), recursion, and :Attribute name = "membershipNo" designing logical branching conditions are among the most modifiers = {PUBLIC, FINAL} elements difficult skills to master for the developers. :Method • Even well qualified subjects struggle to evolve transforma- name = "getAge" modifiers = {PUBLIC} tions optimally, producing changes of widely diverse sizes. • Implicit object creation, implicit structure copying, and sup- Figure 2: An instance of the model shown in Fig.1 port for type-driven computation and explicit computation We focus on three languages used for M2M: The Atlas Trans- context do appear to reduce the amount of errors. formation Language (ATL) is a mostly declarative domain-specific • There is no sufficient (statistically significant) evidence of M2M language.2 Listing 3a shows an example of ATL: The keyword a general advantage of specialized model transformation rule defines a named transformation for model elements ofthe languages (ATL, QVT-O) over a modern GPL (Xtend). source type (from) to those of the specified target type (to). The This work aims at the interest of researchers and practitioners first specified rule implicitly designates the entry point for thetrans- working with transformation languages, and building new tools formation specification. The invocation order of rules is implicit: in the modeling, DSL, and programming-languages communities. The transformation engine processes source instances according to It can also be of interest to software architects considering using the containment hierarchy specified in the respective model and GPLs or dedicated languages for a transformation task. automatically involves a matching rule for the encountered element of the source instance. The rules marked lazy may be invoked man- 2 BACKGROUND ually, in which case the call has to be qualified with the implicit We are concerned with model-to-model (M2M) transformations, so thisModule variable. The result of a rule is created by an implicit programs transforming instances of a source model to instances of instantiation of the target type. Then the values are assigned to the a target model (structured data to structured data)—in contrast to fields (object attributes and links) of the instantiated element. In model-to-text (M2T) transformations, which are typically imple- ATL, <- serves as the assignment operator. ATL provides various mented in template languages and used for code generation. To operations on collections: For instance, exists checks if at least one represent the abstract syntax of model instances, we use instance collection member satisfies a predicate, select creates a derived specifications (object diagrams), where objects represent model set with only those members that satisfy a given condition and elements, and the links between them represent the relationships collect (called map in many other languages) applies a mapping between model elements. All three languages considered in this function to every element of a collection, creating a new collection. experiment are integrated with the Eclipse Modeling Framework Query-View-Transformation
Recommended publications
  • The Model Transformation Language of the VIATRA2 Framework
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Science of Computer Programming 68 (2007) 214–234 www.elsevier.com/locate/scico The model transformation language of the VIATRA2 framework Daniel´ Varro´ ∗, Andras´ Balogh Budapest University of Technology and Economics, Department of Measurement and Information Systems, H-1117, Magyar tudosok krt. 2., Budapest, Hungary OptXware Research and Development LLC, Budapest, Hungary Received 15 August 2006; received in revised form 17 April 2007; accepted 14 May 2007 Available online 5 July 2007 Abstract We present the model transformation language of the VIATRA2 framework, which provides a rule- and pattern-based transformation language for manipulating graph models by combining graph transformation and abstract state machines into a single specification paradigm. This language offers advanced constructs for querying (e.g. recursive graph patterns) and manipulating models (e.g. generic transformation and meta-transformation rules) in unidirectional model transformations frequently used in formal model analysis to carry out powerful abstractions. c 2007 Elsevier B.V. All rights reserved. Keywords: Model transformation; Graph transformation; Abstract state machines 1. Introduction The crucial role of model transformation (MT) languages and tools for the overall success of model-driven system development has been revealed in many surveys and papers during the recent years. To provide a standardized support for capturing queries, views and transformations between modeling languages defined by their standard MOF metamodels, the Object Management Group (OMG) has recently issued the QVT standard. QVT provides an intuitive, pattern-based, bidirectional model transformation language, which is especially useful for synchronization kind of transformations between semantically equivalent modeling languages.
    [Show full text]
  • The Viatra-I Model Transformation Framework Users' Guide
    The Viatra-I Model Transformation Framework Users’ Guide c 2007. OptXware Research and Development LLC. This document is property of the OptXware Research and Development LLC. To copy the whole or parts of it, or passing the contained information to third parties is allowed only with prior approval of OptXware Research and Development LLC. Contents 1 Introduction 6 1.1 The VIATRA Model Transformation Framework ... 6 1.1.1 Mission statement ................ 6 1.1.2 Target application domains ........... 6 1.1.3 The approach ................... 7 1.2 The Current Release ................... 7 1.2.1 Product features ................. 7 1.2.2 The Development Team ............. 9 2 Graphical User Interface of VIATRA 10 2.1 Initial Steps with Using VIATRA ............ 10 2.1.1 Installation .................... 10 2.1.2 Setting up the VIATRA environment in Eclipse 17 2.1.3 Creating a new project .............. 19 2.1.4 Creating a model space ............. 21 2.1.5 Opening and saving a model space ....... 23 2.1.6 Creating a metamodel or transformation .... 25 2.1.7 Parsing a metamodel or transformation .... 27 2.1.8 Executing a transformation ........... 31 2.2 Syntax for Format String in the Tree Editor ...... 32 2.2.1 Supported property names ........... 33 2.2.2 Examples ..................... 34 2 Contents 3 3 Writing Import Modules 36 3.1 Creating a meta model .................. 36 3.2 Handling concrete syntax ................ 37 3.3 Building up models .................... 38 3.4 Structure of an import plugin .............. 40 3.5 Installing a new importer ................ 42 4 Writing New Native Functions for VIATRA 43 4.1 Implementing a New Function .............
    [Show full text]
  • Data Transformation Language (DTL)
    DTL Data Transformation Language Phillip H. Sherrod Copyright © 2005-2006 All rights reserved www.dtreg.com DTL is a full programming language built into the DTREG program. DTL makes it easy to generate new variables, transform and combine input variables and select records to be used in the analysis. Contents Contents...................................................................................................................................................3 Introduction .............................................................................................................................................6 Introduction to the DTL Language......................................................................................................6 Using DTL For Data Transformations ....................................................................................................7 The main() function.............................................................................................................................7 Global Variables..................................................................................................................................8 Implicit Global Variables ................................................................................................................8 Explicit Global Variables ................................................................................................................9 Static Global Variables..................................................................................................................11
    [Show full text]
  • Expressive and Efficient Model Transformation with an Internal DSL
    Expressive and Efficient Model Transformation with an Internal DSL of Xtend Artur Boronat Department of Informatics, University of Leicester, UK [email protected] ABSTRACT 1 INTRODUCTION Model transformation (MT) of very large models (VLMs), with mil- Over the past decade the application of MDE technology in indus- lions of elements, is a challenging cornerstone for applying Model- try has led to the emergence of very large models (VLMs), with Driven Engineering (MDE) technology in industry. Recent research millions of elements, that may need to be updated using model efforts that tackle this problem have been directed at distributing transformation (MT). This situation is characterized by important MT on the Cloud, either directly, by managing clusters explicitly, or challenges [26], starting from model persistence using XMI serial- indirectly, via external NoSQL data stores. In this paper, we draw at- ization with the Eclipse Modeling Framework (EMF) [31] to scalable tention back to improving efficiency of model transformations that approaches to apply model updates. use EMF natively and that run on non-distributed environments, An important research effort to tackle these challenges was showing that substantial performance gains can still be reaped on performed in the European project MONDO [19] by scaling out that ground. efficient model query and MT engines, such as VIATRA[3] and We present Yet Another Model Transformation Language (YAMTL), ATL/EMFTVM [46], building on Cloud technology either directly, a new internal domain-specific language (DSL) of Xtend for defin- by using distributed clusters of servers explicitly, or indirectly, by ing declarative MT, and its execution engine.
    [Show full text]
  • A Framework for Model Transformation Verification LANO, Kevin, CLARK, T
    A framework for model transformation verification LANO, Kevin, CLARK, T. <http://orcid.org/0000-0003-3167-0739> and KOLAHDOUZ-RAHIMI, S. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/12046/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version LANO, Kevin, CLARK, T. and KOLAHDOUZ-RAHIMI, S. (2015). A framework for model transformation verification. Formal Aspects of Computing, 27 (1), 193-235. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk A framework for verification of model transformations K. Lano, T. Clark, S. Kolahdouz-Rahimi Dept. of Informatics, King's College London; Dept. of Informatics, Middlesex University Abstract. A model transformation verification task may involve a number of different trans- formations, from one or more of a wide range of different model transformation languages, each transformation may have a particular transformation style, and there are a number of different verification properties which can be verified for each language and style of transfor- mation. Transformations may operate upon many different modelling languages. This diver- sity of languages and properties indicates the need for a suitably generic framework for model transformation verification, independent of particular model transformation languages, and able to provide support for systematic procedures for verification across a range of languages, and for a range of properties. In this paper we describe the elements of such a framework, and apply this framework to a range of transformation verification problems.
    [Show full text]
  • Model-Based Hardware Generation and Programming - the MADES Approach
    1 Model-based hardware generation and programming - the MADES approach Ian Gray∗, Nikos Matragkas∗, Neil C. Audsley, Leandro Soares Indrusiak, Dimitris Kolovos, Richard Paige University of York, York, U.K. F Abstract—This paper gives an overview of the model-based hardware the proposed hardware development flow and the way generation and programming approach proposed within the MADES that embedded software can be targeted at the resulting project. MADES aims to develop a model-driven development process complex architectures. for safety-critical, real-time embedded systems. MADES defines a sys- tems modelling language based on subsets of MARTE and SysML that allows iterative refinement from high-level specification down to 1.1 MADES Project Goals final implementation. The MADES project specifically focusses on three The MADES project (Model-based methods and tools unique features which differentiate it from existing model-driven develop- ment frameworks. First, model transformations in the Epsilon modelling for Avionics and surveillance embeddeD systEmS) aims framework are used to move between system models and provide to develop the elements of a fully model-driven ap- traceability. Second, the Zot verification tool is employed to allow early proach for the design, validation, simulation, and code and frequent verification of the system being developed. Third, Compile- generation of complex embedded systems to improve Time Virtualisation is used to automatically retarget architecturally- the current practice in the field. MADES differentiates neutral software for execution on complex embedded architectures. itself from similar projects in that way that it covers This paper concentrates on MADES’s approach to the specification of hardware and the way in which software is refactored by Compile-Time all the phases of the development process: from system Virtualisation.
    [Show full text]
  • Feather: a Feature Model Transformation Language
    1 Feather: A Feature Model Transformation Language Ahmet Serkan Karataş * area of usage to include dynamic systems that can face Abstract: Feature modeling has been a very popular approach fluctuating context conditions, changing user requirements, for variability management in software product lines. Building need to include and facilitate novel resources rapidly, and so on. a feature model requires substantial domain expertise, however, The constant need for adaptation required to enhance the even experts cannot foresee all future possibilities. Changing variability management capabilities of SPLs to cover runtime, requirements can force a feature model to evolve in order to which gave birth to the dynamic software product lines adapt to the new conditions. Feather is a language to describe (DSPLs). In addition to the properties they inherit from SPLs, model transformations that will evolve a feature model. This DSPLs have several other properties such as dynamic article presents the structure and foundations of Feather. First, variability management, flexible variation points and binding the language elements, which consist of declarations to times, context awareness, and self-adaptability [21]. characterize the model to evolve and commands to manipulate A major factor affecting the success of a software product its structure, are introduced. Then, semantics grounding in line, classic or dynamic, is the variability management activity feature model properties are given for the commands in order it incorporates [12]. In the literature there are reports of various to provide precise command definitions. Next, an interpreter variability modeling and management approaches such as that can realize the transformations described by the commands in a Feather script is presented.
    [Show full text]
  • Model Transformation Design Patterns
    Model Transformation Design Patterns Hüseyin Ergin [email protected] Department of Computer Science, University of Alabama, U.S.A. Abstract. In this document, a brief overview of my doctoral research is pre- sented. In model-driven engineering (MDE), most problems are solved using model transformation. An efficient process to solving these problems is to apply reusable patterns while solving them. Finding reusable design patterns to specific subsets of problems helps to decrease the time and cost needed to solve them. My doctoral research is based on finding these design patterns to be applied on model transformation problems and evaluating them in terms of quality criteria. My next step is to generate these design pattern instances automatically by using higher-order transformation. 1 Introduction Model-driven engineering (MDE) [1] is considered a well-established software devel- opment approach that uses abstraction to bridge the gap between the problem and the software implementation. These abstractions are defined as models. Models are primary artifacts in MDE and are used to describe complex systems at multiple levels of abstrac- tion, while capturing some of their essential properties. These levels of abstraction let domain experts describe and solve problems without depending on a specific platform or programming language. Models are instances of a meta-model which defines the syntax of a modeling lan- guage. In MDE, the core development process consists of a series of transformations over models, called model transformation. Model transformations take models as input and output according to the specifications defined by the meta-model. In this document, I summarize the subject that I want to work on in my dissertation.
    [Show full text]
  • Comparative Studies of 10 Programming Languages Within 10 Diverse Criteria Revision 1.0
    Comparative Studies of 10 Programming Languages within 10 Diverse Criteria Revision 1.0 Rana Naim∗ Mohammad Fahim Nizam† Concordia University Montreal, Concordia University Montreal, Quebec, Canada Quebec, Canada [email protected] [email protected] Sheetal Hanamasagar‡ Jalal Noureddine§ Concordia University Montreal, Concordia University Montreal, Quebec, Canada Quebec, Canada [email protected] [email protected] Marinela Miladinova¶ Concordia University Montreal, Quebec, Canada [email protected] Abstract This is a survey on the programming languages: C++, JavaScript, AspectJ, C#, Haskell, Java, PHP, Scala, Scheme, and BPEL. Our survey work involves a comparative study of these ten programming languages with respect to the following criteria: secure programming practices, web application development, web service composition, OOP-based abstractions, reflection, aspect orientation, functional programming, declarative programming, batch scripting, and UI prototyping. We study these languages in the context of the above mentioned criteria and the level of support they provide for each one of them. Keywords: programming languages, programming paradigms, language features, language design and implementation 1 Introduction Choosing the best language that would satisfy all requirements for the given problem domain can be a difficult task. Some languages are better suited for specific applications than others. In order to select the proper one for the specific problem domain, one has to know what features it provides to support the requirements. Different languages support different paradigms, provide different abstractions, and have different levels of expressive power. Some are better suited to express algorithms and others are targeting the non-technical users. The question is then what is the best tool for a particular problem.
    [Show full text]
  • WOL: a Language for Database Transformations and Constraints
    University of Pennsylvania ScholarlyCommons Database Research Group (CIS) Department of Computer & Information Science April 1997 WOL: A Language for Database Transformations and Constraints Susan B. Davidson University of Pennsylvania, [email protected] Anthony S. Kosky University of California Follow this and additional works at: https://repository.upenn.edu/db_research Davidson, Susan B. and Kosky, Anthony S., "WOL: A Language for Database Transformations and Constraints " (1997). Database Research Group (CIS). 13. https://repository.upenn.edu/db_research/13 Copyright 1997 IEEE. Reprinted from Proceedings of the 13th International Conference on Data Engineering, April 1997, pages 55-65. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/db_research/13 For more information, please contact [email protected]. WOL: A Language for Database Transformations and Constraints Abstract The need to transform data between heterogeneous databases arises from a number of critical tasks in data management. These tasks are complicated by schema evolution in the underlying databases, and by the presence of non-standard database constraints. We describe a declarative language, WOL, for specifying such transformations, and its implementation in a system called Morphase.
    [Show full text]
  • SPOT: a DSL for Extending Fortran Programs with Metaprogramming
    Hindawi Publishing Corporation Advances in Soware Engineering Volume 2014, Article ID 917327, 23 pages http://dx.doi.org/10.1155/2014/917327 Research Article SPOT: A DSL for Extending Fortran Programs with Metaprogramming Songqing Yue and Jeff Gray Department of Computer Science, University of Alabama, Tuscaloosa, AL 35401, USA Correspondence should be addressed to Songqing Yue; [email protected] Received 8 July 2014; Revised 27 October 2014; Accepted 12 November 2014; Published 17 December 2014 Academic Editor: Robert J. Walker Copyright © 2014 S. Yue and J. Gray. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Metaprogramming has shown much promise for improving the quality of software by offering programming language techniques to address issues of modularity, reusability, maintainability, and extensibility. Thus far, the power of metaprogramming has not been explored deeply in the area of high performance computing (HPC). There is a vast body of legacy code written in Fortran running throughout the HPC community. In order to facilitate software maintenance and evolution in HPC systems, we introduce a DSL that can be used to perform source-to-source translation of Fortran programs by providing a higher level of abstraction for specifying program transformations. The underlying transformations are actually carried out through a metaobject protocol (MOP) and a code generator is responsible for translating a SPOT program to the corresponding MOP code. The design focus of the framework is to automate program transformations through techniques of code generation, so that developers only need to specify desired transformations while being oblivious to the details about how the transformations are performed.
    [Show full text]
  • The Transformation Language XSL
    Chapter 8 The Transformation Language XSL 8.1 XSL: Extensible Stylesheet Language • developed from – CSS (Cascading Stylesheets) scripting language for transformation of data sources to HTML or any other optical markup, and – DSSSL (Document Style Semantics and Specification Language), stylesheet language for SGML. Functional programming language. • idea: rule-based specification how elements are transformed and formatted recursively: – Input: XML – Output: XML (special case: HTML) • declarative/functional: XSLT (XSL Transformations) 305 APPLICATIONS • XML XML → – Transformation of an XML instance into a new instance according to another DTD, – Integration of several XML instances into one, – Extraction of data from an XML instance, – Splitting an XML instance into several ones. • XML HTML → – Transformation of an XML instance to HTML for presentation in a browser • XML anything → – since no data structures, but only ASCII is generated, LATEX, postscript, pdf can also be generated – ... or transform to XSL-FO (Formatting objects). 306 THE LANGUAGE(S) XSL Partitioned into two sublanguages: • functional programming language: XSLT “understood” by XSLT-Processors (e.g. xt, xalan, saxon, xsltproc ...) • generic language for document-markup: XSL-FO “understood” by XSL-FO-enabled browsers that transform the XSL-FO-markup according to an internal specification into a direct (screen/printable) presentation. (similar to LaTeX) • programming paradigm: self-organizing tree-walking • XSL itself is written in XML-Syntax. It uses the namespace prefixes “xsl:” and “fo:”, bound to http://www.w3.org/1999/XSL/Transform and http://www.w3.org/1999/XSL/Format. • XSL programs can be seen as XML data. • it can be combined with other languages that also have an XML-Syntax (and an own namespace).
    [Show full text]