Uva-DARE (Digital Academic Repository)

Total Page:16

File Type:pdf, Size:1020Kb

Uva-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Contributions of CD27 and relatives to the specific immune response Hendriks, J.A. Publication date 2004 Link to publication Citation for published version (APA): Hendriks, J. A. (2004). Contributions of CD27 and relatives to the specific immune response. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:04 Oct 2021 Chapter 6 OX40 and 4-1BB, together with CD27, determine the amount of CD8+ memory T cells formed and imprint into them the capacity for secondary expansion. Jenny Hendriks, Yanling Xiao, Kazuo Sugumura, Naoto Ishii and Jannie Borst Submitted 79 80 OX40, 4-1 BB andCD27 shape CD8+ T cell memory OX40 and 4-1BB, together with CD27, determine the amount of CD8+ memory T cells formed and imprint into them the capacity for secondary expansion. Jenny Hendriks1, Yanling Xiao', Kazuo Sugumura2, Naoto Ishii2 and Jannie Borst1'3 'Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands, department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan. Summary We have established the relative impact of CD27-, OX40- and 4-1BB receptor/ligand interactions on the CD8+ T cell response to influenza virus. CD27 and to a lesser extent 4-1BB promoted accumulation of CD8+ effector T cells during primary infection, while OX40 did not. Nevertheless, all three receptor/ligand systems equally and critically contributed to the formation of memory CD8+ T cells. Moreover, they collectively determined the magnitude of effector CD8+ T cell accumulation after secondary infection. Surprisingly, wild-type CD8+ memory T cells did not require stimulation by OX40- or 4-1BB ligand throughout the secondary response. However, they were impaired in maintenance and capacity for secondary expansion, when they had been generated in OX40- or 4-1BB ligand-deficient mice. Thus, stimulation of CD8+ T cells during the primary response by OX40- and 4-1BB ligand presented on non-T cells endows them with the capacity for long-term survival and imprints their potential for secondary expansion. Introduction An effective immune response relies on the clonal amplification of antigen-specific T cells and their accumulation at the site of infection. For long-term protection, part of the antigen- specific T cell pool must be retained as memory cells, which respond rapidly to renewed challenge. Naive T cell expansion is initiated by TCR signaling, but this alone is not sufficient. Costimulatory receptors must be engaged, which promote T cell division and survival and may direct development of effector functions. Costimulatory receptors comprise immunoglobulin superfamily members, including CD28 and ICOS, and TNF receptor family members, such as CD27, OX40 and 4-IBB (Watts and DeBenedette, 1999; Croft, 2003). Like the TCR, CD28 and relatives signal via tyrosine kinases, while costimulatory TNF receptor family members signal via TRAF adaptors (Gravestein and Borst, 1998). Both mechanisms activate the NFKB and Jun kinase pathways, posing the 81 Chapter 6 question whether signals provided by the various costimulatory receptors merely add to TCR signaling and to each other in quantitative terms. Previously, we have determined that CD27 gives a critical survival signal to activated T cells (Hendriks et al., 2003). Upon intranasal infection with influenza virus, CD27 and CD28 equally contributed to expansion of virus-specific T cells and their accumulation at the effector site. CD27 and CD28 appeared complementary in qualitive terms, i.e. CD27 did not promote Cell division, as well as in the timing of their pro-survival effects. Like CD28 (Okkenhaug et al, 2001), CD27 probably counters apoptosis by transcriptionally upregulating inhibitory Bcl-2 family members (Van Oosterwijk and Van Lier, pers. comm.). OX40 and 4-IBB, the closest relatives of CD27 (Croft, 2003),also promote activated T cell survival by stimulating expression of anti-apoptotic Bcl-2 family members, such as Bcl-xL and Bfl-1 (Rogers et al., 2001; Lee et al., 2002). While this mechanism of action suggests redundancy between CD27, OX40 and 4-IBB, complementarity may lie in the timing of their involvement in the T cell response. The expression patterns of these receptors give a clue that this might be the case. CD27 is expressed on naive, effector and memory T cells (Lens et al., 1998; Gravestein et al., 1995), but OX40 and 4-IBB are acquired at the effector stage. They are induced by TCR signals, with CD28 enhancing the kinetics and levels of expression (Al-Shamkani et al., 1996; Gramaglia et al., 1998; Rogers et al., 2001; Pollok et al., 1993). Accordingly, in activated T cells lacking OX40 or 4-1BB signaling, survival is not compromised initially, but it is defective in the later divisions (Rogers et al., 2001; Cooper et al., 2002). The ligands are TNF-related transmembrane molecules, which emerge transiently, under strict control of antigen receptors and Toll-like receptors (Gravestein and Borst, 1998). CD70, the ligand of CD27, OX40 ligand (OX40L) and 4-IBB ligand (4-1 BBL) have all been found on activated T- and B lymphocytes and mature DC (Oshima et al., 1998; Tesselaar et al., 2003a; Al-Shamkani et al., 1996; Stuber et al., 1995; Futugawa et al., 2001), indicating that receptor/ligand interactions come into play during communication between T cells and antigen presenting cells as well as amongst effector T cells. Limited data are available on their expression in vivo. Deliberate constitutive expression of CD70, OX40L or 4-1 BBL by transgenesis upsets lymphocyte homeostasis, leading to immunodeficiency or auto-immunity, indicating that the transient availability of these ligands is crucial to prevent pathogenesis (Arens et al., 2001; Tesselaar et al., 2003b; Murata et al., 2002; Zhu et al., 2001). OX40 and OX40L-deficient mice have reduced primary CD4+ T cell responses to several viruses and common protein antigens (Kopf et al., 1999; Chen et al., 1999; Murata et al., 2000). Lower frequencies of antigen-specific effector CD4+ T cells are generated late in the primary response and fewer CD4+ memory T cells develop (Gramaglia et al., 2000). 82 OX40, 4-IBB and CD27 shape CD8+ Tcell memory In mice lacking 4-1 BBL, fewer antigen-specific CD8+ effector T cells and memory T cells develop (Tan et al., 1999; DeBenedette et al., 1999; Bertram et al, 2002). In CD27"A mice infected with influenza virus, accumulation of both CD4+ and CD8+ effector T cells is reduced (Hendriks et al., 2000). Phenotypes of receptor- and ligand deficient mice are subtle as compared to the phenotypes of mice in which the receptors are deliberately stimulated. Agonistic anti-OX40- or 4-IBB antibodies rescued T cells from activation- induced cell death and promoted memory formation (Maxwell et al, 2000; Takahashi et al., 1999). In CD70 transgenic mice, effector CD4+ and CD8+ T cells develop in the absence of deliberate antigenic challenge (Arens et al., 2001; Tesselaar et al., 2003b) and in non- immunized OX40L transgenic mice, CD4+ effector T cells accumulate. In addition, in OX40L transgenic mice CD4+ effector T cells showed decreased contraction after antigenic challenge (Murata et al., 2002). There are many data on the role of costimulatory receptors in primary responses, but much less is known about their importance for memory responses. We have found in the influenza virus model, that accumulation ofvirus-specific CD8+ effector T cells in the memory response is equally and critically dependent on both CD27 and CD28 (Hendriks et al., 2000; 2003). Intervention with OX40-Ig, as well as testing the performance of OX40"'" T cells in a model of virus-induced lung inflammation indicated that OX40 controls the accumulation of CD4+ effector cells in the memory response (Humphreys et al., 2003; Salek-Ardakani et al., 2003). In mice lacking 4-1BBL, accumulation of CD8+ effector T cells upon re-challenge with virus is reduced (Bertram et al., 2002). These data indicate that CD27 and 4-IBB are important for CD8+ memory responses and OX40 for CD4+ memory responses, but do not elucidate whether this is due to an effect on memory cell formation and/or responsiveness. We wondered whether CD27, OX40 and 4-IBB make complementary contributions to the same CD8+ T cell response. We therefore infected recombinant mice lacking relevant receptors or ligands with influenza virus and analysed the generation of CD8+ effector T cells, their conversion into memory T cells and memory cell responsiveness. We also monitored expression of receptors and ligands in lymphoid organs and lung throughout infection. Our results highlight the comlementarity between these receptor/ligand systems and revealed that OX40 and 4-IBB can endow CD8+ T cells with the capacity for secondary expansion during the primary response. Results Primary T cell responses to influenza virus in the absence of CD27, OX40L or 4-1BBL Intranasal challenge with influenza A virus NT/60/68 characteristically causes a dramatic influx effector T cells into the lung.
Recommended publications
  • Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy
    International Journal of Molecular Sciences Review Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy Jianguang Zhang, Huifang Zheng and Yong Diao * School of Medicine, Huaqiao University, Quanzhou 362021, Fujian, China; [email protected] (J.Z.); [email protected] (H.Z.) * Correspondence: [email protected]; Tel.: +86-595-2269-2516 Received: 15 November 2018; Accepted: 11 January 2019; Published: 14 January 2019 Abstract: Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy. Keywords: natural killer cell line; NK-92; chimeric antigen receptor; immunotherapy; tumor 1. Introduction Natural killer (NK) cells are innate immune cells that were first discovered in mice in 1975 [1]. NK cells account for approximately 10% of lymphocytes in human peripheral blood (PB). Owing to the distinct chemokine receptors expressed in NK cells, the distributions of NK cells differ among healthy tissues. Most NK cells are found in the PB, liver, spleen, and bone marrow, and a small portion are also present in the lymph nodes [2–5].
    [Show full text]
  • Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
    International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates.
    [Show full text]
  • CD2 Molecules Redistribute to the Uropod During T Cell Scanning: Implications for Cellular Activation and Immune Surveillance
    CD2 molecules redistribute to the uropod during T cell scanning: Implications for cellular activation and immune surveillance Elena V. Tibaldi*†, Ravi Salgia†‡, and Ellis L. Reinherz*†§ *Laboratory of Immunobiology and ‡Division of Adult Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, and †Department of Medicine, Harvard Medical School, Boston, MA 02115 Communicated by Stuart F. Schlossman, Dana-Farber Cancer Institute, Boston, MA, April 9, 2002 (received for review February 14, 2002) Dynamic binding between CD2 and CD58 counter-receptors on op- cells, whereas its counter-receptor CD58 is expressed on a posing cells optimizes immune recognition through stabilization of diverse array of nucleated and non-nucleated cells including cell–cell contact and juxtaposition of surface membranes at a distance APCs and stromal cells (reviewed in refs. 11 and 12). CD2 suitable for T cell receptor–ligand interaction. Digitized time-lapse functions in both T cell adhesion and activation processes (13). Ϸ differential interference contrast and immunofluorescence micros- Of note, the weak affinity of the CD2-CD58 interaction (Kd copy on living cells now show that this binding also induces T cell 1 ␮M) is associated with remarkably fast on and off rates that polarization. Moreover, CD2 can facilitate motility of T cells along foster rapid and extensive exchange between CD2 and CD58 antigen-presenting cells via a movement referred to as scanning. Both partners on opposing cell surfaces (14–16). These biophysical activated CD4 and CD8 T cells are able to scan antigen-presenting cells characteristics are reminiscent of the selectin–ligand interactions surfaces in the absence of cognate antigen.
    [Show full text]
  • Human Fcgr2a / Cd32a (H131) Protein Catalog # AMS.CD1-H5223-100UG for Research Use Only
    Human FcGR2A / CD32a (H131) Protein Catalog # AMS.CD1-H5223-100UG For Research Use Only Description Source Human FcGR2A / CD32a (H131) Protein,also called Human FcGR2A / CD32a Protein (167 His), Ala 36 - Ile 218 (Accession # P12318-1), was produced in human 293 cells (HEK293) Predicted N-terminus Ala 36 Protein Structure Molecular Human FcGR2A / CD32a (H131), His Tag is fused with a polyhistidine tag at the C-terminus, and has a calculated MW of 21.1 Characterization kDa. The predicted N-terminus is Ala 36. The reducing (R) protein migrates as 29-32 kDa in SDS-PAGE due to glycosylation. Endotoxin Less than 1.0 EU per μg by the LAL method. >95% as determined by SDS-PAGE. Purity Bioactivity The bioactivity is measured by its binding ability to Ipilimumab in a SPR assay. Immobilized Human FcGR2A / CD32a (H131), His Tag (Cat# AMS.CD1-H5223-100UG) can bind Ipilimumab with affinity constant of around 2.7 uM. Measured by its binding ability in a functional ELISA. Immobilized human IgG4 at 10μg/mL (100 µl/well),can bind Human FcGR2A / CD32a (H131), His Tag (Cat# AMS.CD1-H5223-100UG) with a linear of 0.1-2 μg/mL. Formulation and Storage Formulation Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally Trehalose is added as protectant before lyophilization. Contact us for customized product form or formulation. Please see Certificate of Analysis for specific instructions. For best performance, we strongly recommend you to follow the Reconstitution reconstitution protocol provided in the COA. Storage For long term storage, the product should be stored at lyophilized state at -20°C or lower.
    [Show full text]
  • REVIEW Dendritic Cell-Based Vaccine
    Leukemia (1999) 13, 653–663 1999 Stockton Press All rights reserved 0887-6924/99 $12.00 http://www.stockton-press.co.uk/leu REVIEW Dendritic cell-based vaccine: a promising approach for cancer immunotherapy K Tarte1 and B Klein1,2 1INSERM U 475, Montpellier; and 2Unit For Cellular Therapy, CHU Saint Eloi, Montpellier, France The unique ability of dendritic cells to pick up antigens and to + + and interstitial DC pick up antigens (Ag) in peripheral tissues activate naive and memory CD4 and CD8 T cells raised the and migrate to lymphoid organs through lymphatic vessels in possibility of using them to trigger a specific anti-tumor 8 immunity. If numerous studies have shown a major interest in response to inflammatory stimuli. Activated mature DC, dendritic cell-based vaccines for cancer immunotherapy in ani- which express CD1a and CD83 antigens, represent the latter mal models, only a few have been carried out in human can- stage of LC and interstitial DC maturation. According to their cers. In this review, we describe recent findings in the biology high expression of MHC class I, MHC class II and costimu- of dendritic cells that are important to generate anti-tumor cyto- latory molecules, they present, efficiently, Ag-derived peptides toxic T cells in vitro and we also detail clinical studies reporting to CD4+ and CD8+ T lymphocytes in lymph node T cell areas the obtention of specific immunity to human cancers in vivo using reinfusion of dendritic cells pulsed with tumor antigens. (Figure 1). Recently, another subset of DC was identified on Keywords: dendritic cells; cancer; immunotherapy the basis of their high expression of the interleukin-3 receptor alpha chain (IL-3R␣hi).
    [Show full text]
  • Mechanisms and Consequences of Antigen Presentation By
    Series: The Biology of Antigen Presentation Feature Review Mechanisms and Consequences of Antigen Presentation by CD1 1, 1 1,2 Luc Van Kaer, * Lan Wu, and Sebastian Joyce The CD1 proteins are a family of non-polymorphic and MHC class I-related Trends molecules that present lipid antigens to subsets of T lymphocytes with innate- or The CD1–lipid presentation system adaptive-like immune functions. Recent studies have provided new insight into allows the immune system to sense alterations in lipid homeostasis, and the identity of immunogenic CD1 antigens and the mechanisms that control the complements the classical MHC–pep- generation and loading of these antigens onto CD1 molecules. Furthermore, tide presentation system. There are substantial progress has been made in identifying CD1-restricted T cells and remarkable similarities and surprising differences in the way that TCRs decoding the diverse immunological functions of distinct CD1-restricted T cell engage CD1–lipid versus MHC–pep- subsets. These findings shed new light on the contributions of the CD1 antigen- tide complexes. presentation pathway to normal health and to a diverse array of pathologies, and Group 1 CD1 proteins (CD1a–c) pre- provide a new impetus for exploiting this fascinating recognition system for the sent a variety of endogenous, myco- development of vaccines and immunotherapies. bacterial, and potentially other bacterial lipids to T cells. CD1b-restricted T cells include subsets expressing germline- Antigen-Presentation Systems encoded TCRs. Products encoded by the major histocompatibility complex (MHC) region of the vertebrate Group 2 CD1 proteins (CD1d) present genome bind peptide fragments from pathogens and display them at the surface of antigen- diverse endogenous and exogenous presenting cells (APCs) for appraisal by T lymphocytes [1].
    [Show full text]
  • Cells and Marginal Zone B Cells CD1.1 Expression by Mouse Antigen-Presenting
    CD1.1 Expression by Mouse Antigen-Presenting Cells and Marginal Zone B Cells Jessica H. Roark, Se-Ho Park, Jayanthi Jayawardena, Uma Kavita, Michele Shannon and Albert Bendelac This information is current as of September 29, 2021. J Immunol 1998; 160:3121-3127; ; http://www.jimmunol.org/content/160/7/3121 References This article cites 48 articles, 26 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/160/7/3121.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 29, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. CD1.1 Expression by Mouse Antigen-Presenting Cells and Marginal Zone B Cells1 Jessica H. Roark, Se-Ho Park, Jayanthi Jayawardena, Uma Kavita, Michele Shannon, and Albert Bendelac2 Mouse CD1.1 is an MHC class I-like, non-MHC-encoded, surface glycoprotein that can be recognized by T cells, in particular NK1.11 T cells, a subset of ab T cells with semiinvariant TCRs that promptly releases potent cytokines such as IL-4 and IFN-g upon stimulation.
    [Show full text]
  • Low-Affinity B Cells Transport Viral Particles from the Lung to the Spleen to Initiate Antibody Responses
    Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses Juliana Bessaa, Franziska Zabelb, Alexander Linka, Andrea Jegerlehnera, Heather J. Hintona, Nicole Schmitza,1, Monika Bauera, Thomas M Kündigb, Philippe Saudana, and Martin F. Bachmannb,2 aResearch Department, Cytos Biotechnology, CH-8952 Zurich-Schlieren, Switzerland; and bDepartment of Dermatology, Zurich University Hospital, 8091 Zurich, Switzerland Edited* by Rafi Ahmed, Emory University, Atlanta, GA, and approved October 19, 2012 (received for review April 27, 2012) The lung is an important entry site for pathogens; its exposure to sinus macrophages within lymph nodes. Subsequently, recirculating antigens results in systemic as well as local IgA and IgG antibodies. B cells surveying the subcapsular sinus capture the trapped Ag via Here we show that intranasal administration of virus-like particles complement receptor (Cr) interactions and transport it into B-cell (VLPs) results in splenic B-cell responses with strong local germinal- FO where the Ab response is initiated (18–20). In contrast, small center formation. Surprisingly, VLPs were not transported from the Ags reach the B-cell FO either by diffusion through small gaps fl lung to the spleen in a free form but by B cells. The interaction located in the subcapsular sinus oor (16) or they are delivered to between VLPs and B cells was initiated in the lung and occurred cognate B cells and follicular dendritic cells (FDCs) by the conduit independently of complement receptor 2 and Fcγ receptors, but was system (17). Blood-derived granulocytes and DCs have also been shown to dependent upon B-cell receptors.
    [Show full text]
  • Compartments T Cell + and CD8 + Development of CD4 Comparative Contribution of CD1 On
    Comparative Contribution of CD1 on the Development of CD4 + and CD8+ T Cell Compartments This information is current as Bin Wang, Taehoon Chun and Chyung-Ru Wang of September 29, 2021. J Immunol 2000; 164:739-745; ; doi: 10.4049/jimmunol.164.2.739 http://www.jimmunol.org/content/164/2/739 Downloaded from References This article cites 57 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/164/2/739.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Comparative Contribution of CD1 on the Development of CD4؉ and CD8؉ T Cell Compartments1 Bin Wang, Taehoon Chun, and Chyung-Ru Wang2 CD1 molecules are MHC class I-like glycoproteins whose expression is essential for the development of a unique subset of T cells, the NK T cells.
    [Show full text]
  • Mouse CD Marker Chart Bdbiosciences.Com/Cdmarkers
    BD Mouse CD Marker Chart bdbiosciences.com/cdmarkers 23-12400-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1d CD1.1, CD1.2, Ly-38 Lipid, Glycolipid Ag + + + + + + + + CD104 Integrin b4 Laminin, Plectin + DNAX accessory molecule 1 (DNAM-1), Platelet and T cell CD226 activation antigen 1 (PTA-1), T lineage-specific activation antigen 1 CD112, CD155, LFA-1 + + + + + – + – – CD2 LFA-2, Ly-37, Ly37 CD48, CD58, CD59, CD15 + + + + + CD105 Endoglin TGF-b + + antigen (TLiSA1) Mucin 1 (MUC1, MUC-1), DF3 antigen, H23 antigen, PUM, PEM, CD227 CD54, CD169, Selectins; Grb2, β-Catenin, GSK-3β CD3g CD3g, CD3 g chain, T3g TCR complex + CD106 VCAM-1 VLA-4 + + EMA, Tumor-associated mucin, Episialin + + + + + + Melanotransferrin (MT, MTF1), p97 Melanoma antigen CD3d CD3d, CD3 d chain, T3d TCR complex + CD107a LAMP-1 Collagen, Laminin, Fibronectin + + + CD228 Iron, Plasminogen, pro-UPA (p97, MAP97), Mfi2, gp95 + + CD3e CD3e, CD3 e chain, CD3, T3e TCR complex + + CD107b LAMP-2, LGP-96, LAMP-B + + Lymphocyte antigen 9 (Ly9),
    [Show full text]
  • CD1-Restricted T Cells During Persistent Virus Infections: “Sympathy for the Devil”
    REVIEW published: 19 March 2018 doi: 10.3389/fimmu.2018.00545 CD1-Restricted T Cells During Persistent Virus Infections: “Sympathy for the Devil” Günther Schönrich* and Martin J. Raftery Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate Edited by: CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms Luc Van Kaer, Vanderbilt University, subvert these immune responses and help the pathogens to avoid clearance from the United States host organism. CD1-restricted T cells are not only crucial for the antiviral host defense Reviewed by: but may also contribute to tissue damage. This review highlights the two edged role of Johan K. Sandberg, Karolinska Institute (KI), Sweden CD1-restricted T cells in persistent virus infections and summarizes the viral immune Randy Brutkiewicz, evasion mechanisms that target these fascinating immune cells. Indiana University Bloomington, United States Keywords: human CD1 molecules, antigen presentation, persisting viruses, viral immune evasion, NKT cells *Correspondence: Günther Schönrich INTRODUCTION [email protected] The majority of virus infections are self-limiting.
    [Show full text]
  • The A-Domain Of/32 Integrin CR3 (Cdllb/CD18) Is a Receptor for the Hookworm-Derived Neutrophil Adhesion Inhibitor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The A-Domain of/32 Integrin CR3 (CDllb/CD18) Is a Receptor for the Hookworm-derived Neutrophil Adhesion Inhibitor NIF Philippe Rieu, Takeo Ueda, Ikuko Haruta, Chander E Sharma, and M. Amin Arnaout Leukocyte Biology and Inflammation Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 Abstract. The A-domain is a ,,o200-amino acid pep- site. The interaction of NIF with CR3 in intact cells tide present within structurally diverse proadhesive followed similar binding kinetics to those with rllbA, proteins including seven integrins. A recombinant and occurred with similar affinity in resting and acti- form of the A-domain of/32 integrins CR3 and LFA-1 vated human neutrophils, suggesting that the NIF epi- has been recently shown to bind divalent cations and tope is activation independent. Binding of NIF to CR3 to contain binding sites for protein ligands that play blocked its ability to bind to its ligands iC3b, fibrino- essential roles in leukocyte trafficking to inflammatory gen, and CD54, and inhibited the ability of human sites, phagocytosis and target cell killing. In this re- neutrophils to ingest serum opsonized particles. NIF port we demonstrate that the neutrophil adhesion in- thus represents the first example of a disintegrin that hibitor, NIF produced by the hookworm Ancylostoma targets the integrin A-domain, and is likely to be used caninum is a selective CDllb A-domain binding pro- by the hookworm to evade the host's inflammatory re- tein.
    [Show full text]