<<

1101

Index

a – PEM electrolysis 961 absorption bands 985 acidification 285, 603, 916 absorption spectrum 984, 1031 acid leaching 237 acetaldehyde (AC) 494, 972 acid zeolite catalyst 458 – reactor outlet 345 acrolein 490 acetalization 618 acrylic acid 503, 507, 508, 527 acetate 896 – synthesis 835 acetic acid 77, 593, 972 acrylonitrile 505, 507, 515, 521, 527 – esterification 760, 773 activated carbon (AC) 394, 776 – oxidation to vinyl acetate 487 activated carbon fiber (ACF) 641 – synthesis 503, 835 activation energies 851, 904, 909, 963 acetone 518 active acid materials 721 acetonitrile 741 active carbons 723 acetophenone 242 active catalyst phase 97 – transfer hydrogenation reaction of 140 active metal oxides 514 acetoxysilicone ink 375, 376 active oxygen 424 acetoxysilicone polymer 373 active phase–support interactions 225 acetylene 508 active sites 225, 235, 243 – carbon-catalyzed hydrochlorination 21 acylation toluene 135 ACF. see activated carbon fiber (ACF) adamantine-containing diquaternary III acid–base bifunctional (MNP-NH2-Ru ) alkylammonium iodides 252 catalyst 167 additive digital fabrication 359 acid–base interactions 984 additives 5, 14 acid-base properties 76 adsorption 60, 209, 220, 425 acid 49, 719 – of benzaldehyde and propanal at Lewis – esterification reaction 135 acid site 1073 – processes 629 – enthalpy 1071 –– acetylation 629 – properties 862 –– alkylation 629 advanced oxidation processes (AOP) 50, 873, –– dehydration 629 884 –– esterification 629 AEM (tertiary amino groups) 917 –– etherification 629 – electrochemical reforming data 969 –– hydrolysis 629 – electrochemical reforming 971 – reactions 133, 636 AEN-zeotype structure 262 –– acylation processes 134 aerogels 10, 39 –– alkylations 133 aerosol pyrolysis method 158 –– esterifications reactions 135 affinities 209 acid-functionalized carbons 777 Ag/α-Al2O3 catalyst 484 acidic electrolytes 916, 929 agglomeration 3, 228, 236

Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, First Edition. Edited by Bert Sels and Marcel Van de Voorde.  2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA. 1102 Index

aggregation 239 alkylation, benzene/derivatives 133 + Ag 14 alkyl fructoside 606, 618 Ag metal nanoparticles alkyl glucosides 618 – schematic depiction of 130 alkyl glycosides 617 Ag nanocrystals 14 alkyl lactate 612 Ag-O bond formation 486 alkyl levulinate 620 AgPd nanoparticles 234 alkylphenols 289 agricultural waste 754 alkylpyridines 286 – biomass residues 755 alkyl shifts 623

Ag/SiO2-Al2O3 catalysts 493 alkyl-SPO ligand-protected Au NPs 32 AgTa0.7Nb0.3O3 854 alcohols Ag trimers 490 – hydrogenation of 182 air calcination 747 allylic C-H bond 27 alcohol oxidation 970 Al-MCM-41 material – anode 965 – for catalytic pyrolysis of biomass 674

– catalyzed by Au/MOx 25 Al2O3 ALD – kinetics 965 – film, cross-sectional SEM image 339 – rate-determining step 24 – overcoats 346, 347

alcohols 241, 964 γ-Al2O3 and MgO supports 214 – aerobic oxidation 25 Al2O3–P2O5–MgO–H2O system 262 – catalyzed by sulfated zirconia 791 Al2O3–P2O5–Na2O–H2O system 262 – dehydrogenation 25 alpha-alumina 484 20 – direct oxidation 25 [Al5P4O26(OH)3] building unit 263 – electrooxidation 965, 972 AlPO zeolites 991 – oxidation of 22–25 Al-rich MTT zeolite 256 –– carboxylation 821 alternative energy 386 –– size dependence 22 alumina 342 alcoholysis 764 – supported heterogeneous catalysts 231 ALD. see atomic layer deposition (ALD) aluminophophate molecular sieves aldol reactions 602 – organotemplate-free synthesis of 260 ALE. see atomic layer epitaxy (ALE) aluminophosphate (APO-11) 77, 266 algae biomass 808 – based molecular sieves algae pond systems 808 –– organotemplate-free synthesis of 262

aliphatic hydrocarbons 665 – Na6[(AlPO4)8(OH)6]8H2O 262 alkali-free (AF) Sn-Beta 613 aluminosilicate zeolites 138, 275, 471, alkali metals 210, 612, 613 477, 1056 alkaline anion exchange membrane 963 – organotemplate-free synthesis 252 alkaline conditions 972 –– BEA zeolite 254 alkaline earth metal cations 857 –– ECR-1 zeolite 252 alkaline electrolysis 915, 916, 929, 961 –– EMT zeolite 252 – water electrolysis process 962 –– FER zeolite 259 alkaline electrolyzer 962 –– MEL zeolite 258 alkaline-mediated desilication 774 –– MTT zeolites 255 alkali promoters 209, 210, 487 –– RTH zeolite 257 , oxidation of 27 –– ZSM-34 zeolite 253, 254 –– ZSM-5/ZSM-11 260 – activation 998 aluminum 619 – gold-catalyzed oxidation of 26 aluminum defects 771 – oxidation of 26 aluminum molybdate 473 – 2-pentene 1067 aluminum nitrate 6 alkoxides 24 aluminum phosphate (AlPO) crystals 991 – in H-ZSM-5 1068 aluminum plant 807 alkoxycarbonylations reactions 183 Al-zeolites 605, 619 Index 1103

Amberlyst resins 759 – fabrication 968 ameliorates 724 anode materials 941 amination 637 anodic oxidation 11 aminoalkyl-functionalized zeolites 30 anodization 11 aminoaromatics 238 anodization setup 12 1-(-aminobenzyl-2-naphthol 185 antibiotic resistant bacteria (ARB) 884 – as organocatalysts 185 antiferromagnetic materials aminocarbonylations reactions 183 – magnetic moment 146 amino groups, electron-donating properties 30 aqueous-phase hydrogenation (APH) 347 aminoindolizines, one-pot synthesis of 182 arenesulfonic 77 aminophenol 725 arene-sulfonic acid SBA-15 788 4-aminophenol 196 aromatic hydrocarbons 471 – catalyst and, bonding between 181 aromatic nitro compounds 238 aminopropylsilane 185 aromatics 472, 592 3-aminopropylsilane aromatization 718 – as silane precursor 184 Ar pyrolysis 233 3-aminopropyl trimethoxysilane 192, 198 Arrhenius plots 904 ammonia 10, 16, 851, 962 artificial photosynthesis 396, 825 ammonia borane reaction, hydrolysis of 187 artificial/solar light sources 877 ammonia 784 arundo donax 964 ammonia synthesis 209, 211 aryl boronic acids 235 ammonium chloride 476 aryl bromides, carbonylation of 186 ammonium-exchanged COK-14 sample 342 β-aryl ether bond ammonium heptamolybdate 472 – acid-catalyzed cleavage of 549 ammonium heptamolybdate tetrahydrate 739 – cleavage in phenolic and nonphenolic ammonium niobium oxalate 740 units 553 ammonium persulfate 42 α-aryl ether bonds 541 ammoxidation 505, 521, 637 β-aryl ether bonds 541 amorphous silica alumina (ASA) 465, 694 aryl halides 235 amorphous solids 1029 aryl-SPO ligand-protected Au NPs 32 anatase nanoparticle chains 343 ASA. see amorphous silica-alumina (ASA) anatase N-TiO2 881 ascorbic acid 227, 744 anatase phase 220 ASF. see Anderson–Schulz–Flory (ASF) anatase TiO2 carrier concentration 221 Aspargillus niger 168 Anderson–Schulz–Flory (ASF) ASPEN HYSYS software 964 distribution 450 As Sn-containing zeolites 605

– strategies to break 450 atmospheric CO2 reduction 931 –– encapsulation strategies 451 atomic absorption 767 –– physical mixtures 450 – 727 –– zeolite-supported FT 451–453 atomic force microscopy (AFM) 164 aniline 239 atomic layer deposition (ALD) 219, 335 anion exchange membrane (AEM) 915, 963, – bimetallic nanoparticles 350 965, 968 – catalysis, role in 319–350 – electrochemical reforming 968 – in catalyst design 340 anionic Au core 22 – cycles 336 anionic dye 991 – monometallic nanoparticles 348 anisotropy 992 – oxide cycles 342 annealing temperatures 366 – processes annihilation 1031, 1037 –– characteristics 336 anode architecture schematics 970 – reaction cycle anode catalysts 968 –– schematic illustration 336 anode–cathode proximity 912 – schematic representation 346 anode electrode 970 – supported catalyst design, role in 340 1104 Index

– synthesized Co catalysts 342 bagasse 592, 755 – temperature window 338 balance of system (BOS) 914 – thickness evolution of Pd 351 – nanoparticles 943, 944 atomic layer epitaxy (ALE) 335 bandgap energy (BG) 215, 853, 854, 860, 873, atomic ratio 726 876, 880, 910, 984 attenuated total reflection (ATR) 163 BAS. see brønsted acid (BAS)

Au25 base leaching 276, 284 – phenylthiolate-protected 32 batch reactor 13

Au-Al2O3 interface 31 batteries 336 Au-aryl SPO clusters 31 Bayer–Hoechst process 487 Au-catalyzed reactions 21 BEA zeolite 451, 607 Au/C catalyst 972 bed reactor 369 Au/C gave cyclohexene oxide 26 benzalacetone hydrogenation 29 Au clusters benzaldehyde 723, 726

– Au25 clusters – conversion of 321 –– thiolate-stabilized 26, 30 benzaldehyde adsorption

– Au55 clusters – on Au clusters on Al2O3 34 –– catalysts 26 benzaldehyde hydrogenation –– phosphine-stabilized 26 – size dependency 33 – phenylthiolate-protected 32 benzene 986 – preparation and deposition 21 – alkylation 317 – thiolate-stabilized 26 – hydroxylation 67–69 Au counter electrode 212 benzenediamine 730 Au, EDX mapping images 864 benzenedicarboxylate (BDC) linker 1063 Au, electronic state 12, 23 benzene ethylation 317

Au-Fe3O4 magnetic catalyst 181 benzene oxidation to phenol 741 Auger electron 1031 benzene selectivity 472 Au/graphene catalyst 235 benzene, toluene, and xylene (BTX) 673 Au-maghemite nanocatalysts 182 – aromatics 681 Au-magnetite nanocatalysts 181 benzoic acid esterification 772 Au nanoparticles 487, 954 benzyl alcohol 726 – Au-NiO core 25 – aerobic oxidation 23 – Au-YSZ catalyst-electrode 955 – selective oxidation of 138 – based catalysts 235 benzylation 738 – electron-enriched 29 beta-SDS – electronic properties 30 – crystals 255

Aun clusters – samples, TEM images 256 – deposition of glutathionate-protected 27 – textural parameters 255 Au particles beta zeolites 255, 279, 607, 615, 670, 673

– Pd-Fe3O4 magnetic nanocatalysts 182 – seed-directed synthesis 255 – size dependence 21 BG value 875 – YSZ composite film 954 bidisperse model 457 Au-S bond 31 Bi, EDX mapping images 864

Au/SiO2 catalysts 495 bifunctional catalysts 450, 821 Au/SiO2 monohydrogenated bimetallic core–shell nanoparticles 169 dinitrobenzenes 31 bimetallic nanoparticles 341, 349 automobile exhaust treatment 339 – catalytic systems 169 automotive catalysis 371 bimetallic nickel 231

autothermal steam reforming 952 bimetallic Ni-Re/Al2O3 catalyst 412 bimetallic Ru-Pt/HY catalyst 452 b bimodal meso-macropore networks 763 backscattering 1033 binder jetting 372 Baeyer-Villiger oxidation 602 binder liquid 363 Index 1105 binder printing process 363 – corncob with HZSM-5 zeolite catalyst 664 binding energies (eV) 29, 1031 – Co(10%)/ZSM-5 catalyst, TEM analysis 691 – of metals 100 – glucose with ZSM-5 701 bio-based chemicals 643 – lignin – molecular structure of 628 –– catalytic fast pyrolysis of 669 – production costs of 628 –– noncatalytic/catalytic fast pyrolysis 703 bio-based feeds 599 – lignocellulosic biomass bio-based feedstocks 590 –– catalytic upgrading 690 bio-based feed streams 410 –– pyrolysis vapors, upgradation 663 biocatalysis 91, 394 – liquid products in noncatalytic and catalytic biodegradable fuel 757 fast pyrolysis of corncob 664 biodiesel 76, 754, 964 – lumped yields to monoaromatic – applications 764 hydrocarbons 687 – polarity 765 – meso-Ce-HZSM-5, SEM image of 682 – production 757, 782 – mesoporous aluminosilicates

–– H2SO4 for 778 –– MCM-41 materials 676 – synthesis 762, 767 –– SEM micrographs 679 bioethanol 76, 964 – metal exchanged meso-ZSM-5 catalysts 688 bioethylene glycol 601 – MgO and olivine catalytic bio-oils 698 biofuel production, and upgrading with – model biomass-derived compounds, catalytic mesoporous catalysts 75–77 pyrolysis 666 biofuels 75, 76, 385, 387, 388, 538, 587, 601, – molar carbon selectivity 683 629, 753 – monoaromatics, production of 702 – bioethanol 538 – nitrogen adsorption-desorption – butanol 538 isotherms 679 – feedstocks 754 – oil fraction in noncatalytic/catalytic fast biofuels production pyrolysis of corncob 665 – influence of reactor design and operating – operating parameters 656 conditions 790 – organic fraction of bio-oil produced by beech biogas 836 pyrolysis vapors upgrading 696 – steam reforming 411 – oxygenates and phenolics in upgraded biomass 75, 385, 387, 537, 592, 595, 601, 602, bio-oils 685 627, 716, 734, 808, 963 – phenols production 676 – components, thermal/catalytic pyrolysis 669 – renewable fuels and chemicals 655 – conversion processes 588, 589, 592, 594, 599, – in situ (single-step) upgrading 23, 660 734, 753 – switchgrass hemicellulose 700 – derived precursors 629, 634 – upgrading with catalysts 660 – pyrolytic thermal decomposition 755 – wood (beech wood) 657 – thermochemical conversion of 655 –– derived crude bio-oil 658 biomass fast pyrolysis (BFP) –– pyrolysis 656, 695 – acidity and pore structure on yield and – with zeolites 672 product distribution 671 –– catalysts, chemical composition/porosity/ – bio-oils produced by catalytic upgrading 681 cidity characteristics of 662 – carbon balance with HZSM-5 667 –– used as pyrolysis catalysts 661 – catalysts – ZSM-5 (MFI-Pa), TEM image 686 ––acidity/porosity/morphology, effect of 698 biomass gasification 907 –– fast pyrolysis, with zeolites 661 biomass processing 778 –– with hierarchical zeolites 680 biomass production 964 –– with mesoporous aluminosilicates 674 biomass pyrolysis 756 –– with metal-modified zeolites 688 biomass recalcitrance 543 –– with metal oxides 693 biomass sources 628 – cellulose pyrolysis 699 biomass valorization 592, 661 – CFP selectivity 680 biomolecule immobilization 759 1106 Index

bio-oil – catalyzed sugar transformation 616 – esterification 777 – in H-ZSM-5 1061 – feedstocks 762 – MoOx coordination 473 – over H-ZSM-5 703 – zeolite 1067 biooils 595, 599, 656 bronchial carcinomas 281 – extraction from aquatic biomass 755 buffer anions 918

– H/Ceff ratios 659 buffered electrolytes 916 – pyrolysis 761 bulk reduction 438 biopharmaceuticals 808 buried junction (BJ) 909 bioplastics 601, 622 buta-1,3-diene 14 biopolymers 122, 539, 601 butane partial oxidation 515 – cellulose 539 butanol 759 – hemicellulose 539 – esterification 784 – lignin 539 butenes 14 biorefineries 388, 538, 585, 589, 599, 794, 907 butyl glucofuranosides 618 biorefinery schemes 538, 542 butyl glucopyranosides 617, 618 – alternative categorization of 561–563 butyl glucosides 617–619 – base-catalyzed processing 543 – categorization based on processing c mechanism 542 cage effect 452 – fate of lignin in 542–561 calcination 8, 17, 23, 61, 181, 182, 200, 231, 339, – hydrothermal processing 543 632, 718, 739, 743, 946, 989 – organic solvent-assisted processing 543 calcination temperature 24 – reductive processing 543 calcined beta-TEA zeolites 255 – thermochemical processing 543–545 calcium carbonate 441 biorefining 755 Calophyllum inophyllum 780 biowaste 386 capacitances 233 biphenyl 231 capacitance–voltage (C–V) bipolar membranes 916, 917 measurements 219 Bi/Sr/Au, SEM image images 864 capital costs 915 bis(triethoxysilyl)benzene (BTSB) 782 capital expenditure (CAPEX) 495 bis(trimethoxysilyl)-ethane (BTME) 782 capping agents 12

BiYWO6 854 caprylic acid 719 block copolymers 630, 631 carbides 598

blocking temperature (TB) 147 carbohydrazide (CH) 97 bond length 1035 carbonaceous deposits 475, 479 borate 896 carbonaceous materials 23, 121, 629, 716, 718, boron dipyrromethene (BODIPY) 991 737, 743 Boudouard reaction 438, 815 – functionalization, for catalytic Bragg reflection 981 applications 634–638 bright field (BF) 951 – graphitization degree of 634 Brønsted acid site (BAS) 230, 285, 393, 455, carbonaceous matrix 240 473, 474, 477, 606, 609, 611, 616, 619, 622, carbonaceous nanostructures 232 767, 985 carbonaceous species, gasification 409 – acidic sites 610 carbon allotropes 396 – acidity 452, 723 carbonate 896 – acidity gradient 986 – and polycarbonate synthesis 820 – acidity, Pd doping effect 774 carbon-based catalysts 628, 635, 638, 641, 647, – catalysts 778 649, 650 – catalyzed 4-methoxystyrene – hydrothermal stability of 649 dimerization 986 – performances of 648 – catalyzed 4-methoxystyrene – synthesis routes for cellulose oligomerization 986 transformation 638–642 Index 1107 carbon black (CB) 790 carbon mesostructures 632 carbon capture and storage (CCS) 806 carbon monoxide 743 – routes of 806 – adsorption 1034 carbon capture and utilization (CCU) 806–809 – oxidation of 230, 743 – routes of 806 carbon nanocomposite catalysts 629 carbon 718 carbon nanodots 927 carbon-coated MNPs 159 carbon nanofiber (CNF) 38, 633, 637, 649, 951 carbon composites 200 – advantages of 43 carbon credits 838 – catalytic cellulose conversion on 645 carbon cycle, anthropogenic 813 – diameters 38 carbon dioxide (CO2) 435, 851, 907 – graphene layers 38, 640 – atmospheric content, strategies to – types of 633 reduce 806–809 –– bamboo-shaped herringbone CNF 633 – catalytic utilization 836, 841 –– bamboo-shaped multiwalled CNF 633 – chemical utilization 839 –– fishbone (f-CNFs) 633 – as cofeed gas 816 –– platelet-carbon nanofibers (p-CNFs) 633 – conversion 839 –– ribbon (r-CNFs) 633 –– challenges/outlook/perspectives 830–842 – YSZ composite-electrodes 951 –– economic aspects 835–839 carbon nanohorns 633 –– thermodynamic aspects 830–835 carbon nanoparticles 193, 476 – convertion 808 carbon nanostructures, types of 633 – (cyclo)addition to epoxides 820 – fishbone (herringbone)-carbon – oxidative coupling of 818 nanofibers 633 – oxidative dehydrogenation, advantages – multiwalled carbon nanotubes 633 for 817 – platelet-carbon nanofibers 633 – utilization 807 – ribbon-carbon nanofibers 633 carbon fibers 634, 641 carbon nanotube (CNT) 38, 46, 122, 395, 452, carbon fibrils 633 633, 777, 929 carbon filaments 633 – advantages of 43 carbon footprint 809 – diameters 38 carbon gels 38 – electronic properties 994 – production 39 – graphene layers 38 carbon hydrogenation 79 – sulfonation method for 638 carbonization process 233, 234, 237, 629–631, carbon–nitrogen composite 242 634, 636, 716, 748, 776 carbon oxidation 747 – Fe-MOF 243 carbon oxides 515 – MIL-88A nanorods 244 carbon precursor 630 – MOF 236 carbon quantum dots 395 – of Ni-MOF [Ni(HBTC)(4,4´-bipyridine)] 238 carbon reservoirs 807 – reactions 747 carbon resources 753 carbon materials 232, 233, 236, 628, 637 carbon sequestration 449 – characterization methods 40 carbon sources 239, 388 – chemical (surface) properties of 37 carbon-supported Pt catalyst 365 – magnetic supports 201 carbon xerogel 43, 45, 48, 777 – overview of reactions 48 – catalysts 49 – physical (textural) properties 37 carbonylation reaction 191 – recycling of 650 carbonyl group hydrogenation 732 – sulfonation 718 carboxylate salts – surface chemistry of 39 – neutralization of 25 –– tuning 41 carboxylation 841 – surface functional groups 39 carboxylic acids 40, 41, 719 carbon materials carboxylic groups 722, 723 – methods 40 carboxymethylcellulose 641 1108 Index

carburization process 240, 473, 639 – over bifunctional carbon nanofiber-based car catalytic converters 371 catalysts 646 carrier reduction 424 – over functionalized mesoporous carbon- catalysis 91, 809 based catalysts 644 – applications 91 catalytic cracking 286, 321 – in biological reactions 91 catalytic dehydrogenation, of isobutane 232 – types of 91 catalytic depolymerization 639 catalysts 91, 209 catalytic esterification 793 – activity 585, 587 catalytic fast pyrolysis (CFP) 660 – adsorbate complex 1030 catalytic hydrocracking 323 – characterization 981 catalytic hydrogenation 726, 1034 – consumption 588, 590–592 catalytic materials 225 – containing systems 376 catalytic methane combustion 747 – cost 589 catalytic oxidation 984 – deactivation 594 catalytic processes 234, 602, 628 –– destruction 596 catalytic properties 102 –– fouling 595 – exhaust catalysis 106 –– poisoning 595 – hydrogenation 113 – deactivation, by carbon formation 19, 407 – hydrogen production 110 –– ensemble size control concept 408 – measurements 3 –– gasification agents 408 – polluted water remediation 103 –– surface of nickel nanoparticles 408 catalytic pyrolysis 592 – degradation 599 catalytic reactions 59, 181, 225, 287 – design of 628 – cycle 523 –– catalytic performance, thermodynamics – heterogeneous 187 and economics 839–842 –– 4-nitrophenol, reduction of 187 – destruction 589, 595 –– olefins, hydrogenation of 187 – fouling 589, 595 –– oxidant free dehydrogenation 187 – life 585, 588, 589 –– transfer hydrogenation 187 – loading 587, 588 – mechanisms 209 – longevity 599 catalytic reactivity 179 – poisoning 410, 411, 589 catalytic reactor 1029 – pores 646 catalytic reduction 984 – recycles 777 catalytic routes 385, 627 – recycling, magnetic separation enabled 766 catalytic sites 628 – selectivity 585, 586 catalytic stability 198 – separation methods 164 catalytic testing 982 – stability 593 catalytic transformation, of sugars 601 – structure 1040 catalytic zone 369 – surface 209 cathode compartment 916 catalytic ability 602 cathodic polarizations 943 catalytic activity 15, 209, 289, 877, 928, 985 cation-exchangeable resins – site/modeling 1058 – sulfonated polystyrene-based 778 –– determining the nature of the active cation exchange membrane (CEM) 915 site 1060 cationic doping 8 –– taking into account topology 1058 C-C bond cleavage 485 – spatiotemporal distribution of 990 CCS. see carbon capture and storage (CCS) catalytically active channel wall 371 CCU. see carbon capture and utilization (CCU) catalytically active material 371 Ce3d-core level spectra 100

catalytically active oxides 366 Ce-doped ZrO2 photocatalyst 875 catalytically active sites 342 Ce isopropoxide 875 catalytic conversion of cellulose cell coupling 827 – to bio-based chemicals in water 643 cell design 27, 918 Index 1109 cellobiose 45, 721 chemical energy 908 cello-oligomers 650 – conversion 385 cell potentials 945, 963 – storage 385, 390 cell temperature 967, 970 chemical fuels 914 cellulose chemical functionality 375 – delamination of 649 chemical heterogeneity 594 – derivatives, heterogeneous hydrogenation chemical industry, oxidation reaction role 22 of 964 chemical inertness 236 – derived carbon solid acid (CCSA) 778 1091 – polymerization of 539 chemical looping – schematic transformation into glucose 167 – catalyst assisted 435–440 cellulose hydrolysis 543 – concept 419–423 – carbon materials, contribution of 642 – materials 423–435 cellulose microfibrils 539 – schematic representation 422 cellulosic backbone 647 chemical looping combustion (CLC) 421 cellulosic biomass 628 chemical looping dry reforming (CLDR) 423 cellulosic materials 963 chemically active promoter materials 425

CeO2/Au nanocatalysts 15 718 CeO2- based catalysts – rate 79 – solution combustion synthesis (SCS) 93 chemical stability 239, 862 – synthesis and evaluation of 94 chemical titration method 41 Ce precursor 231 chemical transformations 339 ceramics 939 chemical vapor deposition (CVD) 93, 146, 336, – stereolithography 378 473, 605, 634 – tiles 885 chemisorption 16, 998 ceria lattice parameters 431 – capacity 218 ceria nanoparticles 430 – process 411 – from precipitation, undoped 428 chemisorption, of reactants 770 ceria-zirconia supported nickel catalysts 411 chemoselective hydrogenation 732 cerium oxide 410, 746 – catalyst 732 cerium precursor 743 chemoselective 4-nitrostyrene reduction 988 cerium-zirconium 410 chemoselectivity 239 cesium-doped dodecatungstophosphoric acid chiral catalysts 182

(CsPW) 788 chiral ketone@SBILC@MWCNT@Fe3O4 cesium tungsten niobate 519 catalyst cetane number (CN) 464 – schematic synthesis of 168 cetyltrimethylammonium bromide chitosan 201 (CTAB) 154, 160, 279, 822 chloroanilines 113

Ce1xMxO2δ catalysts 95 chloroarene, dechlorination of 182 Ce1xPtxO2x catalyst 95 chlorohydrin route 484 CFB. see circulating fluid bed (CFB) chlorohydrocarbon feed modifier 486 CH adsorption energy, on Ni(111) 213 chloronitrobenzenes 31 chalcogenides 854, 857 4-chlorophenol charge depletion 215 – hydrodechlorination of 201 charge transfer 16, 213, 216, 220 chlorophenols 201, 235 – amount of 215 chloropropyl trimethoxysilane 193 – controlling 16, 217 chlorosulfuric-impregnated zirconia 769

– from supported Pt nanoparticles to CeO2 217 2-chloro-thiophene 997 Char yield 692 C2H4 oxidation 211, 212 CHA (S-CHA) zeolite CH4 oxidation 110 – solvent-free synthesis 266 chromia catalyst 232 chemical charge 440 chromogenic reaction 984 chemical composition 875 chromophore 984 1110 Index

chronoamperometric response 238 CO2 conversion 808, 809, 840 chronoamperometry 904 CO dissociation energy 79

CHx species CO2 emissions 75, 449, 753, 809 – dehydrogenation degree of 409 – , effect on reduction 808 C4 α-hydroxyacid esters 614 – and global warming 805 cinchoidine, as chiral substrate 188 coercivity 244 cinnamaldehyde 723 Co–Fe alloy nanoparticles 947

– hydrogenation of 28, 30, 44 Co-Fe3O4 nanocatalyst 181 cinnamic alcohol 732 CoFe2O4 nanocomposites 229 cinnamic aldehyde 732 CO2 formation 490 cinnamic aldehyde hydrogenationto cinnamic coherent anti-stokes Raman scattering alcohol 732 (CARS) 997 circulating fluid bed (CFB) 507, 660 cohesive properties 879 cis-2-butene 982 CO hydrogenation 211, 214

citronellal CO2 hydrogenation 78, 812, 814, 832, 833 – one-pot 2-step reaction 139 CO hydrogenation, low-temperature 243, 469 city planning 753 CˆO hydrogenation selectivity 29 clay minerals, hybridization of 240 COK-14 (OKO framework type) 343 CLDR. see chemical looping dry reforming coke burn-off 597 (CLDR) coke/carbon deposition 815 clean-burning fuels 464 coke deposition 78, 284 clean liquid transportation fuels, production coke formation 340, 341, 792, 986 of 449 coking 340, 478 clean synthetic diesel process 464 colloidal catalysts 3 climate changes 805, 839 colloidal polystyrene nanospheres (hard) cluster model, with Lewis acid site 1063 templating methods 763 CMK-3 mesoporous carbon 237 colloidal zeolites 278 CN. see cetane number (CN) combinatorial catalyst libraries 367 C-N bond formation 372 combinatorial catalyst screening CNF. see carbon nanofiber (CNF) – inkjet printing 368 CNT. see carbon nanotube (CNT) combined chemical looping CO adsorption energy 220 – schematic working principle 440 coal-fired power plant 807 combined chemical looping (CCL) 440–442

CO2 and H2O electrolysers 940 combined heat and power (CHP) 794 CO2, artificial photosynthesis 82 combustion 281, 422 cobalt catalysts 815 CO2 methanation 78 – based non-PGM catalysts 236 commercial biodiesel 757

cobalt(III)acetylacetonate [Co(acac)3] commodity chemicals 59 precursor 342 – production of, pathways for 824 cobalt nitrate hexahydrate 229 compatibility 916 cobalt oxide nanoparticles, on hydrochar 728 complementary insights from cobalt–phosphate (CoPi) complex 916 spectroscopy 1085 cobalt–zeolite interaction 453 π-complexes 1068 Co-based materials 243 complex perovskite-type oxynitride 25, 856

CO2 capture 807, 836 composite materials 722, 735 – absorption 836 – from hydrothermal carbonization in – adsorption 836 presence of metal/oxide precursors – cryogenic separation 836 735–742 – membrane separation 836 computational fluid dynamics 371 – methods 836 computational modeling 492, 1055 cocatalysts 891, 899 computational spectroscopy 1058 Co/C-600 catalyst 243 computed IR spectrum 1089 cocondensation 60 computer-aided fabrication technologies 359 Index 1111

computer-controlled positioning system 359 CO2-related reactions Co nanoparticles 242 – thermodynamically equilibrated yields, concentrated solar power (CSP) 827 conditions for 832 condensation degree 718 core–shell catalysts 945 condensation reactions 756 core–shell magnetic carbon material 200 conduction band (CB) 227, 853, 861, 873 core–shell magnetic nanoparticles 151, 152 conduction band minimum (CBM) 854 – characterization 163, 164 conductivity 219, 912, 918, 931 core–shell nanoalloys confocal fluorescence microscopy (CFM) 987, – synthetic route of 161 990 core–shell nanoparticle 341 conformal deposition 341 core–shell structures 194, 209 Co–N interactions 236 core–shell systems 193 contact angle measurements 785 corrosion 929 contaminants 589, 876, 891 CO2 selectivity 952 continuous flow reactors 740 CO2 storage 807, 808 – 3D printing 375 – geological 808 continuous hydrothermal ripening 8 – ocean and underground 807 controlled simultaneous reduction 349 CO2 storage facilities 807 conventional catalysts 76, 394 CO2 to CH4, catalytic conversion 78 conventional commercial zeolites 288 CO2 transportation 807 conventional cracking 388 counterrotating leveling roller 363 conventional drying 39 coupling catalysis 394 – reforming 423 coupling micromixer 8 conventional extruded ceramic monolith 370 coupling reactions 181 conventional photocatalysts 82 CO2 utilization 808–810, 812, 831, 839 conventional silica 58 – catalytic utilization, ways of 809–830 conventional steam reforming 422 –– hydrogenation reactions 809–814 conventional/superior porous zeolites, covalent bonds 875 types 277 covalent organic framework (COF) 314 conventional zeolites 281 covalent semiconductors 215 conversion cost 586 CO2 valorization 809, 831, 833–837, 839, 841 Co3O4-carbon hybrid 238 CO2 yield 213 Co3O4 nanoparticles, supported on hydrochar Co/ZSM-5 catalysts 453 spheres 728 – Brønstedt acidity in 453 CO oxidation 21, 69–72, 220, 222, 230, 231, cracking/condensation 424 243 Cr/metal cocatalyst system 901

– activity 218 Cr/M H2 cocatalysts 901 – rate 218–221 Cr2O3/Al2O3 catalysts 232 copolymers 631 cross aldol condensation 1074 copper-based catalysts 239 cross-channel structure, advantage 372 copper chromite catalysts 347 crotonaldehyde copper-containing hydrotalcites 496 – selective CˆO hydrogenation 30 copper ferrite MNP 184 croton aldehyde hydrogenation 29 coprecipitation 339, 403 crude jatropha oil (CJO) 761 Co-promoted ZSM-5 catalysts 690 crude oil 504 Co@Pt catalyst – palm oil 136 – magnetic autorecycling of 171 – refining 449 Co@Pt core–shell nanoparticles, dual cryogels 39 integrated functionality of 170 crystal axes 995 CO–Pt system 900 crystal growth 4, 5, 9

CO2 purification 836 crystallization 58, 61, 282 cordierite monolith 97 – time 612

CO2 recycling 806 crystal nucleation 278 1112 Index

crystal size 606 – reactor engineering 478 crystal structure 981 – regeneration 477

C-scorpionate complex [FeCl2]46 deactivation phenomenon 402 Cs-doped catalysts 765 dealuminated beta zeolite (deAl-Beta) 605 CSP. see concentrated solar power (CSP) dealuminated Y (DAY) 214 CTAB. see cetyltrimethylammonium bromide dealumination 278, 321, 473 (CTAB) Debye–Waller factor 1033 Cu-Al-MCM-41 675 decahydronaphthalene 986 Cu-BDC (1,4-benzenedicarboxylate) decarboxylation 699 MOF 228 decomposition 442 cubic close-packed (ccp) 149 – temperature 471

Cu–BTC/TiO2 composite 231 deep eutectic solvent (DES) 629 + Cu2 cations 227 deforestation 754 Cu/Cr hydrotalcites 497 degradation 599

Cu/Cu2O/C composite 239 degree of photocatalysis 855 Cu/Cu2O NPs 239 Degussa P-25 catalyst 83, 229 Cu deactivation 347 dehalogenation 239

Cu-Fe2O3 magnetic nanocatalysts 182 dehydration reactions 623, 669, 723 cumene 834 dehydrogenation 80, 227, 506 Cu nanoparticles 227 delamination 928 Cu-Ni/SBA-15 catalysts 76 density Functional functional Theorytheory

CuO and CeO2 nanoparticles 231 (DFT) 928 CuO/TiO2 catalyst 231 – calculations 214, 220 current concentration 918 – VdW-DF adsorption energies for CO 221 current densities 919, 928, 962, 970 density functional theory (DFT) 406, 442, 608, current density 237, 895, 912, 967, 970, 972 857, 876, 1059 current–potential curves 896, 897 deoxygenating lignin-derived oxygenates 670

Cu/TiO2 photocatalysts 227 deoxygenation catalysts 756 CVD. see chemical vapor deposition (CVD) deoxygenation reactions 594 cyclic carbonates 821 3-deoxyglucosan (3-DG) 615 – butylene carbonate (BC) 821 department of energy (DOE) 914 – direct synthesis of 821 depolymerization 538 – ethylene carbonate (EC) 821 deposition precipitation 339 – glycerol carbonate (GC) 821 deprotonation 917 – propylene carbonate (PC) 821 derivatization process 636 cyclic reaction-regeneration DES. see deep eutectic solvent (DES) – carbon yield 320 desilication 279, 322, 771 cyclic voltammograms 899 desorption 209 cyclohexane oxidation 44, 240 deuterated ethylene 485

– size specificity of Aun/HAP 27 DFT. see density Functional functional cyclohexanol 44, 742 Theorytheory (DFT) cyclohexanone 44, 610, 746 β-D-glucopyranose 642 cyclohexene 189 diacetylglycerol 77 – aerobic oxidation 26 diallyldimethylammonium chloride 733 – hydrogenation 29, 188 diaminoglyoxime 184 – oxidation 26, 27 diamond-like carbon (DLC) 951 cyclohexenyl hydroperoxide 27 diazonium salts 638 cyclohexylbenzene 231 dibenzodioxocin 541 cyclooctene 733 dibenzothiophene 231 dielectric constant 215 d Diels-Alder condensation 700 deactivation 225, 435, 475–478, 589 Diels-Alder cyclization 375 – hierarchical zeolites 476 Diels–Alder reaction 43, 717 Index 1113

– between furanic to form digital mirror device (DMD) 362 aromatics 717 digital revolution 359 diesel quality 464 dihydroxyacetone 609 diffraction 437, 1030 dimethoxymethane 1,1-dimethoxymethane diffusion 293, 730, 896 (DMM) 391 – catalysts with monomodal pore systems 312 dimethylcarbonate (DMC) 835 –– limitations of the reaction rate 312 dimethyl ether (DME) 812, 832 –– properties of the reactants and – synthesis 833, 840 products 312 diphenylphosphine ligand 192 – catalysts with multimodal pore systems 315 dipole moment 992 – catalytic reaction and 294 direct aerobic oxidative esterification, of – coefficients 896, 897, 991 alcohols 242 – complex pore spaces 299–302 direct current (DC) 220 – free reaction 778 direct epoxidation 484 – implications on catalysis 311 direct methanol fuel cells 367 – interplay of conversion and 295 direct oxidation process 484 –– catalyst of sorption capacity 297 direct water splitting photocatalysts 854 –– Einstein equation 295 discussion 897 –– Fick’s second law 295 disinfecting agent 484 –– first-order conversion for mass dispersed superparamagnetic 164 transfer 295 distillation–precipitation polymerization –– first-order reactions 295 method 196 –– hydrogenation of benzene 297 divinyl benzene 196 –– IR microscopy 297 DMC. see dimethylcarbonate (DMC) –– loading-dependent diffusivities 299 DME. see dimethyl ether (DME) –– Thiele modulus 295 1D metal–semiconductor 210 – mesoporous materials 315 DMM. see dimethoxymethane 1,1- – micro-/mesoporous nanocatalysts 317 dimethoxymethane (DMM) – principle aspects of 294 DMSA. see meso-2,3-dimercaptosuccinic acid – rates 83 (DMSA) – reaction equation 308 dodecylamine-inorganic oxide 60 –– in nanomaterials 18, 294 dopamine (DOPA) – role of 293 – as modifier for magnetite 184 – transport mechanisms and assessment dopaminequinone 196 302–310 dopants 217, 219 –– chemical potential 303 doping 217, 218, 874, 928 –– coefficient of long-range diffusion 305 – efficiency 875 –– corrected diffusivity 303 – with metals 874 –– Fick’s first law 302 – with nonmetals 874 –– Fick’s second law 303 double metal cyanide (DMC) 788 –– frequency response method 304 downhill reactions, catalytic reaction path 852 –– interference microscopy (IFM) 309 3D printing –– self/tracer diffusivity 303 – chain 373 –– transition state theory (TST) 307 – chromatographic media 378 –– zero length column 304 – enables reactors 373 – types, of active sites 323 – extrusion-based methods 362 diffusivity 286 – molds 373 digital fabrication 376 – pore structure 237 – flow 376 – powder bed methods 363 – recent developments 377 – stereolithography 361 – tools 360–363, 371 – technologies 362 digital fabrication methods 375 DRIFTS studies 101 digital manufacturing methods 359 dry CO2 807 1114 Index

dry hydrocracking 463 – reactor 940, 941 drying 339 electrochemical reactions 899, 911, 941 dry oxidation 636 electrochemical redox reactions 892 dry reforming 423 electrochemical reforming 961–964, 968, 975 2D structures 927 – cell performance 965 d0-transition metal oxynitrides 855, 856 – polarization curves 970 3D-type electrodes 386 – potential of biomass-derived alcohols in 964 10 d -type oxynitrides, (Ga1xZnx)(N1xOx) 855 electrochemical sensors 939 dumbbell-like nanoparticles 194 electrochemical switching 948 dyeing industry 729 electrochromism 918 dynamic approach 1082 electrode material 233 dynamic light scattering 163 electrodialysis 916, 917 electroless deposition 349 e electrolysis 838, 915, 961, 963 eco-friendly strategy 235 electrolyte 914, 915, 928 ECR-1 – engineering 893 – aluminosilicate zeolite of 252 – membrane reactor 515 ectrofenton degradation 182 electromotive force 899, 939 EDS. see energy dispersive X-ray spectroscopy electron binding energy 1032 (EDS) electron diffraction (ED) pattern 99 EFAL acid sites 620 electron-donating alkyl SPO 32 EGR. see enhanced natural gas recovery (EGR) electronegative promoters 211 ehydrogenation 17 electronegativity 596 EISA. see evaporation-induced self-assembly electronically conducting matrix (EISA) – catalytic nanoparticles dispersed in 951 elastomer batch reactors 375 electronic metal support interaction electrical conductivity measurements 218 (EMSI) 214 electrical energy 387, 971 electronics electrical polarization 211, 953 – conductivity 942 electric conductivity 927 – conductor 941 electric current 919 – effects 12 – concentration 919, 920 – π-π* electronic transition energy 985 electric fields 222 – energies of formation, experimental and electricity consumption 878 calculated 443 electrification 907 – inkjet-assisted manufacturing 376 electrocatalysis 226, 232, 234, 394, 822, – properties 222 892, 905 – reaction energies 444 – thermal catalysis, advantages over 822 – transition 984 electrocatalysts (EC) 364, 386, 394, 892, 897, electronic transitions, in metal 984 905, 908, 927, 963 electron microscopy characterization 970 – ink formulations 365 electron paramagnetic resonance (EPR) 876 electrocatalysts, low-cost 926 electron potential 895 electrocatalytic activity 724, 945 electron scattering 1033 electrocatalytic performance, in electron tomography reconstruction 430 photocatalysis 897 electron transfer 29, 862 electrocatalytic process 892 – characteristics 237 electrocatalytic reactors 972 – number 237 electrochemical impedance spectra 238 electro-osmosis 930 electrochemical potential 917 electro-oxidization 965 electrochemical promotion 212 electropositive contaminants 595 electrochemical promotion of catalysis electropositive minerals 599 (EPOC) 209, 941 electropromotion 951 – effect 211 – effects 953 Index 1115 electroreduction 965, 994 erionite (ERI) zeolites 253 electroreforming Eruca sativa Gars (ESG) oil – under acidic conditions 965 – transesterification of 789 – concept 965 erythrose (ERO) 613 electrospinning 634 erythrulose (ERU) 614 electrostatic attraction 862 EST. see eni Slurry Technology (EST) electrostatic forces 865 ester hydrolysis 991 electrostatic interactions 180 esterification 77, 636, 719, 720, 722, electroxidation 972 733, 757 Eley–Rideal mechanism 1030 – of glycerol 719 ELISA. see evaporation-induced self-assembly – reactions 759 (ELISA) esters 602 ellipsometric porosimetry (EP) 344 estragole, hydroformylation of 191 Embden-Meyerhof-Parnas glycolysis 612 etching 194, 731, 988 emulsion polymerization 197 ethanol 211, 587, 601, 618, 619, 962, 964, β-enaminones 745 965, 972 enantioselectivities 182 – oxidative dehydrogenation to enantioselectivity 188 acetaldehyde 494 encapsulated catalyst 451 ethanol dehydration 76 endotemplating 631 ethanol dehydrogenation 496 endothermic dehydrogenation 506 – equilibrium conversion 495 endothermic reaction 478 – mechanism 496 energy balance 912 ethanol fermentation 601 energy band 216 ethanol oxidation 964 energy consumption 806, 809, 880, 964, 971 ethanol oxidative-dehydrogenation, energy demand 913 mechanism 497 energy densities 964 ethanol steam reforming reaction 76 energy dispersive X-ray (EDX) 987 ethanol/water mixture 228 energy dispersive X-ray spectroscopy ethanolysis reaction 594 (EDXS) 100, 190, 436 ethene energy efficiency 238 – hydroformylation of 342 energy gap 852 etherification 77, 986 energy-intensive solvent reflux 764 5-ethoxymethyl furfural (EMF) 603 energy storage 390, 442 ethyl acetate formation rate 49 energy transition 387 ethylammonium 528 energy vectors 390 ethylbenzene, acylation of 134 – production 389 ethylene 471, 587, 593, 982 engineering 897 – adsorption energies 220 engine exhaust 939 – oxidation to vinyl acetate 487 enhanced natural gas recovery (EGR) 808 ethylene-butylene cross metathesis 505 enhanced oil recovery (EOR) 807, 808 ethylene carboxylation 818 eni Slurry Technology (EST) 388 ethylenediamine (EDA) 258 enthalpies 4, 607, 1056 ethylene dichloride 515 environmental hazards 929 ethylene epoxidation 211 environmental pollution 755, 880 ethylene formation enzyme catalysis 91 – simplified reaction scheme 489 EOR. see enhanced oil recovery (EOR) ethylene glycol (EG) 227, 964 epimerization 604 ethylene hydrogenation 220, 222 EPOC effect, permanent 954 – TOF 215 epoxidation catalyst 137, 487, 733, 745, 991 ethylene oxidation 492 epoxy resins 912, 930 ethylene oxide 483 equipment threshold 376 – combustion 485 eriochrome black-T (EBT) 882 – cyclization 486 1116 Index

– formation 486, 491, 492 FCC. see fluid catalytic cracking (FCC) –– mechanism 486 Fcischer–Tropsch conditions ethylene oxide process 489 – hydrocracking under 453–464 – Ag-based catalysts 493 F-doped titanium suboxides 218 ethylene to ethylene oxide, direct oxidation of Fe-Al-MCM-41 675

– by O2 484–487 Fe-based MOFMS systems 243 ethylene total oxidation mechanism 488 Fe-beta zeolite ethyl fructoside 619 – organotemplate-free and seed-directed ethyl glucoside 619, 620 synthesis 255 ethylidyne adsorption energies 220 Fe-BTC ethyl lactate (EL) 609 – Fe phase transformation during pyrolysis – reduction to 1,2-propanediol 725 of 241 ethyl vinylglycolate (EVG) 614 Fe catalysts 210

EtOH/furfuryl alcohol ratio 594 FeCl2 catalyst 820 European Biomass Industry Association feedstock consumption 586 (EUBIA) 716 Fe(III) oxo-clusters 240 evaporation-induced self-assembly (EISA) 60, Fe-MIL-88A samples 239 631 FeMo catalyst 391 E-vinyl sulfones, synthesis of 181 Fe/N/C composites 233 EXAFS. see extended X-ray absorption fine Fenton-like reaction 244

structure (EXAFS) Fe2O3-CeO2, ceria nanovoid structure 430 exchangeable electrodes 376 Fe2O3-CeO2 samples exhaust catalysis – conventional CO2-TPO of 427 – CO oxidation 107 Fe3O4 nanoparticles – NO reduction – formation 160

–– by CO 13, 108 γ-Fe2O3 nanoparticles 239, 642 –– by H2 109 Fe/Pd mixed metal nanoparticles –– over Ce1xMxO2δ coated, on cordierite – incipient wetness impregnation approach monolith 109 for 129

–– selective catalytic reduction, by NH3 and fermentation 587, 601, 963 CO 13, 109 Fermi energy 218 exoskeletons 727 Fermi level 215 exotemplating 60 ferrierite (FER) 259 exothermic methanation reaction 78 ferrimagnetism 150 exothermic oxidation 506 ferrimagnets 146 exothermic reactions 511 ferromagnetic materials 146 experimental entropy 444 – magnetic moment 146 exposed crystalline faces 3 ferromagnets 146 extended X-ray absorption fine structure few-layer graphene (FLG) 38 (EXAFS) 981, 1032 Fe-Zn double-metal cyanides 790 – for Cu-UiO-67 1045 FFA. see free fatty acid (FFA) external magnetic field 732 first-generation bio-fuels 754 extrusion 371 first-order reaction – effectiveness factor of 296 f Fischer–Tropsch synthesis (FTS) 72–75, 240, face-centered cubic geometry 371 386, 390, 449, 452, 728, 737, 814, 825, 829 FAME. see fatty acid methyl ester (FAME) – gasoline-selective and diesel-selective Faradaic efficiency 917, 929, 950, 953 450–453 fatty acid methyl ester (FAME) 76, 757 – hydrocracking under 455 fatty acids 720 – waxes 464 Faujasite-type zeolite (FAU) Fischer–Tropsch (FT) synthesis – polymorph 252 – catalyst 454, 465 – schematic representation 264 – cracking catalyst 449 Index 1117

– IR spectroscopy 230 free energy 3, 4, 1079 fixed bed PR 877 – and partition function, in statistical flame spray pyrolysis 200 physics 1092 Flemion 915 – profile for the methylation of benzene 1077 flue gas 836 free fatty acid (FFA) 76, 757

fluid catalytic cracking (FCC) 321, 389, 465, free-standing anatase TiO2 nanoparticles 343 507, 659, 995 freeze drying 39, 282 – catalysts 252 Friedel–Crafts acid catalysts 820 fluid dynamics optimization 375 Friedel–Crafts alkylation 767 fluidizable solids 879 Friedel-Crafts benzylation reaction 133 fluidized bed 515 Friedel-Crafts-type treatment 196 fluidized bed FPG-PR 880 fructose 602–604, 606, 612, 616, 618, 619, 622 fluidized bed reactor 514, 515 fructose dehydration 622 – FBPR 879 fructose distribution 607 fluidized reactor technology 512 fuel cells 336, 339, 369, 376, 422, 440, 629, 939, fluorescence microscopy 28, 989, 990, 992, 940, 942, 955 994, 996 – energy density 841 – reveal intraparticle heterogeneity 990 – fabrication, inkjet printing 365 fluorescence microscopy techniques 989 fuel consumption 449 fluorescent acid-base indicator 367 fuel crops vs. traditional agricultural fluorescent dyes 990 cultivation 754 fluorite 428 fullerenes 396 fluorogenic carboxyfluorescein diacetate 991 fully connected OKO-type framework 342 fluorogenic reaction, studies reveal suboptimal Fumapem 915 catalytic performance 991 Fumasep 917 fluorosulfonic 77 fuming sulfuric acid 776 flux-controlled deposition methods 338 functionalized ink 375 forestry waste 754 functionalize mesoporous materials 121 formaldehyde (FA) 39, 493, 513 furanic compounds 716 – commercial production 494 furans polymerization 703 formate 972 furfural 593, 594, 621 formic acid 214, 234, 393, 724, 907, 965 furfural dimethyl acetal (FDA) 621 formulated Pt/C-Nafion ink 365 furfuryl alcohol (FA) 233, 593–595 formyl and nitro groups – fluorescent products 992 – size specificity for hydrogenation 33 – oligomerization 995 fossil carbon –– H-ZSM-5 acid-catalyzed 992 – exploitation of 627 –– reaction on crystals 995 fossil-derived chemicals 628 furonic derivatives 619 fossil-derived precursors 628 fused deposition modeling 362, 363, 373 fossil fuels 385–389, 394, 449, 537, 794, 806, future directions 478 851, 914, 961 – alternative 387 g – consumption 838 gadolinia doped ceria 953 – reserves 753 GaInP-GaInAs tandem structure 922 fouling 589, 595, 599 galvanic replacement 15 – to mitigate 595 gamma-valerolactone 740 foundry casting molds 363 – two-step transformation into pentanoic Fourier transform 1033 acid 741 Fourier transform GaN photoelectrode 900 (FT-IR) 163 GaN, require UV light excitation 855 Fourier transform infrared spectroscopy GaN: ZnO photocatalyst 902 (FTIR) 344, 495 GaP nanowires 922 framework aluminum (FAL) 611 gas chromatograph (GC) 107, 981 1118 Index

gas evolution, time courses of gold catalysts 817 – water splitting gold-coated iron nanoparticles 160

–– over RhCrOx/LaMg1/3Ta2/3O2N. – magnetic core–shell nanoparticles 160 catalyst 858 gold nanoparticles (Au NP) 13, 14, 196, 198,

–– over RhCrOy/LaMgxTa1xO1+3xN23x 858 730, 743, 996 gas fields 386 – magnetite, synergistic effect between 181

gas hourly space velocity (GHSV) 109 – preparation imbedded into CeO2 hollow gasoline 232 spheres 743

gas permeability 931 gold on metal oxides (Au/MOx)24 gas-phase oxidation 818 grain boundary resistance 862 gas-phase reactions 16, 21 graphene-based materials 38 gas–solid hydrodynamics 516 graphene nanosheets 927 gas–solid reactions 336 graphene oxide (GO) 38, 243, 633 gas-to-liquid (GTL) processing 449 – from natural graphite 38 – conversion 386 – structure of 38 gas velocity 510 graphenes 396 Gaussian hills construct 1078 graphenic 37

(Ga1xZnx)(N1xOx) photocatalyst 859 graphitic carbons (Ga1xZnx)(N1xOx), utilize visible light 855 – nanostructures 629, 639 generalized gradient approximation – synthesis and functionalization 628–642 (GGA) 442 graphitic nanostructures 633

β-Ge3N4, require UV light excitation 855 – lignin-derived carbons 634 geometrically complex reaction vessels 372 – nanofilamentous carbons 633 geometric effects 214 145 germanium 281 greenhouse emissions 964 GGA. see generalized gradient approximation greenhouse gases (GHG) 805 (GGA) – atmospheric content, strategies to GHG. see greenhouse gas (GHG) reduce 806 Gibbs free energies 442, 445, 832, 851, 1080 –– carbon capture and storage (CCS) 806 glass sphere (GS) 875 ––carbon capture and utilization (CCU) 806 global energy crisis 655 – emissions 838 global warming 805 green hydrogen 824 glucose 602, 603, 606, 616, 619 Grignard reagent 820 – aerobic oxidation 22 Grob fragmentation 700 – conversion 618 growth per cycle (GPC) 337 – derived material 720 growth rates 3, 5 – isomerization 603, 605–610, 621 – oxidation 23 h – pyrolysis HAADF-STEM image 429, 433, 435

–– on ZSM-5 700 H2 adsorption glucose-fructose isomerization 607 – on Au clusters on Al2O3 34 glyceraldehyde 609 halogen-substituted nitroarenes 239 glycerol 76, 593, 962, 964, 987 hard template method 60, 630 – conversion 77 hardwood lignin 541 – electrooxidation 972 Hartridge–Roughton (vortex) micromixers 7 – esterification 77 H/Au ratio 29 – oxidation 972 H-Beta zeolites 452 glycolaldehyde (GA) 612, 613 health, safety, and environment (HSE) 280 glycolate 972 heat-generating resistor 361 glycolic acids 77, 726 heat of reaction 512 glycols 593 heat transfer 588 glycolysis 616 – coefficient 514 β-1,4 glycosidic bonds 539, 541 heat treatments 227, 230, 237 Index 1119

– of Fe-BTC 240 high angle annular dark field scanning heavy components, removal of 595 transmission electron microscopy Heck reaction (HAADF-STEM) 219 – coupling reaction 16, 184 high-fructose corn sirup (HFCS) 602 – of iodobenzene with methyl acrylate 731 highly oriented pyrolytic graphite (HOPG) 43 hematite 443 high-performance Au catalysts 22 hematite (α-Fe2O3) 149 high-performance electrocatalysts 727 hemicellulose 540 high-resolution scanning electron microscopy hemicelluloses (HR-SEM) 987 – hardwood high-resolution transmission electron –– glucuronoxylan 541 microscopy 3, 519 – softwood high-surface-area solid materials 339 –– arabinoglucuronoxylan 541 high-temperature reactions 229 –– galactoglucomannan 541 high-throughput evaluation method 367 hercynite 830 high-throughput screening, inkjet-based 367 heteroatom doping 637 H2O/C ratios 941 heterogeneity 990 hollow carbon nanofibers 233 – intraparticle 995 homogeneous catalysis 45, 91, 179, 214, 589, heterogeneous catalysis 45, 91, 179, 191, 225, 590, 1030, 1044 226, 236, 241, 242, 293, 339, 344, 347, 589, homogeneous nucleation 3, 4, 16 590, 628, 629, 813, 814, 821, 823, 839, 986, homogeneous precipitation 13 989, 1029, 1030, 1043, 1056, 1057 homogenous catalysts 821 – catalysts for 92 HOMO–LUMO (π–π*) separation 989 – characteristics of 1065 Honda–Fujishima effect 851

– gas phase reactions 373 H2 production 228, 390, 971 – rate of 91 HSE. see health, safety, and environment (HSE) – role for abatement of pollutants 92 1,2-H shift 492 heterogeneous nucleation 4 H-SSZ-13 zeolites 995 heterogeneous photocatalysis 873, 876, 884 H2 storage 390 – reactors 26, 877 HTC 715. see hydrothermal carbonization heterogenization 45 (HTC) heterojunction structure 228, 874 H2-temperature programmed reduction heteropolyacids (HPA) 764 profiles 29 hexadecylamine 154 humidification 929 hexagonal mesoporous silicas (HMS) 129 Hummers method 38 hexanediamine 184 hybrid organic–inorganic architectures 794 hexanuclear oxozirconium clusters 229 hydration 601, 859 hexitols 645, 647 hydrazine hydrate (N2H4H2O) 239 hexoses 593, 609 β-hydride elimination 488 – sugars 603 1,2-hydride shifts 612, 623 HF. see hierarchy factor (HF) hydrocarbon-based reactions 814–820 H-ferrierite zeolites 774 – carboxylation 817–820

HfO2 ALD layer 344 –– and alkyne carboxylation 818 – electron tomography reconstructions 345 –– aromatic carboxylation 820

HfO2-coated mesopores 345 –– paraffin carboxylation 818 Hägg carbides 240 – methane dry reforming 815

H2, heterolytic dissociation 32 – oxidation by CO2 816 hierarchical zeolites 317, 476 hydrocarbons 82, 469, 739, 943 – factor 320 – based automobiles 78 – stability toward coking 319 – cracking 941 – ZSM-5, nitrogen adsorption isotherm 276 – oxidation 110 hierarchy factor (HF) 476 hydrochars 719, 734 high-angle annular dark field (HAADF) 951 – as classical carbon supports 723–729 1120 Index

– formation from glucose and xylose 716 – of nitro compounds 239 – as sacrificial component in catalyst – phases 598 synthesis 742 – protocols 241 – surfaces and possibilities for catalysis – rate 220 718–723 – reactions 1040 hydrocracking 450, 452, 454, 459 hydrogen evolution photocatalyst (HEP) 861 – CO, effect on, over Pd/H-MFI catalysts hydrogen evolution reaction (HER) 861, 892, 455–459 908

– H2O, effect on, over Pt/H-MFI – electrocatalytic activity 901 catalysts 459–464 hydrogenolysis 593, 645 – MFI zeolites, drawback of 464 hydrogen peroxide 737 hydrocracking catalysts 388, 453 hydroisomerization 124 – diesel-selective 455 hydrolysis 10, 60, 594, 991 hydrodechlorination 31, 201, 235, 735 – of furan groups 719 hydrodenitrogenation (HDN) 231 hydronium ions 894, 895, 897 hydrodeoxygenation (HDO) 389, 658, 754, 756 hydrophilic surface 729 hydrodesulfurization (HDS) 209, 227, 231, hydrophobic carbonaceous coatings 598 323, 739 hydrophobic channels 17 hydroformylation reaction 191 hydroprocessing catalyst, diesel-selective 450 hydrofracturing 449 hydroquinone 741 hydrogasification 233 hydrotalcite (HT) 25 hydrogen 92 hydrothermal carbonization 715, 717–721, – adsorbing sites 28 729, 735, 737, 738, 743 – 520 – in presence of metal oxide – as clean fuel 92 nanoparticles 729–735 – conditions 220 hydrothermal carbonization (HTC) 629, 715 – cost 913 – coating 722 – electrode 854 – glucose-derived carbonaceous microspheres – evolution 963 –– sulfonation of 780 –– rate 902 hydrothermal conditions 598 – production 28, 961 hydrothermal crystallization 451 –– rate 961 hydrothermal decomposition 182 –– reactions 110 hydrothermal method 154, 202 ––CO–PROX reaction 112 hydrothermal ripening 7 ––steam reforming 110 hydrothermal saline promoted grafting ––water-gas shift reaction 111 (HSPG) 762 – production of 92 hydrothermal stability 58, 276, 740 – selectivity 76 hydrothermal synthesis method 58, 60, 278, – source of energy 92 747 – storage capacity 233 hydrotreatment 388 – transfer reactions 225 hydroxide ions 915 – yield 964 hydroxide- transport 916 hydrogenation metals hydroxy 722 – stability window of 597 hydroxyacetic acid 756 hydrogenations 14, 28–33, 78, 138, 226, 231, α-hydroxy acids 602 236, 240–242, 590, 723, 731, 741, 982, 987 hydroxyapatite (HAP) 24 – activity 240 4-hydroxybenzyl alcohol – of benzene – aerobic oxidation 22, 23 –– transient concentration 298 α-hydroxy-(-butyrolactone (HBL) 615 – catalysts 597 hydroxyethylsulfonic acid 638 – of CO 240 hydroxy group of alcohol, deprotonation of 24 – metals 598 hydroxyl anions 915 – of nitrobenzene 239 hydroxylation 77 Index 1121 hydroxyl ions 895 ion exchange 92 hydroxyl radicals 891 ion-exchange materials 921 3-hydroxy-3-methoxy benzaldehyde 756 ion exchange membrane (IEM) 908 hydroxymethylfurfural 716 ion-exchange resins 24 5-hydroxymethylfurfural (HMF) 33, 593, 603 – sulfonic resins 136 α-hydroxy products 602 ionic conduction 931 hysteresis loop 147, 244 ionic conductivities 915, 916 HZSM-5 catalyst 663 ionic current 915, 916, 919 – catalyst in Py-GC/MS system 670 – concentration 919 – zeolite 393, 666, 672, 702, 992 – density 918 –– core 986 ionic liquid (IL) 185, 229, 629 –– in deoxygenating the pyrolysis 678 – pyridinium-based 185 – zeolite to binder ratio (Z/B) 692 – sulfonic acid containing 789 ionic radii 857 i ionic semiconductors 215 IEM materials 914, 919 ionic transport 913 IL. see ionic liquid (IL) ionothermal carbonization 629 imidazolium 186 ion transport 909 imidazolium-based supramolecular ionic – losses 918

liquid-grafted graphene oxide 24 Ir4 clusters 214 imidazolium salts iridium nanoparticles 14 – as catalysts 822 iron acetate 233 impregnation 92, 339, 349, 403, 472 iron catalysts 814 incipient wetness impregnation (IWI) 342 iron oxides 149, 425 incipient wetness method 92 – nanoparticles 434 inductively coupled plasma atomic emission – reduction 440 spectroscopy 733 iron precatalysts 820 industrial FCC catalyst particles isobutane 232 – conversion to gasoline 322 – oxidative dehydrogenation of 47 In, electron-deficient properties 30 isobutane dehydrogenation 232 infrared (IR) 981, 1085 isobutene 232 – spectroscopy 284 isolated lignin – spectrum of HKUST-1 1087 – depolymerization of streams to phenolic ink formulation 361 compounds 564–568 inkjet-compatible catalysts 376 isolation method 538 inkjet patterns 361 isomerizations 23, 230, 286, 452, 453, 455, 459, inkjet printing 359, 360, 364 461, 603, 604, 606, 609, 611, 615 – application of 364 – esterification of trioses 609, 610 – drop-on-demand 360 – reactions 606 – piezoelectric approach 361 – of sugars 602 – thermal approach 361 isooctane, autothermal reforming (ATR) 411 inkjet technology, applications of 364 isoparaffins 452 ink solvent 361 isopropanol 242, 605, 618 integrated circuit (IC) 336 isopropyl alcohol 875 inter-electrode distance 911 isothermal reaction temperatures 438 interparticle heterogeneity 983, 988, 989 isotopologue 1040 – structural 988 interzeolite transformation 264 j – without organic templates 262 Jatropha curcas 754 intracrystalline mesopores 279 jet fuel 389 intraparticle heterogeneities 983, 985, 991 Joint Center for Artificial Photosynthesis inverse gas (IGC) 785 (JCAP) 914 iodobenzene 731 JU93 synthesized 262 1122 Index

k LCAO. see linear combination of atomic + K cations 951 orbitals (LCAO) Keggin-type phospho- and silicotungstic LCC. see lignin-carbohydrate complexes (LCC) acids 764 leaching 188, 279, 593, 727, 767, 928 ketonization 697 lean trap catalyst (LTC) 942 kinetic enhancement 929 leukodopaminechrome 196 kinetics expression 4 levels of theory (LOTs) in periodic codes 1069 kinetic stabilization 598 levulinate esters 594 + K ions 955 levulinic acid (LevA) 590, 594, 595, 603 K loading 491 – derivatives 621 Knoevenagel condensations 185 LEV zeolite 263 Knoevenagel reaction 314 Lewis acid 230, 606, 767 Knudsen diffusion 305, 315 Lewis-acid 614 Lewis acid-catalyzed dehydration 614 K2O–Cr2O3/Al2O3 catalysts 232 kraft pulping 553 Lewis acid-catalyzed glycolytic reaction Kramers–Heisenberg equation 1032 pathway 615 Kubelka–Munk function 876, 984 Lewis acid-catalyzed isomerization 610 Lewis acid-catalyzed sugar transformation 602 l Lewis acidic oxozirconium clusters 230

La- and Rh-codoped SrTiO3 (SrTiO3 Lewis acidic property 611 – La,Rh) 863 Lewis acidic sites 230, 602, 606, 609–611, 663, 1063 La0.43Ca0.37Ni0.06Ti0.94O3γ electrodes 948 lactic acid 603 Lewis acidic zeolites 603, 623 Lambda sensors 939 life cycle analysis (LCA) 838 ligand-assisted method 60 LaMg2/3Ta1/3O3 oxide 857 ligand effect 23, 214 LaMgxTa1xO1+3xN23x 860 LaMgxTa1xO1+3xN23x series photocatalytic ligand-to-metal (LMCT) charge transfer 983 activity 857 light distribution 878 Langmuir adsorption 255 light-emitting diode (LED) 879 Langmuir–Hinshelwood–Hougen–Watson lignin 541 mechanism 775 lignin-carbohydrate complexes (LCC) 541 Langmuir–Hinshelwood kinetics 105 lignin composition 539 Langmuir–Hinshelwood mechanism 1030 lignin isolation 538 Langmuir-type isotherms 307 lignin pyrolysis lanthanides 146 – by TG-FTIR analysis 699 lanthanum nitrate 746 lignin structure 538 lanthanum oxide 410 lignin transformations 542 lanthanum strontium chromite 947 lignin valorization 538 lignocellulose 537, 587, 590–592, 594, 598 La2O2CO3 particles 409 large-scale industrial oxidation processes – structure 539–542 – metal nanocatalysts 484–488 lignocellulose biomass 539 laser beam 362 lignocellulose biorefinery 537 laser scanning approach 362 lignocellulose composition 539 lignocellulose conversion 591, 592 LaTaON2, water splitting under visible light 856 lignocellulose processing methods 542 lattice fringes 100 lignocellulose pyrolysis 754, 755 lattice matching 16 lignocelluloses 964 lattice oxygen 112 – sources 537, 541 lauric acid 77 lignocellulosic biomass 537, 698, 715, 717 layered device 369 – location/structure of layered double hydroxide (LDH) 735, –– cellulose 540 927 –– hemicelluloses 540 LCA. see life cycle analysis (LCA) –– lignin 540 Index 1123 lignocellulosic residue 592 – evolution of publications 165 + Li /MgO catalyst 817 – schematic structure 157 Lindar’s catalyst 187 magnetic dipoles 147 linear carbonates 820 magnetic field 179 – diethyl carbonate (DEC) 820 magnetic iron oxide particles – dimethyl carbonate (DMC) 820 (MNP-HPA) 745, 766 linear combination of atomic orbitals magnetic mesoporous carbon catalyst 201 (LCAO) 1035 magnetic microspheres linear ion pathway 912 – monodisperse 196 lipase enzyme, covalent immobilization of 169 magnetic nanocatalysts 180, 181 lipid transesterification 754 – heterogeneous 181 liquefaction 386 – seed-mediated synthesis of 180 liquefied gas (LPG) 506 magnetic nanoparticle (MNP) 146, 148, 179, liquid base-catalyzed transesterification 757 195, 197 liquid electrolyte (LE) 908 – coating of 186 liquid energy 387 – functionalized 201 liquid extraction 595 –– silica-coated 188 liquid fuels 82, 387, 388, 450, 469, 755 – magnetic attributes 148 – production of 449 – modification 180 liquid-phase catalytic reactions 785 – with organic groups 183 liquid-phase colloidal synthesis 146 –– amine-based molecuels 184 liquid phase electrolysis 929 –– miscellaneous 184 liquid-phase organic molecules 782 –– polymers 183 liquid-phase oxidation 636 – with silane agents 184 liquid-phase processes 3 – silica-coated, as magnetic supports 187 liquid-phase syntheses 3 – types of 153 lithium aluminate 373 magnetic polymeric beads 195 lithium ions 616 magnetic porous carbon (MPC) 235 lithography magnetic-silica core–shell structures 158 – mask-based 359 magnetic supports 188 London forces 786 – aminofunctionalized silica 191 long-chain hydrocarbons 321 – aminosilica-modified 189 low-carbon economy 469 – magnetic composite nano- or microspheres low emission 421 as 197 low-energy ion scattering (LEIS) 488, 522 – magnetic core–polymeric shell as 195 low-melting wax binders 373 – magnetic hollow spheres as 193 low vapor pressure 964 – magnetic polymer materials 197 – nonfunctionalized 189 m magnetic yolk–shell nanocomposites 193 macro-mesoporous catalysts 77 magnetism, type of 147 macropore/mesopore/micropore ratio 233 magnetite (Fe3O4) 149, 153, 179, 196, 443 macroscale transport 366 – composite hollow spheres 198 Magbons 629 –– synthesis of 198 maghemite (γ-Fe2O3) 149 – crystalline structure of 150 – crystalline structure 150 – magnetic moment of 150 magnetic alloys 146 – microspheres 196 magnetic carbon hollow spheres 202 – nanoparticles 184, 186, 193, 196 magnetic carries 179 –– magnetic saturation values of 150 magnetic catalysts 183, 184 –– polydopamine-coated 196 – heterogeneous 179 – oxidation of 149 magnetic coercivity vs particle size 149 – particles 729 magnetic compounds, formation 180 – spheres 199 magnetic core-shell nanoparticles 151 magnetron sputtering 220 1124 Index

maleic anhydride 508, 515 –– acid-functionalized 646 mannose 604, 606, 607 – hard-template synthesis 630 Mars–van Krevelen mechanism 494, 507, 517 – ordered 630 mask projection 362 –– elaboration of 629–632 mass spectrometer 473, 981 –– synthesis by EISA method 632 mass transfer 76, 588 – soft-template synthesis 631 mass transport coefficient 930 – synthesis of 631 materials synthesis 715 mesoporous carbon nitrides (m-CN) 238 MCM-41 (Mobil Composition of Matter) 674 mesoporous crystals 229 – high-accuracy localized reaction 309 mesoporous materials 57, 59, 120, 716 – mesoporous 631 – carbon-based 789 – sulfonic acid-functionalized 782 – strategies for preparation 59–61 m-CN-material-based catalysts 238 mesoporous metal oxides preparation MDA. see methane dehydroaromatization – by direct synthesis approach 60 (MDA) – by postsynthesis approach 60 MD-averaged TD-DFT computations 1090 mesoporous MFI zeolites 681, 684, 685 mechanical milling methods 92 mesoporous–microporous architectures 773

(MeCpPtMe3)/O3 process mesoporous nickel-alumina xerogel 79 – SEM image of nanoparticles 348 mesoporous oxides 60 – on silicon 347 mesoporous photocatalyst 82 Meerwein-Ponndorf-Verley (MPV) mesoporous silicas 60, 339, 342, 759 reduction 138, 602, 604 mesoporous stannosilicates 606 MeIM linkers 242 mesoporous titania film 344 MEL. see ZSM-11 – containing ink-bottle-shaped pores 344 melamine 42 mesoporous titania-organosilica material 83 10-membered-ring (10MR) 471 mesoporous walls 238 membrane conductivity 931 mesoporous zeolites 342 membrane electrode assembly (MEA) 928 mesoscopic modeling 759 membrane reactor 478 mesotheliomas 281 membrane selectivity 917 mesoxalate 972 membrane thickness 967 mesoxalic acid 726 MeOH synthesis catalysts 244 metadynamics (MTD) mercaptopropyl trimethoxysilane – simulation 1083 (MPTMS) 759 metal-alcoholate formation 496 meso-Ce-HZSM-5, SEM image of 682 metal carbides 739 meso-2,3-dimercaptosuccinic acid – catalysts 816 (DMSA) 184 metal carbonyls, thermal decomposition meso-/macroporous nanocatalysts 323 of 180 meso-MFI 684 metal catalysts 78, 211, 238, 817, 987 mesopore diffusion 760 – preparation by supporting metal mesoporogen 476 nanoparticles, on hydrochar 724 mesoporosity 77, 79, 83, 233, 279, 287 – structure and morphology of 181 mesoporous (Sn-SBA-15 and metal cations 854, 857 Sn-MCM-41) 615 metal clusters 222 mesoporous aluminosilicates (MMZ) 123, metal cocatalysts 901 276, 677 metal containing precursors 236 mesoporous carbon (MC) 60, 495, 630, 631, metal cupferronates 154 636, 639, 647, 649 metal dispersion 79 – in catalytic depolymerization of metal–electrolyte double layer 212 cellulose 642–649 metal–gas interface 212 – catalytic depolymerization of cellulose in metal hydrides 242 presence of 644 metal ions 226, 232

– fibers – substituted CeO2 catalysts 96 Index 1125

–– in heterogeneous catalysis 95 ––miscellaneous methods 182 –– redox property 95 ––seeding process 180 –– substitution of noble metal ions in 95 –– within yolk–shell nanostructures 193

– substituted CeO2 catalysts 95 – preparation imbedded into hollow – substituted TiO2 catalysts 96, 97 mesoporous silica 744 metallic alkoxide 9 metal organic framework (MOF) 24, 226, 232, metallic cations 16 240, 314, 347, 376, 821, 996, 1043, 1056 metallic cobalt 154 – applications of 1044 metallic film resistance 909 – carbonization of 200 metallic nanoparticles 12, 119 – catalytic reaction rate 314 – aqueous syntheses 13 – derived cobalt heterogeneous catalysts 241 – hollow particles by galvanic replacement 15 – derived metal NPs 239 – polyol-mediated syntheses 14 –– carbons 232 metallic nanoparticles (MNPs) –– ZnO 228 – coating of 156, 186 – derived N-doped NPC-Pd heterogeneous – colloidal stability 156 catalyst 235 – core coated with surfactants/polymers 162 – derived samples 237 – Ru catalysts, schematic preparation – derived sulfided material 231 procedure of 166 – derived system 238

– synthesis of 152–156 – Fe2O3@TiO2 228 metallic oxides 3, 6 – followed by in’situ EXAFS and XANES 1043 – anodization 11 – hydrogenation of octenes 314 – (co)precipitation 6, 11 – mediated synthesized metal oxides 229 – homogeneous (co)precipitation and/or metal–organic precursors 338 ripening in nonaqueous solvents 11 metal oxides (MO) 123, 214, 225–227, 421, – homogeneous (co)precipitation by 598, 854, 875 thermohydrolysis (aqueous solutions) 10 – ALD catalysis, role in 341 – hydrolytic sol–gel 9 – catalysts 15 – ripening 6 – coated MNPs 161 metallic particles 12, 13, 15, 16 – hybrids 15 metallic substrates 15 – interface 16 metallic tellurium 525 – nanomaterials 227 metallocenes 60 – particles 729 metallo-organic framework (MOF) 275 –– incorporation, as cores of hydrochar metallozeolites 392 spheres 729 – catalysts 393 metal particles 899 metal microchannel reactors 366 metal peroxide 859 metal nanoparticles 16, 179, 196, 197, 199, 230, metal precursors 735 236, 340, 635, 737, 744, 899, 984 metals 3, 227, 876 – anchoring procedure 187 – semiconductor interface 215, 901 – immobilization of 179, 197, 200 – substituted silicates 602 –– magnetic carbon-based materials as – support interaction 92 supports – work function 216 ––core–shell magnetic carbon supports 199 metal support interaction (MSI) 941 ––magnetic carbone-based yolk–shell metal-support interactions 214 materials 201 metal-support interface 78 ––miscellaneous 201 metal-to-ligand (MLCT) charge transfer 983 ––MOFs-derived magnetic carbon methacrolein, to MMA supports 200 – oxidative esterification of 25 –– on magnetic nanomaterials 179 methanation activity 217, 814 –– on magnetic nanoparticles methane 408, 469, 943 ––coprecipitation 181 – activation 479, 952 ––incipient wet impregnation 181 – dissociative adsorption 408 1126 Index

– nonoxidative conversion to higher methyl vinylglycolate (methyl-2-hydroxy-3- hydrocarbons 470 butenoate, MVG) 613 methane combustion 746, 945 methyl xyluloside 618 – electrochemical promotion 954 MFI-type zeolite (ZnMFI) 259, 268, 393, methane conversion 386 453, 464 – routes, overview 470 – encapsulated catalyst 451 methane dehydroaromatization (MDA) 471, – micropores 459 474, 475, 478 Mg-loaded hierarchical ZSM-5 687 methane dry reforming 834 Mg-modified USY zeolite 693 methane monooxygenase 392 MgO catalysts 697 methane/oxygen ratio 954 Mg orbital 857 methane production 951 micellization 186 methane steam reforming 366, 838 microchannel flow reactors 791 methanol 211, 609, 610, 612–614, 616, 720, microchannel reactors 366 907, 954, 962, 963, 965, 967, 968, 972 microelectronics 341 – oxidative dehydrogenation to microemulsion technique 92, 154 formaldehyde 493 microfluidic electrolysis device 930 methanol carbonylation 503 microfluidic flow reactors 373 methanol electrolysis 968 micro/mesoporous zeotile-4 material 342 methanol oxidation 213, 727, 736 micromixing 375 – Ag catalysts, role of 493 microporosity 275, 738 methanol synthesis catalysts 813 microporous (Sn-Beta) 615 methanol-to-gasoline conversion – aluminosilicates 771 – catalytic conversion 319 – H-β-zeolite 762 methanol-to-olefin (MTO) 1065 – materials 120, 602 methanol-to-olefin (MTO) technology 812 – surface area 233 methanotrophic bacteria 392 microscopy techniques 982 methionine-bound chitosan 183 microwave-assisted hydrothermal 4-methoxyiodobenzene 192 synthesis 366 5-methoxymethyl furfural (MMF) 616 microwave heating 15 4-methoxystene oligomerization 988 microwave irradiation 775 4-methoxy styrene 992 MIL-101 crystals 4-methoxy styrene oligomerization 992 – ADF-STEM image 349 methylation 1075, 1079 – Cr pore sizes 349 methylcyclohexane 17 – metal–organic framework 232 (methylcyclopentadienyl)trimethylplatinum millifluidic flow reactors 373

(MeCpPtMe3) 347 MIL-100, SEM micrographs of 314 methylene blue (MB) 229, 366, 881, 885 mineralization 880, 881

– conversion, as function of contact time mixed CeO2-Fe2O3 samples, schematic 883 illustration 426

– discoloration 885 mixed CuO/CuAl2O4 catalyst 372 methyl formate 954 mixed ionic and electronic conductor (MIEC) methyl fructoside 618 electrode 211, 952, 953 methyl-2-hydroxy-3-butenoate (MVG) – catalytic nanoparticles dispersed in 952 – formation, from tetroses 614 mixed metal electrocatalysts 367 2-methyl-1-indanone 182 – inkjet-based screening 367 methyl lactate (ML) 610, 613, 623 mixed (alloy) nanoparticle 341

methyl methacrylate (MMA) 25 Mn3O4 crystals 229 methyl-4-methoxy-2-hydroxybutanoate MNPs. see metallic nanoparticles (MNPs) (MMHB) 615 modeling techniques 928 methyl orange (MO) 881 modified carbonaceous materials 24 1-methyl-2-pyrrolidinone (NMPO) 160 MOF. see metal organic framework (MOF) α-methylstyrene 746 MOF-mediated synthesis (MOFMS) 226 Index 1127

Mo/HZSM-5 catalysts 471–475 Mössbauer spectroscopy 163 – carburization in methane, TPR profile 474 MSU (Michigan State University) 674 – chemistry 472 MTFB. see multitubular fixed bed (MTFB) – coke 475 multielectron transfers 892 – MDA mechanism over 474 multiple printheads 367 – physicochemical aspects 471 multiple scattering (MS) 1033, 1045 – shape selectivity 471 multisite complexation models 16 Mo/HZSM-5, simplified MDA multitubular fixed bed (MTFB) 507, 508 mechanism 475 – heat capacity 513 moisture tolerance 243 – internal structures 512 molar selectivity 594 – oxygen-distributed (membrane-type) molecular beam epitaxy (MBE) 93 reactors 514 molecular dynamics (MD) 1056 – propane/propylene retrofit 513 molecular exchange 759 multiwalled carbon nanotubes molecular oxygen 489 (MWCNTs) 38, 159, 343 molecular transformations 754 – SEM/TEM image 344 molybdenum 524, 738 MWCNT. see multiwalled carbon nanotube – bronze 521 (MWCNT) – carbides 473, 739 myristic acid, esterification 770 – center 231 – hydrochar composite catalysts 739 n + – nickel sulfides 231 Na cations 952 molybdenum oxide 737 Nafion 365, 826, 915 molybdenum sulfide 598 – membranes 366, 929, 967 molybdenum trioxide 472, 738 – resins 759 monoaromatic hydrocarbon (MAH) 686 nanoarchitecture 386 monodisperse iron oxide magnetic nanobeads 200 nanoparticles nanocage 395 – production of 154 nanocapsulate 395 monolithicdesign 913 nanocarbons 395 monolithic designs 921 – anchoring of metal complexes 45 monolithic solar hydrogen generators, – as catalysts 12, 47 nanostructured components in 921 –– applications of 43 monosaccharide isomerization/ –– supports 43 epimerization 602 – definition of 37 monosaccharides 606 – metal-free 386 Monte Carlo simulation 299, 300 – in photocatalysis 45 montmorillonite (Mt) 240 – supported metal catalysts 43

MoO3 particles preparation, embedded into nanocasting 60, 631 mesoporous hydrochar 738 – procedure 639 mordenite (MOR) 259 nanocatalyst (NC) 16, 145, 293, 385–387, – zeolite crystals 269, 995 484

MoS2 lamellae 388 – for energy production, in SOFCs 943 MoVTeNbO catalysts 518, 524 – process 484 – active M1 phase 519 – at research stage – active sites of M1 phase 521 –– quo vadis 489, 497 – doping, supporting, and dilution of M1 – solar fuels production, role in 385 phase 527 57

– dynamics of M1 phase under catalytic nanocones, in BiVO4-perovskite tandem conditions 523 cell 927 – synergetic effect with M2 Phase 526 nanocrystallites 79 MPVO redox reactions 623 – ZnO-supported platinum nanoparticles 230 MS. see multiple scattering (MS) nanodiamond (ND) 38 1128 Index

nanodispersed catalysts, electrochemical N-containing components 599

promotion of 950 N2 dissociation 210 nanofabrication techniques 395, 921 – rate 211 nanofilamentous carbon 633 N-doped carbon 636 nanofiltration 595 – gels 42 nanohorn 395 N-doped mesoporous carbon-supported Ni nanomaterials 402 nanoparticle catalyst (Ni/m-CN) 238 – catalytic applications of 132 N-doped porous carbon 243 – definition 119 NdT/OP photocatalytic activity 881 nanometer accuracy by stochastic chemical near-neutral pH electrolytes 916 reactions (NASCA) 991 near-neutral photoelectrochemical water – microscopy 992, 995 splitting 916 nano-oxide mesoporous catalysts Neosepta 915 – and catalytic applications 61–83 Nernst equation 893, 939 – synthesis strategies 59 NETmix reactor 375 nanoparticle (NPs) 5, 145, 209, 210, 225, 429, neutralization 589 496 Newtonian fluids 361 – definition 402 NHC. see n-heterocyclic carbene (NHC) – immobilization and stabilization of 119 n-heterocyclic carbene (NHC) 182

– magnetic properties of 15, 146 NH3 pyrolysis 233 – methods, for stabilization of 156 NH3-TPD measurements 621 – properties of 151 NH3-treated Sn-Beta 608 – protection by mesoporous silica shell 730 NHx removal rate 211 – ripening 5 nickel-based catalyst – size 983 – deactivation of 815 –– distribution 981 – stability of 815 nanophotocatalysts 873 nickel–borate complex 916 – characterization of 26, 876 nickel catalysts 815, 820 nanoporous carbon (NPC) 232, 233 nickel nanoparticles nanoporous materials 1056, 1057 – activation of methane on 402 nanoribbon 395 – development, of catalysts 402–404 nanorods 14 – fabrication of 403 nano scale objects 125 – face-centered cubic (fcc) structure 405 nanosized carbons 38 – location in micropores 403

nanosized GdCoO3 perovskite oxide 229 – nature of surface sites 405–407 nanosized zeolites – rate, of steam reforming of methane 402 – 3D model 278 – top-down and bottom-up approaches 403 – MFI zeolites 606 – turnover frequency 406 nanostructured carbons 232, 234 nickel phosphide 598 – advantages and limitations in catalytic nickel sintering 815 cellulose processing 647 Ni-/Co-based catalysts 238 – porous carbons 37, 38 NiFe LDH nanosheets 927

nanotechnology 57, 402 Ni-Fe2O3-CeO2, TEM micrograph 436 – nanostructured supports 343 Ni–Ga catalysts 814 – nanostructuring, advantage of 928 Ni/m-CN catalyst 238 – tools 225 Ni nanoparticles 640 nanowire array (NA) 238 Ni-NiO HER catalyst 928 natural gas 392, 469, 503 niobia–hydrochar composite preparation 740

– sources 386 NiOx or NiFeOx catalyst 902 natural photosynthesis 851 Ni particles 949 N-(2-bromoethyl)phthalimide 186 nitrates 942

n-C16 hydrocracking 456, 457, 462 nitric acid (CNT-N) 41, 42 – over FT catalysts 454 – oxidation 636 Index 1129 nitrides 598, 854, 855 nontransition metal oxides 443 nitroarenes 200, 239 N-TiO2 nanoparticles 875 nitroaromatics 724, 744 N-TiO2 photocatalyst 876, 881 – selective hydrogenation 31 N-TiO2 supported on OP (NdT/OP), nitrobenzaldehyde photocatalytic activity 881 – hydrogenation NTP. see nonthermal plasma (NTP) –– transition metal ions, effect of 32 N-(3-triethoxysilylpropyl)-4,5- – hydrogenation of 32 dihydroimidazole 186 – 4-nitrobenzaldehyde, hydrogenation 31, 32 NTSG catalyst 882 – selective hydrogenation 31 – photocatalyst, evaluation of MB nitrobenzene 239, 734 decolorization with 883

– adsorption on Au clusters on Al2O3 34 nuclear magnetic resonance 285 – hydrogenation 34, 240 nucleation 3–5, 14 nitrogen 421, 851 – 2D model 5 – adsorption energy 211 nucleation centers 238 – desorption isotherm 285 nucleation kinetics 4 – doped carbons 637 nucleation rate 4 – doped nanoporous carbon 235 numerical models 930, 931 – functionalization 42 NU-1000 structure 230 – plasma 43 nitrogen-doped graphenes (NG) 24 o nitrogen oxides 942 OCM. see oxygen carrier material (OCM) nitrophenol 725 O2 conditions 218 4-nitrophenol (4-NP) 181, 189, 196, 235, 238 octane number 232 – reduction of 181 ODH. see oxidative dehydrogenation (ODH) nitrophenols 238 offretite (OFF) 253 nitrostyrene hydrogenation ohmic junction 900 – role of support 31 ohmic losses 913, 915, 920, 930 3-nitrostyrene hydrogenation 31 Ohmic overpotential 909 Ni/YSZ cermet 941, 943 Ohm’s law 909, 920 N,N-dimethylformamide (DMF) 256 oil and gas reservoirs 807

N2/NH3 plasma 347 oil and petrochemical industry, performance noble metals 341 windows applied in 586 – catalysts 95 oil prices 386 nonaqueous systems 12 oils transesterification 758 nonedible oil feedstocks 794 olefines 288, 821, 822 non-Faradaic electrochemical modification of olefins 80, 288, 503, 505, 592, 812, 816 catalytic activity (NEMCA) 941 – hydrogenation of 199 nonfood-based feedstocks 758 – manufacturing methods nonfood crops 754 –– dehydrogenation 816 nonmetals 876 –– ethane cracking 816 nonnoble Cu/Cu2O NPs 239 –– fluid catalytic cracking 816 nonordered mesoporous chromia/alumina –– naphtha steam cracking 816 catalysts 232 – α-olefins 455 nonordered nanographene sheets 778 – oxidative carboxylation 821 nonoxidative methane conversion, equilibrium – readsorption pathway 453 conversion of oleic acid 719, 722 – temperature dependence 470 – capping agents 194 nonoxides 854 – esterification with methanol 760 nonradiative relaxation 989 – methylic esterification 778 nonrefined liquids 388 oleochemical feedstocks, biodiesel nonrenewable fuels 805 production 757 nonthermal plasma (NTP) 394 oleylamine 194 1130 Index

oligomerization 453, 737, 988, 992 orthoxylene oxidation 503 – pathways 458 oscillatory baffled reactor (OBR) 792 –– of styrene derivatives 993 Ostwald ripening (OR) mechanism 5, 12, 405, oligomers 985 458 oligosaccharides 617 Ostwald rule 5

O2/MeOH ratio 494 overall heat transfer coefficient 512 O2 migration 211 overcracking 450, 452 O-, N-, and S-containing functional groups overoxidation 726, 746 – schematic representation of 40 oxalate 972 o-nitroaniline 730 oxalic acid 50, 726 on-site Coulomb interactions 442 oxalyl dihydrazide (ODH) 97 Operando methodology 982 oxametallacycle intermediate 485

O2 plasma 347 oxidation 21–27, 225, 226, 236, 237, 421, 590, optical absorption bands 855 601, 928 optical microscopy 992 – ability 857 – reveal interparticle heterogeneity 987 – activity 214 – studies 28, 985 – of alcohols 243 optical properties 987 – catalysis 483 optical spectroscopy techniques 982 – energies 443 optical transmission images 988 – products 975 optimal catalyst is 209 – reactions 137, 242 optimal industrial catalyst 487 oxidative corrosion 927 ordered mesoporous carbon (OMC) 38, 39, oxidative coupling of methane (OCM) 470 275, 780, 789 oxidative dehydrogenation of ethane, – soft-templating routes 39 catalysts 80, 81

O2 reduction reaction (ORR) 367, 899 oxidative dehydrogenation of hydrocarbon – activity 233 (ODH) 47, 80, 493, 522, 524 – catalysts 237 oxidative dehydrogenation reaction 80 – performance 237 oxidative esterification 182 organic acids 543, 718 oxidative etching 14 organic chemicals 808 oxides 3, 15, 227, 596 organic chromophores 984 – catalyst surfaces 899 organic dyes 728, 875, 984 – decorates 410 – photocatalytic degradation of 26, 880 – materials 8 organic fuels 965 – matrix 16 organic functional groups 30 – metal interface 16, 17 organic-inorganic composite 630 – metal interfaces 15 organic-inorganic hybrid material 375 – semiconductor 217 organic linkers 230, 231 – semiconductor photocatalysts 15 organic material 745 – surfaces 16 organic matter, sulfonation of 789 oxidic window 597 organic monomer 279 oxozirconium clusters 230 organic-organic self-assembly strategy 631 oxychlorination 515 organic pollutants 227, 228 oxydehydrogenation 506 organic precursor, thermal carbonization oxygen of 630 – activation 496 organic printed electronics 364 – electrochemical sensors 940 organic solvent 595 – for gas-phase oxidation 41 organic surfactants 57 – oxygenated biomass pyrolysis model 668 organometallic complexes 589 – oxygenated bio-oil model 668 organometallic compounds – oxygenated chemicals 602 – thermal decomposition 154 – oxygen carrier material (OCM) 423 orthoslice 430 – oxygen distributor 515 Index 1131

– partial pressure 939 PAN. see polyacrylonitrile (PAN) – plasma treatment 637 paraffins 508 – reduction 209 – synthesis 451 oxygen evolution photocatalyst (OEP) 861 paramagnetic materials 146 oxygen evolution reaction (OER) 16, 236, 237, paramagnetism 146 861, 892, 908 parasitic gas-phase reaction 517 – catalysts 902, 927, 928 partial amorphization 285 – current 238 partial carbonization 789 – kinetics 903 partial oxidation 748 oxygen reduction reaction (ORR) 16, 51, 236 particle-based photocatalysis 907 oxygen speciation 484 particle migration and coalescence (PMC) oxygen storage materials, first-principles mechanism 405 modeling challenges 442 particle size 3, 8, 10, 14–16, 234, 237, 853, 875, oxygen vacancies 21, 219, 525 983, 988 oxynitrides 854–856, 860, 868 particle–support interfaces 3 – compounds 855 particle transfer methods 862 – photocatalysts 856 Pd/Au ratio 487 oxysulfide 868 Pd/H-MFI catalysts 456, 457 Pd/H-MFI zeolites 455 p – cyclohexane, diffusivity of 458 PA and EC components, nanostructuring PdO nanoparticles 954 of 922 Pd polypyrrole 235 packaged consumables 364 Pd supported, on mesoporous starch packed bed (PB) 508 – TEM images of 123 palladium (Pd) 724, 741 Pd/TNTA-Web – based anode electrocatalysts 972 – anode 971, 975 – heterogeneous catalyst 191 – electrode preparation process 970 –– recycling of 191 PEM electrochemical reformer 972 – metal nanoparticles PEM electrochemical reforming 966, 967 ––scanning transmission electron microscopy PEM electrolysis 929 images of 132 PEM electroreforming process 967 – metal nanoparticles (MNP) PEM methanol–water solution electrolysis 967 –– supported on silica, TEM micrographs PEM water electrolysis 967 of 130 pentamers 523

– Pd-Fe3O4 catalyst 183 1,2,2,6,6-pentamethylpiperidine (PMP) 258 – Pd-Fe3O4 magnetic nanocatalyst 185 pentanoic acid 740 – Pd-Fe3O4 nanocatalysts 182 pentoses 609 – Pd-iron oxide magnetic nanocatalysts 182 PEO-PPO-PEO block copolymers 632 palladium catalysts 813, 818 perimeter interface mechanism 30 – for hydrogenation reactions 1034 periodic mesoporous organosilica (PMO) 787 palladium chloride 192 periodic VASP code 1064 palladium nanoparticles (Pd NP) 14, 16, 183, perovskites 434, 436, 747, 830 197, 199, 346, 487, 724, 731, 744, 954, 968, peroxymonosulfate (PMS) 229, 243 970, 1034 persistent organic pollutants (POP) 882 – based catalyst 235 pervaporation methods 791 – for coprecipitation-based magnetic petrochemical industry 585 nanocatalysts preparation methods 181 petrochemical refinery 537, 542 – EDS elemental mapping of 190 petrochemicals 388, 627, 817 – encapsulation of 197, 198 petrochemistry 78 – immobilization of 186, 190, 193 petroleum palladium precursors 234 – based precursors 634 palmitic acid 720 – derived diesel 757 – esterification 759, 764, 766, 790 – derived fuel oil 657 1132 Index

PFA/MOF-5 composite 233 – pure photocatalysis 825 pH conditions 897 photocatalyst 825, 858, 862, 876, 877, 891, 899 pH-controlled facies of submicrometer – luminescence spectrum 877 particles 9 – material 862, 893 phenantroline 233 –– design 25, 854 phenethanol 242 – particles 853, 859 phenol 50, 229 – process 899 phenol degradation 229 – semiconductor materials 893 phenol formaldehyde resin 239 – sheet 862, 865 phenolic compounds –– preparation process for 863 – upgrading to fuels, chemicals and polymer- – surface 877, 881 building blocks 568–574 – systems 867 phenolic monomers photocatalytic activity 15, 83, 877 – lignocellulose processing, obtained in 558 – variations in 865 – upgrading routes of 569 photocatalytic decolorization 882 phenolic resin 632 photocatalytic degradation 26, 882 phenolic resol 632 photocatalytic efficiency 892, 904, 905

phenol oxidation 229 photocatalytic H2 production 227 phenol selective hydrogenation into photocatalytic oxide layers 343 cyclohexanone 742 photocatalytic performance 874, 885 2 phenoxy radicals 541 – in S2O8 (electron acceptor) solution 902 phenylacetaldehyde 745 photocatalytic properties 227 phenylacetic acid esterification 772 photocatalytic rate 897 phenylacetylene 192 photocatalytic reactions 227, 891, 905 – hydrogenation of 187 photocatalytic reactors (PR) 894 phenylboronic acid 730, 745 – for water and wastewater treatment 877 phenylcoumaran 541 photocatalytic solar fuel 227 2-phenylindole photocatalytic water splitting 81, 867 – tandem synthesis of 182, 183 photocatalytic water splitting, basic phenyl-PMO preparation 785 principles 852 phenyltriethoxysilane 476 photochemical reactor 103 phenyl vinylsulfonate 43 photocorrosion phenomena 874 pH gradient 916 photocrosslinking ceramic powders 378 phonon dispersions 444 photocurrent 367 phonon energy 444 – false color map 368 phosphate buffer 897 – imaging methodology 368 phosphate concentration 897 photodegradation 227, 229 phosphides 598 – reactions 229 phosphoric acid 747 photodeposited oxides 859 phosphorus species 233 photodeposition 860 phosphotungstic acid 775 photo(electro)catalysis 824 photoabsorber (PA) 859, 908 photoelectrocatalytic cell 827 – low-cost 923 photoelectrochemical routes 911 –– silicon as buried PV 923, 924 photoelectrochemical systems 867, 911 ––PEC configuration 923 photoelectrochemistry 907 photo- and electrocatalysis, variations in 994 photoelectrode 909, 910 photoanode 918 – performance 897 – absorber 826 photoelectrolysis 367 – semiconductor 827 – device 930 photobleaching 990, 992 photoelectron kinetic energy 1033 photocatalysis 11, 226, 228, 236, 341, 343, 394, photoelectron migration 15 823–827, 851, 881, 885, 892, 904, 905 photoinduced holes 229 – photoelectrocatalysis 826 photoinitiators 362 Index 1133 photoirradiation 858 – advances and challenges 105 photon energy 851, 853, 1031 – experimental set-up and procedure 13, 103 photon scattering 1032 – photocatalytic activity 104 photo-oxidative dissociation 854 polyacrylonitrile (PAN) 634 photopolymer resins 361 polyalcohols 965, 968, 972 photopolymers 362 – selective partial oxidation of 972 photoreactors, design of 879 polyaniline 183 photoreduction 82 polyaniline functionalized with photoresin 362, 375 methanosulfonic (MSA-Pani) 789 photosensitization 82 polyaromatic hydrocarbons 471 photosensitizers 395 polycationic magnetic hollow spheres 198 photostability 852 polycrystalline materials 119 photosynthetic organisms 907 polycyclic aromatic hydrocarbon (PAH) 663 photosystem configurations 910 polycyclic organic molecules 996 photovoltaic-coupled electrolysis 911 polydispersity 5 photovoltaics 336 polydivinylbenzene (PDVB) 789 photovoltaic water electrolysis 853 polyethylene glycol 183, 199 phthalic anhydride 508 polyethyleneimine 183 – synthesis 503 polymer-building blocks physical promoters 425 – production from alkylated physical vapor deposition (PVD) 338, 954 cyclohexanols 573 physisorption 337 polymer chains, branching of 1034 piezoelectric printer model 366 polymer electrolyte membrane fuel cells plasma-based derivatization 637 (PEMFC) 233, 365 plastic injection molding 359 polymer film 930 platform molecules, upgrading of 593 polymeric nanoreactors 197 platinic acid 727 polymerization 9, 60, 589, 756 platinum (Pt) – dispersion 197 – alloy 963 – microemulsion 197 – -based alloys 365 – miniemulsion 197 – catalysts 233 – suspension 197 – clusters 219 polymers 122, 336, 877 – -coated cobalt 161 polymer-stabilized gold nanoparticles 122 – deposition 218, 220 polymer surface layers 931 – loading 220 polymer thin films 931 – particles 216, 218, 220 poly(methyl methacrylate) 185 – precursor 230 poly(N-vinyl-2-pyrrolidone)-stabilized Au platinum nanoparticles 14, 210, 347, 899, 929, NPs 22 951, 953, 1034, 1039 polyolefins 1034 – immobilization of 200 polyols 14, 15 – size 230 polyorganophosphazenes 122 – supported on hydrochar–ion liquid polyoxometallate clusters 764 material 727 polyoxymethylenedimethylether – supported on hydrochar-Pt-octahedron 736 (POMM) 391 platinum sulfide 17 polypropylene 378, 504 plug flow 792 polypyrrole 183 poisoning 928 polysaccharides 716 polarization curves 238, 903, 970, 971 polysilsesquioxanes 782 polar molecules 860 polyurea nanocapsules 197, 198 polar silica surfaces, hydrophilic nature 781 polyvinylpyridine 122 pollutants 238, 873 poly(vinyl pyrrolidone) 731 – from gas streams, removal of 884 POMM. see polyoxymethylenedimethylether polluted water remediation (POMM) 1134 Index

POP. see porous organic polymer (POP) product recovery 599 poragens 759 product yield 592 pore formation, of MOF 229 promoters 209, 210 pore size 604, 615, 618 1,2-propandiol 965, 968, 972, 975 – distribution 285 propane 211 pore space 226 propane dehydrogenation 504 pore volumes 285 propanediol 725 porosity 232, 876, 1056 propane oxidation 524 porous carbon materials 629, 630 propene distribution 311 – synthesis and functionalization 628–642 propene epoxidation 491

porous carbons 629 – with O2, selected catalysts 490 – sulfur doping of 43 propene methylation 1066 porous material 120 propionic acid 518 – advantage of 120 propylene 504 – preparation of metal nanoparticles 120 propylene ammoxidation 515 – supported metal nanoparticles on 124 propylene carbonate synthesis 823 – use of 120 propylene epoxidation 16, 490, 492 porous organic polymer (POP) 196 – proposed pathways 492 postdeposition annealing 341 propylene glycol 593 postprinting functionalization 362 – etherification 998 postsynthesis 59, 60 propylene oxidation 511 – grafting 61 propylene oxide formation 491 potassium acetate 971 propylene to propylene oxide, direct oxidation potassium carbonate 623 of

potassium peroxymonosulfate 728 – by using O2 489 potassium promoters 210 propylsulfonic 77 potential intermediate products 973 protected Au clusters 24 potential losses 917 protective coating 346 potentiometric gas sensors 939 protic polar solvents 30 Pourbaix diagrams 927 protolignin 541 powder bed 3D printing methods 363 proton 915 powder binding 363 protonated methanol 1062 powder layer spreading mechanism 363 protonation 917 powder pyrolysis 146 proton-conducting SOFC (PC-SOFC) 940 powder X-ray diffraction 488 proton exchange membrane (PEM) 915, 963, power density 945 965 P123 pluronic surfactant 764 – electrochemical reforming 965 precious metals-coated MNPs 160 proton transport 915 precipitation 5, 10 PRs for depollution of gaseous streams 879 – method 737 PRs having flat plate geometry (FGPR) 877

pressure pulses 360 PrSO3-SBA-15 catalysts 759 primary cracking 462, 464, 465 p-Si photocathode 924 primary hydrocracking 463, 464 Pt ALD 347 printed alumina supports 366 Pt/Al-MCM-48 materials printheads 361 – TEM images of 124 printing catalysts 364–372 Pt atom 220 printing reactors 372–375 Pt-based cathodes 233 pristine hydrochar 717 Pt/C catalysts 965

pristine MWCNTs 42 Pt/CeO2 catalyst 1042 product concentration 589–591, 594 Pt/C inks 365 product degradation 590 Pt-CO system 899

product distribution 974 Pt-Fe3O4 peroxidase mimic catalyst 185 product price 587 Pt/HY catalyst 459 Index 1135

Pt-loaded aluminosilicate COK 342 r Pt-Meso-MFI 684 radiant power 879 p-toluene sulfonic acid 617 radiation energy 877 Pt–Pd bimetallic/Nafion nanocomposite radiative emission membrane 967, 968 – emission process for 1031 Pt–Pd core–shell synthesis 349 radical polymerization 197 Pt RDE electrode 903 Raman microspectroscopy 996 Pt rotating disk electrode 894 – reveal inter- and intraparticle PtRu/C, as anode catalyst 967 heterogeneity 997 Pt3Sn/C anode catalyst 972 Raman scattering microscopy 998 Pt7Sn2/C anode catalyst 972 102, 876, 983 Pt-supporting ZnO nanoparticles 230 Raman spectrum 191 Pt/TiO2 catalytic diode 213 Raney nickel 814 p-type semiconductor 214 rapeseeds 76, 964 Pt/YSZ catalytic layer 952 rate constants 235, 1056 Pt/zeolite catalyst reaction chemistry 475 – characterization 461 reaction rate 618 Pt/ZnO catalyst conventional 230 – vs. Au particle size 28 Pt/ZrO2 catalyst 816 reaction temperature 79 pulsed field gradient (PFG) technique reactionware 373 305 reactive distillation 791 pure siliceous mesoporous materials 120 reactive oxygen 425 push–pull organic fluorophores 984 reactor design 586 PV-PEC configuration 910 reactor fabrication Py-GC/MS system 669, 693 – 3D printing, use of 374 pyranose 608 reactor layout pyrex windows 879 – computational optimization 375 pyridine 609 reactor modeling 423 – adsorption 230 reactor productivity 587, 588, 590–594 pyridinic (N-6) 40 reactor size 587 pyridinic nitrogen 724 reactor technology 509 pyrolysed rice husk bio-oil 791 reactor vessels 360 pyrolysis 234, 236–238, 240, 243, 367, recrystallization 599 718, 758 redox chemistry – in argon of Co MOF 242 – of UiO-67-Cu 29, 1043 pyrolytic carbon 635 redox exsolution 948 pyrrole 728 redox potentials 853 pyrrolic (N-5) 40 redox power 527 pyrrolidine template 256 redox processes 509 pyruvaldehyde (PA) 610, 613 redox reactions 425, 426, 737 pyruvaldehyde dimethyl acetal (PADA) 609 redox stability 941 pyruvate 972 redox transmetalation 160 – selectivity on Au/C 972 reduced graphene oxide (rGO) 38 reducibility 442 q refineries 387, 389 quantitative electron tomography 345 reflectance data 876 quantum efficiency 860, 866–868 refractive index 984 – apparent 867 regenerated solids 516 quasi-elastic neutron scattering (QENS) regenerative agents 478 308 relative humidity (RH) 929, 931 Quasi in’situ 523, 525 renewable biomass-derived alcohols 964 quaternary oxynitrides 855 renewable energy 59, 385, 388–390, 537, 629, quinone-hydroquinone redox cycle 47 754, 812, 838, 851 1136 Index

– sources 385–387, 389, 851 s – storage 385, 390 Sabatier principle 209, 210 renewable feed cost 587 saponification 758 renewable hydrogen 76 S-Au(I)-S bond 23, 26 reoxidation 423, 439, 507 SBA-15 repeated templating method 60 – sol–gel syntheses 782 repolymerization 538 SBA-15 (Santa Barbara Amorphous) 674 resazurin 994 – mesoporous aluminosilicates 675 resinol 541 – silica framework 675 resol/triblock copolymer ratio 632 – synthesis 789 resonance inelastic X-ray scattering SBA-12 material (RIXS) 1032, 1038 – Transmision electron microscopy 127 resonant photoelectron spectroscopy S-Beta samples crystallized (RPES) 216 – 29Si NMR spectra of 269 resonant-XES (r-XES) 1032 S-beta, UV-Raman spectra 269 resorcinol 39 scaling factor 919 resorption 286 scanning electrochemical microscopy 367 resorufin 994 scanning electron microscopy (SEM) 284, 338, retro-aldol fragmentation of sugars 612 343 retro-aldol products 616 scanning transmission electron microscopy retro-aldol reactions 602, 612, 613, 616, 623 (STEM) 951, 982 retro-Michael addition 602, 616 scanning tunneling microscopy (STM) 216, reverse emulsion 186 488 reverse water gas shift (RWGS) 79, 832 Scherrer equation 981 – reaction 812, 814, 832 Schottky diode structure 220 RhCrOy cocatalyst 857, 859 Schottky-type junction 901 Rh film 211 β-scission 455 Rh-maghemite catalyst 182 screen printing 365 – for chloroarene dechlorination 182 secondary cracking 454, 455, 458, 460–462, Rh nanoparticles (Rh NP) 188, 211 464, 465 Rhodamine B (RhB) 882 secondary isomerization 462, 464 rhodium catalyst 820 secondary phosphine oxide (SPO) 31 + Rh Sb-codoped SrTiO3 854 secondary porosity 289 rice husk char 781 second generation bio-based fuels 754 Rietveld refinement 284 second-generation biomass Rietveld technique 519 – carbon catalysts development 780 RIXS. see resonance inelastic X-ray scattering seed-directed synthesis (SDS) 254, 268 (RIXS) selective catalytic reduction (SCR) 64–67, 324, robocasting 362 942 rotating disk electrode (RDE) 894 selective chemisorbed oxygen species RUB-37 zeolite 259 – formation 494 Ru/carbon nanotubes 452 selective CˆO hydrogenation 29 Ru/CeO2 catalyst 953 selective electrochemical reduction (SER) 942 Ru-loaded SrTiO3 . La,Rh/Au/BiVO4 selective hydrogenation 28 photocatalyst sheet – catalysts 742 – time course of Z-scheme water splitting 866 – of cinnamaldehyde by Au25 mechanism 30 RuO2 nanoparticles 639 selective hydroisomerization 450 ruthenium (Ru) selective NOx electrochemical reduction, in – catalysts 214 SOCs 944 – particles 241 selective permeability 859 ruthenium (Ru) nanoparticles 14, 200, 452, selective photoresin solidification 361 953 selective sintering/melting processes 364 r-XES. see resonant-XES (r-XES) selectivity 210, 522, 586, 587, 590, 594, 733 Index 1137

– impact of 590 – continuous flow synthesis 13 Selemion 915 – dispersion on hydrochar hollow spheres 736 self-assembly technique simulated bio-oil medium 760 – layer-by-layer (LBL) 199 simulated IR spectrum 1087 self-cleaning effect 885 single-component profiles 311 self-cleaning surfaces, under visible light 885 single crystal X-ray diffraction (SXRD) 1063 self-diffusion 303 single particle catalytic activity testing 988 – measurements 308 single scattering (SS) 1033, 1045 self-interaction errors 442 single-step coating of Ce1xMxO2δ 13, 97 self-limiting surface chemistry 338 single-step preparation method 92 self-nucleophilic attack 822 single-walled carbon nanotubes (SWCNT) 38, self-oxidation 858, 859 159, 396 SEM. see scanning electron microscopy (SEM) sintering 339, 341, 373, 404, 433, 493, 599, 928 semiconducting materials (SC) 873 – mechanisms of 405 semiconducting oxides sintering process 945

– photoactivity of 45 SiO2/Al2O3 ratio semiconducting TiO2 support 216 – SEM images 261 semiconducting ZnO 214 SiO2/Al2O3 ratios 258, 260 semiconductor–catalyst interface 892 SiO2-supported metal NPs 496 semiconductor–liquid junction (SLJ) 909, 910 size-exclusion chromatography 595 semiconductor manufacturing 219 S leaching 761 semiconductor–metal–electrolyte slurry coating 97 interface 899 small-angle neutron scattering 163 semiconductor photocatalyst 859 smart grid 390 semiconductors 215, 216, 228, 341, 826, SMNPs synthesis 852–854, 873, 874 – physicochemical routes 131 – sensitization 26, 874 –– flame spray pyrolysis 131 semicrystalline mesoporous metal oxides 60 –– 131 sensing electrode 939 – routes 126 sensor technology 336, 939 –– chemical routes 128 sequestration process 421 ––coprecipitation 129 sequestration technology 807 ––coprecipitation method 129 – drawbacks 807 ––deposition–precipitation 130 shale gas 386, 388, 391 ––impregnation 129 shape selectivity 471, 985 ––microemulsions 131 Si/Al ratio (SAR) 266 –– physical routes 126 silanol groups 58, 607, 608 ––microwave irradiation 127 silica CHA zeolite (S-CHA) 266 ––plasma reduction method 128 silica coated MNP 192 ––pulsed laser ablation (PLA) 14, 128 – modification of 189 –– 126 silica FER zeolite 259 Sn-Beta 607, 615, 621, 623 silica gel Sn-Beta-NH3 609 – phenylethylsulfonic acid-functionalized 760 Sn-Beta zeolites 612, 613 silica mesoporous materials 404 SNG. see synthetic natural gas (SNG) silica nanoparticles 190 Sn-MCM-41 606 silica shell 157, 158 119Sn-NMR 608 silica-supported silver catalyst 988 SnO2 silica to alumina ratios (SAR) 666 – ALD growth of 338 silica walls 59 – growth saturation 337 silicoaluminophosphate (SAPO) 993 Sn-zeolite 605, 606, 608 silver catalyst 484 sodium aluminates 277 Silver-coated MNPs 160 sodium borohydride 726, 744 silver nanoparticles 988 sodium formate 234 1138 Index

sodium hydroxide 723 – oxide catalysts 95 sodium silicates 277 – preparation of nanocrystalline oxide SOFC. see solid oxide fuel cell (SOFC) materials 93 soft templates 60 – rapid heating, of aqueous redox mixture 93 softwood lignin 541 – synthesis of oxide materials 93

SO3H functionalization process 642 Solvay process 808 solar cells 396 solvent washing 595 solar cycle technology 827 solvothermal reactions solar dish system 828 – high-throughput optimization 373 solar energy 228, 385, 394, 396, 827, 851 sonication 361, 862 solar fuels 47, 227, 388–390, 395, 827 Sonogashira coupling 182, 192 – production 385 sorbents 275 solar hydrogen community 918 Soxhlet extractor 636

solar hydrogen generators 27, 908, 909, 913, SO4/ZrO2 surface coatings 759 915, 921, 926, 928 spanning ceramics 360 – design aspects 914 spatiotemporal heterogeneities 983 – integrated and nonintegrated 911 specific surface area (SSA) 876 – integrated vs. nonintegrated 911 spectroscopic reaction monitoring 376 – major bottlenecks 914 spectroscopic techniques 982, 984 – operated in alkaline conditions 909 spin coating 365 – scaling of 27, 918 spinel ferrites 154 – wired vs. wireless 911 spiramycin (SP) 884 – working principle 908 spray pyrolysis methods 404 solar hydrogen production 868 sputtering 220, 451 solar radiation 884, 885 spyramicin mineralization efficiency 884 solar refineries 388 Sr, EDX mapping images 864

solar simulated photocatalysis 26, 884 SrTiO3 . La,Rh and BiVO4 photocatalytic solar spectrum 227 systems solar syngas 829 – water splitting activities, 864

solar-to-hydrogen (STH) SrTiO3 . La,Rh/Au/BiVO4 photocatalyst sheet, – efficiency 913 SEM-EDX mapping images 863 – energy 865 S-SAPO-34 crystallization 267 sol–gel, deposition 92 stable CNF composite-electrodes 951 sol–gel method 10, 39, 42, 97, 129, 158, 192, stainless steel monoliths 371 366, 404, 747 standard Gibbs free energies 445 solid adsorbents 391 standard potentials (RHE) 967 solid biomass 595 stannosilicates 605, 606, 608, 611, 612, 615 solid catalysts 91, 642 static approach –transition state theory solid electrolyte (SE) 908 (TST) 30, 1080 solid–liquid–gas systems 1030 Stöber method 158, 198 solid oxide cell (SOC) 939, 940 steady state transient kinetic analysis solid oxide electrolyte 928 (SSITKA) 1040 solid oxide fuel cell (SOFC) 441 steam electrolysis 928 solid (hydr)oxides 6 steam reforming of methane (SRM) 401 solid photocatalysts 994 – endothermic reforming reaction 401 solid–solid transformation 425 – exothermic water–gas shift reaction 401 solid-state electrochemical cells 939 stereolithography 361, 362, 373 solid-state electrolyte 928 – advantages 362 solid-state polymer membrane 965 STH efficiency 865–867, 913, 922, 929 solid surface tension 3 stimulated Raman scattering microscopy

solution combustion synthesis (SCS) 92, 97 mapping of CD3CN 998 – adiabatic flame temperature 93 stoichiometric coefficient 512 – merits of 93 stoichiometric oxidizing agents 22 Index 1139 stoichiometry 153, 715 sulfonic acids 42, 77, 638 storage devices 394 – grafting 789 strong metal support interaction (SMSI) 214 sulfonic groups 719, 720 structural diversity 1056 sulfur-containing organics 231 structure–catalytic property relation 92 sulfur-containing triazoles 181 structured catalyst fabrication sulfuric acid 719 – 3D printing, use of 370 sulfur leaching 771 structured catalysts 369 sulfur resistance 941 structured monoliths 371 sulfur-resistant nickel catalysts 411 styrene 31 sunflower oil transesterification 788 – carbocation 985 supercapacitors 394, 629 – carbonate supercritical drying 39 –– one-pot synthesis of 822 supercycle approach 341 – chemoselective epoxidation 746 superior porous zeolites, catalytic – hydrogenation 31 performance 280 – oligomerization 995 superparamagnetic (SPM)

– oxidation 26 – iron oxide particles (Fe3O4) 153 – oxide formation 26 – magnetic modification of 172 subnanometer metal nanoparticles 222 – materials 147 subreactive temperatures 286 – oxides 123 substrate morphology – properties 730 – tuning 344 – radius 148 subsurface oxygen 486 – theoretical magnetic field curve for 148 subtrate–nanoparticles interfaces 4 superparamagnetism 148 succinic acids 627 superresolution fluorescence microscopy 982 sugar 590, 592, 598, 599 superresolution imaging 992, 994 – conversion 593 supersaturation 3–5, 10, 16, 875 – derivatives 595 supported Au catalysts 31 – isomerization 605, 606 supported bimetallic noble metal catalysts – to lactic acid derivatives 609 – by ALD 349 – monomers 717 supported iron oxide nanoparticles 138 – valorization 593 supported metal nanoparticles 124 sugarcane 964 – characterization 125 sulfated zirconia (SZ) 767, 770 – properties of 14, 125 sulfated ZrO2/TiO2 nanocomposites 769 supported monometallic noble metal catalysts sulfating agent 769 – by ALD 347 sulfided CoMo catalysts 658 supported Pd nanoparticles 346 sulfided NiMo catalysts 658 support materials 344 sulfonated carbons synthesis – catalytic activity and selectivity, role in 24 – via incomplete carbonization 778 surface acidity 521, 527 sulfonated cellulose 720 surface area-normalized esterification sulfonated glucose-derived carbon-based rates 768 catalyst surface chemical potential 4 – application of 778 surface chemistry 225 sulfonated graphene 43 surface conductivity 218 sulfonated hydrochar 720 surface modifiers 484 – preparation from glucose 719 surface oxidation 15 sulfonated single-walled carbon surface plasmon resonance (SPR) 984 nanotubes 789 surface properties 862 sulfonation 718, 723, 733 surface tension 3, 4 – of hydrochar 719 surface-to-volume ratio 149, 239 sulfonation agents 638 surfactant-inorganic interface 60 sulfonation methods 43 surfactants 14, 631 1140 Index

– supramolecular self-assembly 57 tetrabutylammonium hydroxide – template extraction 764 (TBAOH) 258 sustainable energy 385, 386 tetracoordinated tin(IV) 602 – catalysis, role in 389 tetraethoxysilane 477 – production 385 tetraethyl orthosilicate (TEOS) 744 sustainable feedstock 755 tetrahexylammonium bromide (THAB) 822

sustainable industrial development 78 tetrakis(dimethylamino)tin (TDMASn)/H2O sustainable land management practices 754 process 337 + sustainable resources 754 tetramethylammonium (TMA ) 252 Suzuki coupling reactions 185, 200 tetramethylammonium bromide (TMAB) 822 Suzuki cross-coupling reaction 16, 235, 744 3,3´,5,5´-tetramethylbenzidine (TMB) 184 Suzuki–Miyaura coupling 12, 235, 725, 730 tetramethylorthosilicate 230 – of 4-iodoanisole and phenylboronic tetrapropyl ammonium (TPA) 279, 989 acid 725 tetrapropylammonium cations 277 Suzuki–Miyaura cross-coupling reaction 729 tetrapropylammonium hydroxide SWCNT. see single-wall carbon nanotube (TPAOH) 682 (SWCNT) tetratopic pyrene carboxylate linkers 230 switchgrass 754 tetroses 612, 614 syngas 449, 455, 464, 812, 815, 828, 834 textile industry effluents 880 – synthesis of 386, 392, 522, 829 TFB. see turbulent fluidized bed (TFB) synthesis gas 469 TFEL. see thin film electroluminescent (TFEL) synthesized pure silica 57 THAB. see tetrahexylammonium bromide synthetic methods (THAB) – summary comparison of 155 theoretical modeling 1055 synthetic natural gas (SNG) 78 theoretical selectivity 587 syringe-type nozzle 362 thermal activation 236, 337 S-ZSM-5 zeolite thermal and solar cycles 827 – crystallization of 270 thermal carbonization 630 thermal conductivity 512 t thermal decomposition 153, 229 Tafel plots 904 thermal degradation 424

Ta3N5 photocatalyst 902 thermal energy 386, 388 tapered element oscillating microbalance thermal expansion 437 (TEOM) method 304 thermal inkjetting 365 technoeconomic analysis 867, 919, 921 thermal stability 57, 60, 200, 479, 942, 945 tellurium 520 thermal treatment 621, 728 temperature-programmed desorption thermodynamic advantage 929 (TPD) 106, 286, 485, 609 thermodynamical system 4 temperature-programmed reaction thermodynamic carrier conversion 424 spectroscopy 106 thermogravimetric analysis (TGA) 164, 947 temperature-programmed reduction thermogravimetric analyzer, coupled with (TPR) 106, 485 Fourier transform infrared spectroscopy temperature programmed techniques 106 (TGA-FTIR) 677 temperature window 337 thermolysis 231, 242 template-directed synthesis 629, 630 thermoplastic polymer 363 Te nanowires (Te-NW) 233 Thiele modulus 296 Te-NW MOF-templated mesoporous thin catalyst layers 364 carbon 233 thin film terephthalic acid 601 – deposition techniques 336 terpyridine ligands 191 – devices 364 tert-butyl hydroperoxide (TBHP) 24, 26, 822 – insulators 341 tert-butyl phenylboronic acid 745 – technologies 926 tetrabutylammonium bromide (TBAB) 822 thin film electroluminescent (TFEL) 335 Index 1141 thiol 17 titanyl nitrate 97 thiolate ligands 23 TMAB. see tetramethylammonium bromide thiol-ene chemistry 623 (TMAB) thiophene 739 TMB. see 3,3’,5,5’-tetramethylbenzidine – hydrodesulfurization of 324 (TMB) thiophene-poisoned Au/ZnO 30 Tollens’ test 735 Thomas–Fermi screening length 215 toluene 471, 986 three-dimensional dealuminated – benzylation of 134 mordenite 317 – hydrogenation of 342 three-dimensional printing (3D printing) 359 torrefaction 716 three-way catalyst (TWC) 97 torrefied biomass 716 Ti-containing mesoporous materials total organic carbon (TOC) 881 – epoxidation of cyclohexene 137 trade-off 590 Ti-MCM-41 catalyst 991 transesterification 77, 991 time-on-stream evolution of CO – of TG 136 conversion 241 transesterification processes 136 time-resolved in’situ and operando transient effect of current application for C2H4 spectroscopy oxidation 954 – on ceria-based oxidation catalyst 1039 transition metal 16, 854 time-resolved photoluminescence (TRPL) 877 – alloys 927 tin-containing silicates 611 – catalysts 210 tin oxide 340 – cations 854 titania (TiO2) 82, 161 – CO2 oxidation screening in CLDR 424 – ALD process 343 – ion 984 – carrier concentration 219 – oxides 442, 443 – catalysts 879 – surface 210 – catalytic reaction of 104 transition state (TS) 1058 – coated zeotile-4 material 338 transition-state regions, for complex chemical – coating, photocatalytic properties of 885 transformations 1072 – deposition 860 transmetallation 819 – gel 10 transmission electron microscopy (TEM) 125, – ink-bottle-shaped pores 346 284, 343, 902 – nanoparticles 10, 83, 228 – studies 99 – nanorods transparent conductive oxide (TCO) –– photoanodes 994 912

–– ZrO2-modified 769 transport assessment 300 – nanotube arrays 968 transportation fuels 75 – nanotube electrodes 968 transport resistances 914 – nanotubes arrays 11, 12 triacetylglycerol 77 – photoactivity of 105 tributyrin transesterification 765 – photocatalysts 15 trichloroethane (TCE) 491 – precursors 366 trickle bed conditions 347 – support 214 triethylbenzene 759 – supported vanadia 373 triglycerides (TAG) 757 – thin films 219 – transesterification 792 – ZnO-based catalysts 873 – transesterification of 14, 136

– ZrO2 photocatalyst 82 trihydroxy-3-hexenoic acid methyl ester titanium dioxide thin film 929 (THM) 615 titanium interstitials 219 – from glucose via 3-DG 615 titanium isopropoxide (TTIP) 97, 137, 228, 875 – from sugars via 3-DG 617 titanosilicate ETS-10 crystals 994 triisopropylbenzene 759 titanosilicates 603 trimethylbenzene 759 titanyl hydroxide [TiO(OH)2]97 triolein 76 1142 Index

trioses 609, 612 v triple-phase boundary (TPB) 941 vacancy diffusion 425 triton X-100 875 vacuum distillation 388 tuneable solid acid catalysts 763 vacuum gas oil (VGO) 288 tungsten 411 – cracking 659 tungsten carbide 645 valence band (VB) 15, 861, 873 tungsten carbide electrodes 902 valence band maximum (VBM) 854 tungsten loadings 768 – levels 854 tungstophosphoric acid (TPA) 766 valence electrons 1037 tunnel shape selectivity 315 valeric biofuels 590, 591 turbulent fluidized bed (TFB) 506, 508 valorization 823, 830, 1057 turn over frequency (TOF) 22, 49, 187, 211, valuable chemicals, cogeneration of 972 218, 241, 605, 759 vanadium 520 turnover number (TON) 611 – hydrochar oxidation 524, 741, 747 two-zone fluidized bed reactor 478 vanadium phosphorus oxide 504 vanadium pyrophosphate catalyst 514 u van der Waals interactions 1069 UiO-66 vapor-phase alkylation 134 – conventional unit cell of 1064 vapor-phase device 930 Ullmann-type coupling reactions 372 vapor-phase electrolysis 928 ultradispersed diamonds 38 vapor phase operation 929 ultrastable faujasite 275 vapor-phase operation 928 ultrastable Y (USY) 609 – of PEM electrolyzer 929 ultraviolet (UV) – solar hydrogen generators 928 – curable liquid layer 362 vegetable oils 595 – irradiation 366 vibrating sample magnetometry (VSM) 163 – light irradiation 899 vibrational spectroscopy 1030 – light source 361 vinyl acetate (VA) 483, 487 – Raman spectroscopy 260, 265 – synthesis 488 – vis absorbance measurements 984 vinylbenzene chloride 196 – vis diffuse reflectance 984 VI polarization curves 946 –– LaMgxTa1xO1+3xN23x 857 viscosity 897 –– spectroscopy (UV-vis DRS) 876 – modifiers 363, 366 – visible microspectroscopy 983, 985, 986, visible light active photocatalysts 878 989 visible light irradiation 884 –– absorption 983 visible light responsive nanophotocatalysts, undoped CeO2, surface reduction 429 method of preparation 875 undoped TiO2 supports 219 – hydrothermal (HT) method 875 undoped titania-functionalized tiles – precipitation (PM) method 876 (tile K) 885 – sol–gel (SGM) method 875 α,β-unsaturated aldehydes 28 visible light-sensitive photocatalysts, for water – electronic effect of Au 30 splitting 855 – role of support 29 volatile organic compound (VOC) 884 – selective hydrogenation of 28 volatile solar cycles 830 – size dependence 28 volcano-shaped activity curve 209 unsaturated carbon 39 voltage loss 912 uphill reactions, catalytic reaction path voltammograms 895, 898, 904 852 – cyclic 901 urban wastewater treatments plant (UWWTP) 884 w urea 42, 942, 962 Wacker process 495 – synthesis 809 washcoating 97 uronic acid 541 – catalyst 325 Index 1143

– growth of 98 X-ray absorption 473, 1031 – preparation of 98 X-ray absorption fine structure (XAFS) 22 waste biomass valorization 753 – studies 101 waste cooking oil 758 X-ray absorption near edge spectroscopy waste management 586 (XANES) 1034 wastewaters 238 – for Pd cluster 1037

– removal of pollutants from 880 – Pd L3 edge 1036 water/alcohol ratio 10 X-ray absorption spectroscopy (XAS) 525, – removal of pollutants from 880 1029, 1030 water bodies 880 – spectra 1031 water consumption 930 X-ray adsorption 518 water dissociation 214 X-ray diffraction (XRD) 58, 125, 284, 981 water electrolysis 961, 963 – 2D model 438 – light-induced 825 – studies 99 water electrolyzer cell architectures 962 X-ray emission 1031, 1038 water gas shift reaction 211 – detection of valence structure by 1037 water managing, in devices 931 – nonresonant 1032 water photoelectrolysis 395, 851 – resonant 1032 water scarcity 929 X-ray emission spectroscopy (XES) 1029, water splitting 825–829, 851, 853, 854 1030, 1041 – overall, parameters for 893 – resonant 1041 – reaction 396 X-ray fluorescence 1041 – on semiconductor photocatalyst, theory X-ray photoelectron spectroscopy (XPS) 22, on 852 40, 100, 125, 164, 522, 524, 525 – on surface-coated photocatalyst – measurements, in’situ synchrotron 346 –– reaction mechanism 860 X-ray photon 1032 – under visible light 854 X-ray reflectivity measurement 346 water tolerance 766 X-ray spectroscopy 1029, 1040 water-tolerant HPAs 765 Xylan thermal pyrolysis 669 water-tolerant solid acids 781 xylose 606, 613, 621

WC/SrTiO3 photocatalyst 902, 903 xylulose 619, 621 wet air oxidation (WAO) 50 wet hydrocracking 463 y wet impregnation 16, 187 yolk–shell nanocomposites 194 wet oxidation 629, 636 yolk–shell nanostructures 198 wet peroxide oxidation (WPO) 50 yolk–shell structure 194, 198, 201 wide-field fluorescence microscopy yttria-stabilized zirconia (YSZ) 211 (WFM) 990 – porous electrode 946 Wilkinson’s catalyst 818 wired devices 919 z wired solar hydrogen generators 912 zeolites 24, 214, 236, 275, 312, 313, 339, 388, wired/wireless solar hydrogen generators 913 392, 471, 475, 594, 606–609, 616, 617, 619, wireless designs 921 620, 942, 985, 988, 992, 1043, 1056 wood-derived crude bio-oil 658 – Beta seeds 254, 673, 677 – catalysts 251, 287, 317, 453, 462, 592 x ––characterization, analytical techniques 283 XANES. see X-ray absorption near edge –– dealkylation 289 spectroscopy (XANES) –– hydrothermal synthesis 251 XANES, for palladium hydride 1037 –– manufacturing 290 XANES spectra 1036, 1037, 1046, 1047 –– methylation 1076 XAS. see X-ray absorption spectroscopy (XAS) – characterization 282–286 xerogels 10, 39 –– adsorption 285 XES. see X-ray emission spectroscopy (XES) –– chemisorption 286 1144 Index

–– diffusion 286 zeta potential 16 –– spectroscopy 284 ZIF-8 233 – classification of 312 – derived carbon 233 – crystals 991 ZIF-67 239 – dry-gel conversion and ionothermal – mediated synthesis 243 synthesis 265 – nano 237 – ECR-1 synthesized ZIF-8 nanofibers, nanowire-directed –– SEM image 253 templating synthesis of 234 – frameworks, structure 472 zinc halogens – framework types 773 – transmetallation agents, used as 819 – industrial appeal 279–282 zinc-organic compounds 819 –– advances 282 zinc salt 876 –– HSE 17, 280 zirconia 340 –– ingredients 281 zirconium-containing periodic mesoporous –– unit operations 281 organosilicas (Zr-PMOs) 782 – lewis acidity 693 ZJM-6, crystallization time of 257 – MFI layer 451 ZJM-2 zeolite 259

– organotemplate-free synthesis 252 Zn(CH3COO)22H2O 876 – performance 286–289 Zn(NO3)2 876 – seeds 258 ZnO 876 –– synthesis of 259 – photocatalytic activity of 47

– solvent-free synthesis of 265 ZnSO4 876 –– aluminophosphate molecular sieves 266 (Zn1+xGe)(N2Ox) 855 –– aluminosilicate zeolites 265 – utilize visible light 855 – supported metal carbides 471 ZPE. see zero point energies (ZPE)

– sustainable synthesis 17, 268 ZrO2-supported H3PW12O40 catalyst – types 276–279 594 –– mesoporous crystals 279 Zr propoxide 875 –– MOF 242 Z-schemes 396, 861 –– nanosized zeolites 278 Z-scheme water splitting 861 –– wide-pore zeolites 278 – based on two-step excitation 861 – ZSM-11 (MEL) 258, 259 ZSM-5 catalyst 260, 270, 393, 661, 663, 665, zeolite topology 693, 985, 986, 989, 991, 997 – a 1 T cluster 1059 – Ni catalysts 695 zeotype materials 620 ZSM-23, crystallization time of 257 zero gap 961 ZSM-11 zeolite 260 zero point energies (ZPE) 444 ZSM-22 zeolite 260 zero-valent gold nanoparticles (Au NPs) 21 ZSM-34 zeolite 253, 260