The Discovery of Asymptotic Freedom and the Emergence of QCD

Total Page:16

File Type:pdf, Size:1020Kb

The Discovery of Asymptotic Freedom and the Emergence of QCD PERSPECTIVE The discovery of asymptotic freedom and the emergence of QCD David J. Gross* Kavli Institute For Theoretical Physics, University of California, Santa Barbara, CA 93106-0430 he progress of science is much was divided into the study of the weak that a powerful dogma emerged—that more muddled than is depicted and the strong interactions, the two field theory was fundamentally wrong, in most history books. This is mysterious forces that operate within especially in its application to the strong especially true of theoretical the nucleus. In the case of the weak in- interactions. Tphysics, partly because history is written teractions, there was a rather successful The renormalization procedure, devel- by the victorious. Consequently, histori- phenomenological theory, but not much oped by R. Feynman, J. Schwinger, ans of science often ignore the many new data. The strong interactions were S. Tomanaga, and F. Dyson, which had alternate paths that people wandered where the experimental and theoretical eliminated the ubiquitous infinities that down, the many false clues they fol- action was, particularly at Berkeley. occurred in calculations by expressing lowed, the many misconceptions they They were regarded as especially unfath- physical observables in terms of physical had. These alternate points of view are omable. In hindsight, this was not parameters, was spectacularly successful in less clearly developed than the final the- surprising since nature was hiding her Quantum Electrodynamics (QED). How- ories, harder to understand and easier secrets. The basic constituents of had- ever, the physical meaning of renormaliza- to forget, especially as these are viewed rons (strongly interacting particles) were tion was not truly understood. The feeling years later, when it all really does make invisible. We now know that these are of most was that renormalization was a sense. Thus, reading history one rarely quarks, but no one had ever seen a trick. This was especially the case for the gets the feeling of the true nature of quark, no matter how hard protons were pioneering inventors of quantum field the- scientific development, in which the ele- smashed into protons. Furthermore, the ory. They were prepared at the first ap- ment of farce is as great as the element ‘‘color’’ charges we now know are the pearance of divergences to renounce their of triumph. source of the Chromodynamic fields, belief in quantum field theory and to The emergence of QCD is a wonder- the analogs of the electric charge, were brace for the next revolution. However, it ful example of the evolution from farce equally invisible. The prevalent feeling was also the feeling of the younger leaders to triumph. During a very short period, was that it would take a very long time of the field, who had laid the foundations a transition occurred from experimental to understand the nuclear force and that of perturbative quantum field theory and discovery and theoretical confusion to it would require revolutionary concepts. renormalization in the late 1940s. The theoretical triumph and experimental Freeman Dyson had asserted that ‘‘the prevalent feeling was that renormalization confirmation. In this Nobel lecture, I correct theory will not be found in the simply swept the infinities under the rug, shall describe the turn of events that led next hundred years.’’ For a young gradu- but that they were still there and rendered to the discovery of asymptotic freedom, ate student such as myself, this was the notion of local fields meaningless. To which in turn led to the formulation of clearly the biggest challenge. quote Feynman, speaking at the 1961 QCD, the final element of the remark- Solvay conference (1), ‘‘I still hold to this ably comprehensive theory of elemen- Quantum Field Theory belief and do not subscribe to the philoso- tary particle physics—the Standard Quantum field theory was originally phy of renormalization.’’ Model. I shall then briefly describe the developed for the treatment of Electro- Field theory was almost totally pertur- experimental tests of the theory and the dynamics, immediately after the com- bative at that time; all nonperturbative implications of asymptotic freedom. pletion of quantum mechanics and the techniques that had been tried in the discovery of the Dirac equation. It 1950s had failed. The path integral, de- Particle Physics in the 1960s seemed to be the natural tool for de- veloped by Feynman in the late 1940s, The early 1960s, when I started my scribing the dynamics of elementary par- which later proved so valuable for a graduate studies at UC Berkeley, were a ticles. The application of quantum field nonperturbative formulation of quantum period of experimental supremacy and theory to the nuclear forces had impor- field theory as well as a tool for semi- theoretical impotence. The construction tant early success. Fermi formulated a classical expansions and numerical ap- and utilization of major accelerators powerful and accurate phenomenologi- proximations, was almost completely were proceeding at full steam. Experi- cal theory of beta decay, which (al- forgotten. In a sense, the Feynman rules mental discoveries and surprises ap- though deficient at high energy) was to were too successful. They were an im- peared every few months. There was serve as a framework for exploring the hardly any theory to speak of. The em- weak interactions for three decades. *E-mail: [email protected]. phasis was on phenomenology, and Yukawa proposed a field theory to de- Adapted from Les Prix Nobel, 2004. © 2004 by the Nobel there were only small islands of theoret- scribe the nuclear force and predicted Foundation ical advances here and there. Field the- the existence of heavy mesons, which Editor’s Note: This article is a version of David Gross’ Nobel ory was in disgrace; S-Matrix theory was were soon discovered. On the other Lecture ‘‘The Discovery of Asymptotic Freedom and the in full bloom. Symmetries were all of hand, quantum field theory was con- Emergence of QCD.’’ The 2004 Nobel Price in Physics was the rage. Of the four forces observed in fronted from the beginning with severe awarded to Drs. Gross, Frank Wilczek, and H. David Politzer for their discovery of asymptotic freedom in the theory of nature, only gravity and electromagne- difficulties. These included the infinities the strong interaction. The Nobel Foundation graciously tism were well understood. The other that appeared as soon as one went be- has granted us permission to reprint this article. The Nobel two forces, the weak force responsible yond lowest order perturbation theory, Lectures provide examples of successful approaches to ma- for radioactivity and the strong nuclear as well as the lack of any nonperturba- jor scientific problems. However, in recent years, these lectures have rarely been read, perhaps because of the force that operated within the nucleus, tive tools. By the 1950s, the suspicion of difficulty in obtaining the collections. By reprinting this were largely mysterious. Particle physics field theory had deepened to the point lecture, we hope to broaden their exposure. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0503831102 PNAS ͉ June 28, 2005 ͉ vol. 102 ͉ no. 26 ͉ 9099–9108 Downloaded by guest on September 28, 2021 mensely useful, picturesque, and intui- to apply Yang–Mills theory to the this property. But more importantly, I tive way of performing perturbation strong interactions focused on elevating think, dielectric screening is a natural theory. However, these alluring qualities global flavor symmetries to local gauge physical explanation of charge renormal- also convinced many that all that was symmetries. This was problematic, since ization, and they were unaware of any needed from field theory were these these symmetries were not exact. In simple physical reason for the opposite rules. They diverted attention from the addition, non-Abelian gauge theories effect. Thus, they assumed that the nonperturbative dynamical issues facing apparently required massless vector problem of zero charge would arise in field theory. In my first course on quan- mesons—clearly not a feature of the any field theory of the strong interac- tum field theory at Berkeley in 1965, I strong interactions. tion, but here it was an immediate ca- was taught that Field Theory ϭ Feynman In the Soviet Union, field theory was tastrophe. In the Soviet Union, this was Rules. Today, we know that there are under even heavier attack, for somewhat thought to be a compelling reason why many phenomena, especially confine- different reasons. Landau and collabora- field theory was wrong, and certainly ment in QCD, that cannot be under- tors, in the late 1950s, studied the high- inappropriate for the strong force. stood perturbatively. energy behavior of QED. They explored Landau decreed that ‘‘We are driven to In the United States, the main reason the relation between the physical elec- the conclusion that the Hamiltonian for the abandonment of field theory for tric charge and the bare electric charge method for strong interaction is dead the strong interactions was simply that as seen at infinitesimally small distances. and must be buried, although of course one could not calculate. American phys- The fact that the electric charge in QED with deserved honor’’ (4). icists are inveterate pragmatists. Quan- depends on the distance at which we Under the influence of Landau and tum field theory had not proved to be a measure it is due to ‘‘vacuum polariza- Pomeranchuk, a generation of physicists useful tool with which to make contact tion.’’ The vacuum, the ground state of was forbidden to work on field theory. with the explosion of experimental dis- a relativistic quantum mechanical sys- Why did the discovery of the zero coveries. The early attempts in the 1950s tem, should be thought of as a medium charge problem not inspire a search for to construct field theories of the strong consisting of virtual particles.
Recommended publications
  • Asymptotic Freedom, Quark Confinement, Proton Spin Crisis, Neutron Structure, Dark Matters, and Relative Force Strengths
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 February 2021 doi:10.20944/preprints202102.0395.v1 Asymptotic freedom, quark confinement, proton spin crisis, neutron structure, dark matters, and relative force strengths Jae-Kwang Hwang JJJ Physics Laboratory, Brentwood, TN 37027 USA Abstract: The relative force strengths of the Coulomb forces, gravitational forces, dark matter forces, weak forces and strong forces are compared for the dark matters, leptons, quarks, and normal matters (p and n baryons) in terms of the 3-D quantized space model. The quark confinement and asymptotic freedom are explained by the CC merging to the A(CC=-5)3 state. The proton with the (EC,LC,CC) charge configuration of p(1,0,-5) is p(1,0) + A(CC=-5)3. The A(CC=-5)3 state has the 99.6% of the proton mass. The three quarks in p(1,0,-5) are asymptotically free in the EC and LC space of p(1,0) and are strongly confined in the CC space of A(CC=-5)3. This means that the lepton beams in the deep inelastic scattering interact with three quarks in p(1,0) by the EC interaction and weak interaction. Then, the observed spin is the partial spin of p(1,0) which is 32.6 % of the total spin (1/2) of the proton. The A(CC=-5)3 state has the 67.4 % of the proton spin. This explains the proton spin crisis. The EC charge distribution of the proton is the same to the EC charge distribution of p(1,0) which indicates that three quarks in p(1,0) are mostly near the proton surface.
    [Show full text]
  • Particles-Versus-Strings.Pdf
    Particles vs. strings http://insti.physics.sunysb.edu/~siegel/vs.html In light of the huge amount of propaganda and confusion regarding string theory, it might be useful to consider the relative merits of the descriptions of the fundamental constituents of matter as particles or strings. (More-skeptical reviews can be found in my physics parodies.A more technical analysis can be found at "Warren Siegel's research".) Predictability The main problem in high energy theoretical physics today is predictions, especially for quantum gravity and confinement. An important part of predictability is calculability. There are various levels of calculations possible: 1. Existence: proofs of theorems, answers to yes/no questions 2. Qualitative: "hand-waving" results, answers to multiple choice questions 3. Order of magnitude: dimensional analysis arguments, 10? (but beware hidden numbers, like powers of 4π) 4. Constants: generally low-energy results, like ground-state energies 5. Functions: complete results, like scattering probabilities in terms of energy and angle Any but the last level eventually leads to rejection of the theory, although previous levels are acceptable at early stages, as long as progress is encouraging. It is easy to write down the most general theory consistent with special (and for gravity, general) relativity, quantum mechanics, and field theory, but it is too general: The spectrum of particles must be specified, and more coupling constants and varieties of interaction become available as energy increases. The solutions to this problem go by various names -- "unification", "renormalizability", "finiteness", "universality", etc. -- but they are all just different ways to realize the same goal of predictability.
    [Show full text]
  • Hep-Th/9609099V1 11 Sep 1996 ⋆ † Eerhspotdi Atb O Rn DE-FG02-90ER40542
    IASSNS 96/95 hep-th/9609099 September 1996 ⋆ Asymptotic Freedom Frank Wilczek† School of Natural Sciences Institute for Advanced Study Olden Lane Princeton, N.J. 08540 arXiv:hep-th/9609099v1 11 Sep 1996 ⋆ Lecture on receipt of the Dirac medal for 1994, October 1994. Research supported in part by DOE grant DE-FG02-90ER40542. [email protected] † ABSTRACT I discuss how the basic phenomenon of asymptotic freedom in QCD can be un- derstood in elementary physical terms. Similarly, I discuss how the long-predicted phenomenon of “gluonization of the proton” – recently spectacularly confirmed at HERA – is a rather direct manifestation of the physics of asymptotic freedom. I review the broader significance of asymptotic freedom in QCD in fundamental physics: how on the one hand it guides the interpretation and now even the design of experiments, and how on the other it makes possible a rational, quantitative theoretical approach to problems of unification and early universe cosmology. 2 I am very pleased to accept your award today. On this occasion I think it is appropriate to discuss with you the circle of ideas around asymptotic freedom. After a few remarks about its setting in intellectual history, I will begin by ex- plaining the physical origin of asymptotic freedom in QCD; then I will show how a recent, spectacular experimental observation – the ‘gluonization’ of the proton – both confirms and illuminates its essential nature; then I will discuss some of its broader implications for fundamental physics. It may be difficult for young people who missed experiencing it, or older people with fading memories, fully to imagine the intellectual atmosphere surrounding the strong interaction in the 1960s and early 1970s.
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Supreme Theory of Everything Ulaanbaatar Tarzad *Corresponding author Ulaanbaatar Tarzad, Department of Physics, School of Applied Sciences, Department of Physics, School of Applied Sciences, Mongolian Mongolian University of Science and Technology, Ulaanbaatar, Mongolia, University of Science and Technology E-mail: [email protected] Submitted: 27 Mar 2019; Accepted: 24 Apr 2019; Published: 06 June 2019 Abstract Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown. Keywords: HRD, Trigonometry, Projection of Circle, Singularity, The reality of universe describes by geometry, because of that not Celestial Body, Black Hole and Parallel Universes. only gravity is geometrical, but everything is it and nothing is linear. One of the important branches of geometry is trigonometry dealing Introduction with circle and triangle. For this reason, it is easier to describe nature Today scientists describe the universe in terms of two basic partial of universe by mathematics circle.
    [Show full text]
  • Asymptotic Freedom and Higher Derivative Gauge Theories Arxiv
    Asymptotic freedom and higher derivative gauge theories M. Asoreya F. Falcetoa L. Rachwałb aCentro de Astropartículas y Física de Altas Energías, Departamento de Física Teórica Universidad de Zaragoza, C/ Pedro Cerbuna 12, E-50009 Zaragoza, Spain bDepartamento de Física – ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Campus Universitário, Juiz de Fora, 36036-900, MG, Brazil E-mail: [email protected], [email protected], [email protected] Abstract: The ultraviolet completion of gauge theories by higher derivative terms can dramatically change their behavior at high energies. The requirement of asymp- totic freedom imposes very stringent constraints that are only satisfied by a small family of higher derivative theories. If the number of derivatives is large enough (n > 4) the theory is strongly interacting both at extreme infrared and ultraviolet regimes whereas it remains asymptotically free for a low number of extra derivatives (n 6 4). In all cases the theory improves its ultraviolet behavior leading in some cases to ultraviolet finite theories with vanishing β-function. The usual consistency problems associated to the presence of extra ghosts in higher derivative theories may not harm asymptotically free theories because in that case the effective masses of such ghosts are running to infinity in the ultraviolet limit. Keywords: gauge theories, renormalization group, higher derivatives regulariza- tion, asymptotic freedom arXiv:2012.15693v3 [hep-th] 11 May 2021 1 Introduction Field theories with higher derivatives were first considered as covariant ultraviolet regularizations of gauge theories [1]-[3]. However, in the last years there is a renewed interest in these theories mainly due to the rediscovery that they provide a renormal- izable field theoretical framework for the quantization of gravity [4,5].
    [Show full text]
  • Hep-Th/0011078V1 9 Nov 2000 1 Okspotdi Atb H ..Dp.O Nryudrgrant Under Energy of Dept
    CALT-68-2300 CITUSC/00-060 hep-th/0011078 String Theory Origins of Supersymmetry1 John H. Schwarz California Institute of Technology, Pasadena, CA 91125, USA and Caltech-USC Center for Theoretical Physics University of Southern California, Los Angeles, CA 90089, USA Abstract The string theory introduced in early 1971 by Ramond, Neveu, and myself has two-dimensional world-sheet supersymmetry. This theory, developed at about the same time that Golfand and Likhtman constructed the four-dimensional super-Poincar´ealgebra, motivated Wess and Zumino to construct supersymmet- ric field theories in four dimensions. Gliozzi, Scherk, and Olive conjectured the arXiv:hep-th/0011078v1 9 Nov 2000 spacetime supersymmetry of the string theory in 1976, a fact that was proved five years later by Green and myself. Presented at the Conference 30 Years of Supersymmetry 1Work supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701. 1 S-Matrix Theory, Duality, and the Bootstrap In the late 1960s there were two parallel trends in particle physics. On the one hand, many hadron resonances were discovered, making it quite clear that hadrons are not elementary particles. In fact, they were found, to good approximation, to lie on linear parallel Regge trajectories, which supported the notion that they are composite. Moreover, high energy scattering data displayed Regge asymptotic behavior that could be explained by the extrap- olation of the same Regge trajectories, as well as one with vacuum quantum numbers called the Pomeron. This set of developments was the focus of the S-Matrix Theory community of theorists.
    [Show full text]
  • Exploring the Fundamental Properties of Matter with an Electron-Ion Collider
    Exploring the fundamental properties of matter with an Electron-Ion Collider Jianwei Qiu Theory Center, Jefferson Lab Acknowledgement: Much of the physics presented here are based on the work of EIC White Paper Writing Committee put together by BNL and JLab managements, … Eternal Questions People have long asked Where did we come from? The Big Bang theory? What is the world made of? Basic building blocks? What holds it together? Fundamental forces? Where are we going to? The future? Where did we come from? Can we go back in time or recreate the condition of early universe? Going back in time? Expansion of the universe Little Bang in the Laboratory Create a matter (QGP) with similar temperature and energy density BNL - RHIC CERN - LHC Gold - Gold Lead - Lead Relativistic heavy-ion collisions – the little bang q A virtual Journey of Visible Matter: Lorentz Near Quark-gluon Seen contraction collision plasma Hadronization Freeze-out in the detector q Discoveries – Properties of QGP: ² A nearly perfect quantum fluid – NOT a gas! at 4 trillion degrees Celsius, Not, at 10-5 K like 6Li q Questions: ² How the observed particles were emerged (after collision)? Properties of ² Does the initial condition matter (before collision)? visible matter What the world is made of? Human is only a tiny part of the universe But, human is exploring the whole universe! What hold it together? q Science and technology: Particle & Nuclear Physics Nucleon: Proton, or Neutron Nucleon – building block of all atomic matter q Our understanding of the nucleon evolves 1970s
    [Show full text]
  • Basics of QCD for the LHC
    Basics of QCD for the LHC Lecture I Fabio Maltoni Center for Particle Physics and Phenomenology (CP3) Université Catholique de Louvain 2011 School of High-Energy Physics 1 Fabio Maltoni Claims and Aims LHC is live and kicking!!!! There has been a number of key theoretical results recently in the quest of achieving the best possible predictions and description of events at the LHC. Perturbative QCD applications to LHC physics in conjunction with Monte Carlo developments are VERY active lines of theoretical research in particle phenomenology. In fact, new dimensions have been added to Theory ⇔ Experiment interactions 2011 School of High-Energy Physics 2 Fabio Maltoni Claims and Aims Five lectures: 1. Intro and QCD fundamentals 2. QCD in the final state basics 3. QCD in the initial state 4. From accurate QCD to useful QCD 5. Advanced QCD with applications at the LHC apps 2011 School of High-Energy Physics 3 Fabio Maltoni Claims and Aims • perspective: the big picture • concepts: QCD from high-Q2 to low-Q2, asymptotic freedom, infrared safety, factorization • tools & techniques: Fixed Order (FO) computations, Parton showers, Monte Carlo’s (MC) • recent progress: merging MC’s with FO, new jet algorithms • sample applications at the LHC: Drell-Yan, Higgs, Jets, BSM,... 2011 School of High-Energy Physics 4 Fabio Maltoni Claims and (your) Aims Think Ask Work Mathematica notebooks on a “simple” NLO calculation and other exercises on QCD applications to LHC phenomenology available on the MadGraph Wiki. http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Physics/CernSchool2011 2011 School of High-Energy Physics 5 Fabio Maltoni Minimal References • Ellis, Stirling and Webber: The Pink Book • Excellent lectures on the archive by M.
    [Show full text]
  • The Discovery of Asymptotic Freedom
    The Discovery of Asymptotic Freedom The 2004 Nobel Prize in Physics, awarded to David Gross, Frank Wilczek, and David Politzer, recognizes the key discovery that explained how quarks, the elementary constituents of the atomic nucleus, are bound together to form protons and neutrons. In 1973, Gross and Wilczek, working at Princeton, and Politzer, working independently at Harvard, showed that the attraction between quarks grows weaker as the quarks approach one another more closely, and correspondingly that the attraction grows stronger as the quarks are separated. This discovery, known as “asymptotic freedom,” established quantum chromodynamics (QCD) as the correct theory of the strong nuclear force, one of the four fundamental forces in Nature. At the time of the discovery, Wilczek was a 21-year-old graduate student working under Gross’s supervision at Princeton, while Politzer was a 23-year-old graduate student at Harvard. Currently Gross is the Director of the Kavli Institute for Theoretical Physics at the University of California at Santa Barbara, and Wilczek is the Herman Feshbach Professor of Physics at MIT. Politzer is Professor of Theoretical Physics at Caltech; he joined the Caltech faculty in 1976. Of the four fundamental forces --- the others besides the strong nuclear force are electromagnetism, the weak nuclear force (responsible for the decay of radioactive nuclei), and gravitation --- the strong force was by far the most poorly understood in the early 1970s. It had been suggested in 1964 by Caltech physicist Murray Gell-Mann that protons and neutrons contain more elementary objects, which he called quarks. Yet isolated quarks are never seen, indicating that the quarks are permanently bound together by powerful nuclear forces.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Strings, Boundary Fermions and Coincident D-Branes
    Strings, boundary fermions and coincident D-branes Linus Wulff Department of Physics Stockholm University Thesis for the degree of Doctor of Philosophy in Theoretical Physics Department of Physics, Stockholm University Sweden c Linus Wulff, Stockholm 2007 ISBN 91-7155-371-1 pp 1-85 Printed in Sweden by Universitetsservice US-AB, Stockholm 2007 Abstract The appearance in string theory of higher-dimensional objects known as D- branes has been a source of much of the interesting developements in the subject during the past ten years. A very interesting phenomenon occurs when several of these D-branes are made to coincide: The abelian gauge theory liv- ing on each brane is enhanced to a non-abelian gauge theory living on the stack of coincident branes. This gives rise to interesting effects like the natural ap- pearance of non-commutative geometry. The theory governing the dynamics of these coincident branes is still poorly understood however and only hints of the underlying structure have been seen. This thesis focuses on an attempt to better this understanding by writing down actions for coincident branes using so-called boundary fermions, orig- inating in considerations of open strings, instead of matrices to describe the non-abelian fields. It is shown that by gauge-fixing and by suitably quantiz- ing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assump- tions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry, the criterion for being the correct supersym- metric action for coincident D-branes.
    [Show full text]
  • Notas De Física CBPF-NF-007/10 February 2010
    ISSN 0029-3865 CBPF - CENTRO BRASILEIRO DE PESQUISAS FíSICAS Rio de Janeiro Notas de Física CBPF-NF-007/10 February 2010 A criticaI Iook at 50 years particle theory from the perspective of the crossing property Bert Schroer Ministét"iQ da Ciência e Tecnologia A critical look at 50 years particle theory from the perspective of the crossing property Dedicated to Ivan Todorov on the occasion of his 75th birthday to be published in Foundations of Physics Bert Schroer CBPF, Rua Dr. Xavier Sigaud 150 22290-180 Rio de Janeiro, Brazil and Institut fuer Theoretische Physik der FU Berlin, Germany December 2009 Contents 1 The increasing gap between foundational work and particle theory 2 2 The crossing property and the S-matrix bootstrap approach 7 3 The dual resonance model, superseded phenomenology or progenitor of a new fundamental theory? 15 4 String theory, a TOE or a tower of Babel within particle theory? 21 5 Relation between modular localization and the crossing property 28 6 An exceptional case of localization equivalence: d=1+1 factorizing mod- els 35 7 Resum´e, some personal observations and a somewhat downbeat outlook 39 8 Appendix: a sketch of modular localization 47 8.1 Modular localization of states . 47 8.2 Localized subalgebras . 51 CBPF-NF-007/10 CBPF-NF-007/10 2 Abstract The crossing property, which originated more than 5 decades ago in the after- math of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property.
    [Show full text]