Reversal of Normal Moult Sequence in the Spotted Flycatcher

Total Page:16

File Type:pdf, Size:1020Kb

Reversal of Normal Moult Sequence in the Spotted Flycatcher Reversal of normal moult sequence in the Spotted Flycatcher Kenneth Williamson In a short paper introducing the British Trust for Ornithology's Moult Enquiry (Williamson i960) I referred to the curiously aberrant wing-moult of the Spotted Flycatcher Muscicapa striata, in which the sequence of change of the primary feathers is ascendant (working from the outermost inwards), not descendant as in all other Palearctic passerines. I pointed out that in other flycatchers (the genera Ficedula, Xantbopygia, Empidornis, Bradornis and Dioptrorais have been examined), including the closely related M. gambagae of Africa which has often been placed as a subspecies of striata, wing-moult follows the orthodox passerine sequence: this begins with the innermost primary (which I shall call pi, numbering the primaries descendantly) and works outwards to p9 and the minute pio, and also progresses inwards from the outermost secondary (si) to s6, the three tertials (often called SS7-9) moulting as a separate group after the start of the primary moult. Diesselhorst (1961) also drew attention to this reversal of the normal sequence in M. striata, adding that the moult of secondaries and tail-feathers is also abnormal. The latter, on the material available to him, showed a centripetal moult (progressing from the outermost feathers inwards to the central pair), while the secondaries and tertials appeared to be renewed from a single moult centre at s<5. A fuller study, based on 83 skins, was made by Stresemann (1963). She dissented from Diesselhorst on the moult of the secondaries, showing that the change begins with the inner group of three feathers usually called the tertials, ss6-4 then following descendantly and ssi-3 ascendantly. She wrote: 'This means a reversal of the order found in all other Muscicapinae, where three secondaries (9 to 7) [the tertials] are moulted in descending and six secondaries (1 to 6) in ascending sequence. The total reversal of moult-progression may originally have been caused by a single mutation. That mutation may have affected some central regulator which determines the sequence in the replacement of primaries as well as of secondaries and rectrices' (English summary, page m). Study of specimens in the collection of the British Museum (Natural History) suggests that this may be an oversimplification. The moult is a good deal more irregular in the Spotted Flycatcher than in most passerines studied, and this is especially true of the secondaries, as shown below. It would be tedious to list the exact stage of each 5° Moult in Spotted Flycatcher 51 of the British Museum birds examined, but the results can be summar­ ised as follows: (i) Moult of the primary coverts does not appear to be linked with the corresponding remiges as it is in other passerines. (2) Although the three outermost long primaries (PP7-9) are the first to moult, ascendantly, the short outermost pio often seems to moult later, as indeed it would in a normal sequence. (}) The alula or bastard wing is in moult from the beginning of December. It is moulting concurrently with pp7-io in most of the skins, this being the stage at which it would normally begin in a descending moult. (4) As stated by Diesselhorst, the tail-moult is centripetal and the usual pattern is for all the feathers to be moulting with the growth most advanced towards the outermost. Tail-moult does not appear to be in phase with any particular stage of wing-moult. (5) The tertials precede the secondaries as in other passerines. Six skins from south and east Africa with pp7-io and s6 growing have new tertials. (6) The moult of secondaries often begins descendantly from s6, as in other passerines, but perhaps as frequently it begins ascendantly from si. The progression seems to be from both ends of the series irrespective of whether si or s6 started first, so that S3 or S4 is the last to finish. Thus there does not appear to be a 'single centre' of moult at s6 (as in Diesselhorst), or a simple reversal of the normal passerine sequence (as in Stresemann), but an irregularity in the replacement of the true secondary feathers (ssi-6) which obscures any fixed pattern, though if such exists it is in all likelihood a nearly simultaneous start at either end of the series. REFERENCES DIBSSBLHORST, G. 1961. 'Ascendente Handschwingen-Mauser bei Mtisckapa striata*. J. Orn., 102: 360-366. STRESEMANN, V. 1963. 'Zur Richtungsumkehr der Schwingen- und Schwanzmauset von Muscicapa striata'. J. Orn., 104: IOI-III. WILLIAMSON, K. i960. 'Moult as a study in field-taxonomy'. Bird Migration, 1: 171-175. Kenneth Williamson, British Trust for Ornithology, Beech Grove, Tring, Hertfordshire .
Recommended publications
  • First Record of Spotted Flycatcher Muscicapa Striata from Tamil Nadu, India
    52 Indian BIRDS VOL. 13 NO. 2 (PUBL. 15 MAY 2017) References World Alive. Lynx Edicions, Barcelona. Website URL: http://www.hbw.com/ node/60784. [Accessed on 25 February 2017.] Adams, A. L., 1859. The birds of Cashmere and Ladakh. Proceedings of the Zoological Pfister, O., 2004. Birds and mammals of Ladakh. 1st ed. New Delhi: Oxford University Society of London 1859 (395): 169–190. Press. Pp. i–xxvii, 1–361. Ali, S., & Ripley, S. D., 1987. Compact handbook of the birds of India and Pakistan Praveen J., Jayapal, R., & Pittie, A., 2016. A checklist of the birds of India. Indian BIRDS together with those of Bangladesh, Nepal, Bhutan and Sri Lanka. 2nd ed. Delhi: 11 (5&6): 113–172A. Oxford University Press. Pp. i–xlii, 1 l., 1–737, 52 ll. Rasmussen, P. C., & Anderton, J. C., 2012. Birds of South Asia: the Ripley guide: Biddulph, J., 1881. On the birds of Gilgit. Ibis 23 (1): 35–102. attributes and status. 2nd ed. Washington, D.C. and Barcelona: Smithsonian Chanter, F. W., 1887. Letters to the Editor [Yesterday I saw in an open field…]. Stray Institution and Lynx Edicions. Vol. 2 of 2 vols. Pp. 1–683. Feathers 10 (6): 518. Scully, J., 1881. A contribution to the ornithology of Gilgit. Ibis 23 (4): 567–594. Ganguli, U., 1975. A guide to the birds of the Delhi area. New Delhi: Indian Council of Shagoo, P., 2017a. Website URL: http://ebird.org/ebird/view/checklist/ Agricultural Research. Pp. i–xv, 1–301. S34555198. [Accessed on 25 February 2017.] Grimmett, R., Inskipp, C., & Inskipp, T., 2011.
    [Show full text]
  • Rejection Behavior by Common Cuckoo Hosts Towards Artificial Brood Parasite Eggs
    REJECTION BEHAVIOR BY COMMON CUCKOO HOSTS TOWARDS ARTIFICIAL BROOD PARASITE EGGS ARNE MOKSNES, EIVIN ROSKAFT, AND ANDERS T. BRAA Departmentof Zoology,University of Trondheim,N-7055 Dragvoll,Norway ABSTRACT.--Westudied the rejectionbehavior shown by differentNorwegian cuckoo hosts towardsartificial CommonCuckoo (Cuculus canorus) eggs. The hostswith the largestbills were graspejectors, those with medium-sizedbills were mostlypuncture ejectors, while those with the smallestbills generally desertedtheir nestswhen parasitizedexperimentally with an artificial egg. There were a few exceptionsto this general rule. Becausethe Common Cuckooand Brown-headedCowbird (Molothrus ater) lay eggsthat aresimilar in shape,volume, and eggshellthickness, and they parasitizenests of similarly sizedhost species,we support the punctureresistance hypothesis proposed to explain the adaptivevalue (or evolution)of strengthin cowbirdeggs. The primary assumptionand predictionof this hypothesisare that somehosts have bills too small to graspparasitic eggs and thereforemust puncture-eject them,and that smallerhosts do notadopt ejection behavior because of the heavycost involved in puncture-ejectingthe thick-shelledparasitic egg. We comparedour resultswith thosefor North AmericanBrown-headed Cowbird hosts and we found a significantlyhigher propor- tion of rejectersamong CommonCuckoo hosts with graspindices (i.e. bill length x bill breadth)of <200 mm2. Cuckoo hosts ejected parasitic eggs rather than acceptthem as cowbird hostsdid. Amongthe CommonCuckoo hosts, the costof acceptinga parasiticegg probably alwaysexceeds that of rejectionbecause cuckoo nestlings typically eject all hosteggs or nestlingsshortly after they hatch.Received 25 February1990, accepted 23 October1990. THEEGGS of many brood parasiteshave thick- nestseither by grasping the eggs or by punc- er shells than the eggs of other bird speciesof turing the eggs before removal. Rohwer and similar size (Lack 1968,Spaw and Rohwer 1987).
    [Show full text]
  • Asian Brown Flycatchers Muscicapa Dauurica on Ashmore Reef: First Records for Australia
    123 AUSTRALIAN FIELD ORNITHOLOGY 2009, 26, 123–131 Asian Brown Flycatchers Muscicapa dauurica on Ashmore Reef: First Records for Australia ROHAN H. CLARKE1, MIKE CARTER2 and GEORGE SWANN3 1School of Biological Sciences, Monash University, Clayton, Victoria 3800 (Email: [email protected]) 230 Canadian Bay Road, Mount Eliza, Victoria 3930 3P.O. Box 220, Broome, Western Australia 6725 Summary Single Asian Brown Flycatchers Muscicapa dauurica were observed and photographed on West Island, Ashmore Reef, in the Timor Sea, in each October of three successive years: 2005, 2006 and 2007. The Birds Australia Rarities Committee has accepted all three occurrences (Case nos 509, 542 and 586). To date, West Island remains the only location where this species has been detected in Australian territory. Introduction West Island, Ashmore Reef (16 ha) is situated 145 km south of Roti Island, Indonesia. The nearest landfall on the Australian mainland is on the Kimberley coast of Western Australia, ~380 km to the south-east. Despite its proximity to Indonesia, Ashmore Reef is an Australian External Territory situated in Commonwealth waters within the Australian Economic Exclusion Zone near the edge of the Australian Continental Shelf. Of the three low-lying coral cays within the reef, West Island (12°14′S, 122°58′E) is the most vegetated. A narrow fringing strip of Octopus Bush Argusia argentea encircles the island above the high-tide mark. With the exception of several small thickets of Octopus Bush and two coconut palms, grasses, herbs and terrestrial creepers (mostly Ipomea spp.) characterise the vegetation in the centre of the island.
    [Show full text]
  • MORPHOLOGICAL and ECOLOGICAL EVOLUTION in OLD and NEW WORLD FLYCATCHERS a Dissertation Presented to the Faculty of the College O
    MORPHOLOGICAL AND ECOLOGICAL EVOLUTION IN OLD AND NEW WORLD FLYCATCHERS A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Clay E. Corbin August 2002 This dissertation entitled MORPHOLOGICAL AND ECOLOGICAL EVOLUTION IN OLD AND NEW WORLD FLYCATCHERS BY CLAY E. CORBIN has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Donald B. Miles Associate Professor, Department of Biological Sciences Leslie A. Flemming Dean, College of Arts and Sciences CORBIN, C. E. Ph.D. August 2002. Biological Sciences. Morphological and Ecological Evolution in Old and New World Flycatchers (215pp.) Director of Dissertation: Donald B. Miles In both the Old and New Worlds, independent clades of sit-and-wait insectivorous birds have evolved. These independent radiations provide an excellent opportunity to test for convergent relationships between morphology and ecology at different ecological and phylogenetic levels. First, I test whether there is a significant adaptive relationship between ecology and morphology in North American and Southern African flycatcher communities. Second, using morphological traits and observations on foraging behavior, I test whether ecomorphological relationships are dependent upon locality. Third, using multivariate discrimination and cluster analysis on a morphological data set of five flycatcher clades, I address whether there is broad scale ecomorphological convergence among flycatcher clades and if morphology predicts a course measure of habitat preference. Finally, I test whether there is a common morphological axis of diversification and whether relative age of origin corresponds to the morphological variation exhibited by elaenia and tody-tyrant lineages.
    [Show full text]
  • Ukraine 2002 (Wolves & Migratory Birds)
    Not for profit, for wildlife: Award-winning, hands -on, non-profit conservation expeditions for everyone. Adventures with a purpose. Expedition report Monitoring wolf, jerboa, viper and bird populations and studying bird migration on the Kinburn peninsula, Black Sea, Ukraine Expedition dates: 4 August – 15 September 2002 Report published: August 2003 Contributors: Volodymyr Tytar I.I. Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine Petro Gorlov Azov-Black Sea Ornithological Station I.I. Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine Matthias Hammer (editor) Biosphere Expeditions Abstract This study was part of an expedition to the Kinburn Black Sea peninsula in Ukraine run by Biosphere Expeditions from 4 August to 15 September 2002. It investigated wolves, jerboas, vipers and migratory birds and continued a study initiiated in August/September 2001. In the wolf (Canis lupus) study, relative abundance methods of counting wolf tracks along a transect were used to compute indices reflecting relative wolf densities. The quantitative baseline set in 2001 for monitoring the relative abundance of wolves in the area was checked against data for 2002. Although there seems to be a decline in the relative abundance of wolves in the area, this it is not statistically significant. Moreover, the population in the study area appears to be in a stable condition, as indicated by the sex ratio of 1:1 and the presence of 30% or even 50% of young. These population parameters appear not to have changed since 2001. In the study of Falzfein’s thick-tailed three-toed jerboa (Stylopidus telum falzfeini), a rigorous quantitative approach of plotless and distance methods to estimate jerboa densities from field signs was used for the second year running to produce results, where no data on jerboa densities previously existed.
    [Show full text]
  • Muscicapa Striata
    Report under the Article 12 of the Birds Directive European Environment Agency Period 2008-2012 European Topic Centre on Biological Diversity Muscicapa striata Annex I No International action plan No Spotted Flycatcher, Muscicapa striata, is a species of passerine bird in the chat and flycatcher family found in woodland and forest and urban ecosystems. Muscicapa striata has a breeding population size of 4650000-8180000 pairs and a breeding range size of 3720000 square kilometres in the EU27. The breeding population trend in the EU27 is Decreasing in the short term and Decreasing in the long term. The EU population status of Muscicapa striata was assessed as Secure, because the species does not meet any of the IUCN Red List criteria for threatened or Near Threatened, or the criteria for Depleted or Declining (the EU27 population or range has not declined by 20% or more since 1980). Page 1 Muscicapa striata Report under the Article 12 of the Birds Directive Assessment of status at the European level Breeding Breeding range Winter population Winter Breeding population trend Range trend trend Population population population size area status Short Long Short Long size Short Long term term term term term term 4650000 - 8180000 p - - 3720000 Secure See the endnotes for more informationi Page 2 Muscicapa striata Report under the Article 12 of the Birds Directive Page 3 Muscicapa striata Report under the Article 12 of the Birds Directive Trends at the Member State level Breeding Breeding range Winter population Winter % in Breeding population
    [Show full text]
  • Notes on the Life-History and Taxonomy of Muscicapa Dauurica Umbrosa, an Overlooked Bornean Canopy Bird
    144 SHORT NOTES Forktail 28 (2012) Feeroz, M. M., Islam, M. A. & Kabir, M. M. (1994) Food and feeding behaviour Newkirk, J. B. (1973) A possible case of predation in the gibbon. Primates of Hoolock Gibbon (Hylobates hoolock), Capped Langur (Presbytis 14: 301–304. pileata) and Pigtailed Macaque (Macaca nemestrina) of Lawachara. Rocamora, G. J. & Yeatman-Berthelot, D. (2009) Family Dicruridae (drongos). Bangladesh J. Zool. 22: 123–132. Pp.172–226 in J. del Hoyo, A. Elliott & D. A. Christie, eds. Handbook of Gittins, S. P. & Tilson, R. L. (1984) Notes on the ecology and behaviour of the birds of the world, 14. Barcelona: Lynx Edicions. the Hoolock gibbon. Pp.258–266 in H. Preuschoft, D. J. Chivers, W. Y. Tilson, R. L. (1979) Behaviour of Hoolock gibbon (Hylobates hoolock) during Brockelman & N. Creel, eds. The lesser apes: evolutionary and behavioural different seasons in Assam, India. J. Bombay Nat. Hist. Soc. 76: 1–16. biology. Edinburgh: Edinburgh University Press. Islam, M. A. & Feeroz, M. M. (1992) Ecology of Hoolock gibbon of Bangladesh. Delip K. DAS, ICCR Scholar, Room No. 1106, International Student Primates 33: 451–464. House(ISH), University of Mumbai, C Road, Churchgate, Mumbai Kakati, K. (2004) Impact of forest fragmentation on the Hoolock gibbon in 400020, Maharastra, India; and c/o Ranjit Kumar Das, Vill.+ Post.: Assam, India. Ph.D thesis. Cambridge: University of Cambridge. Tezkhali, Thana: Bancharampur, Dist.: B. Baria, Bangladesh. Email: Mukherjee, R. P. (1986) The ecology of the Hoolock gibbon, Hylobates [email protected] hoolock, in Tripura, India. Pp.115–123 in J. G. Else & P.
    [Show full text]
  • Dark-Sided Flycatcher Muscicapa Sibirica in the Cocos (Keeling) Islands
    1 AUSTRALIAN FIELD ORNITHOLOGY 2011, 28, 1–12 Dark-sided Flycatcher Muscicapa sibirica in the Cocos (Keeling) Islands NEVILLE B. PAMMENT and MARJORIE E. PEGLER P.O. Box 336, Daylesford, Victoria 3460 (Email: [email protected]) Summary A Dark-sided Flycatcher Muscicapa sibirica was observed and photographed on Home Island, Cocos (Keeling) Islands, on 6–7 November 2008. Its identification was based on its compact shape, its very dark, diffusely streaked breast and flanks, its wing-length and primary projection, its short bill with concave sides, prominent white half-collar, asymmetrical eye- ring and other features. The field marks which distinguish this species from similar-looking Muscicapa flycatchers are discussed. This is the first record of this species for the Cocos (Keeling) Islands and the second (and first photographic) record for Australian territory (Birds Australia Rarities Committee Case no. 593). Introduction Home Island (12°07′S, 96°54′E, area 0.95 km2) is part of the Australian External Territory of Cocos (Keeling) Islands and the home of the Cocos Malay population. Apart from housing and domestic gardens, the island is largely covered with introduced Coconut Palms Cocos nucifera, the native vegetation having been almost entirely removed in the nineteenth century (Bunce 1988). A striking feature of all of the islands of the Cocos (Keeling) Group is the near-complete absence of passerines, the only current breeding species being the introduced Christmas Island White-eye Zosterops natalis, which occurs only on Horsburgh Island and the remote North Keeling Island. Other than the Barn Swallow Hirundo rustica, which is a regular non-breeding visitor (Higgins et al.
    [Show full text]
  • Pied Flycatchers: Can Reserve-Based Management During the Breeding Season Reduce Population Decline
    This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document: Goodenough, Anne E ORCID: 0000-0002-7662-6670, Elliot, Simon L and Hart, Adam G ORCID: 0000-0002-4795-9986 (2009) The challenges of conservation for declining migrants: are reserve-based initiatives during the breeding season appropriate for the Pied FlycatcherFicedula hypoleuca? Ibis: International Journal of Avian Science, 151 (3). pp. 429-439. doi:10.1111/j.1474-919X.2009.00917.x Official URL: http://dx.doi.org/10.1111/j.1474-919X.2009.00917.x DOI: http://dx.doi.org/10.1111/j.1474-919X.2009.00917.x EPrint URI: http://eprints.glos.ac.uk/id/eprint/3328 Disclaimer The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited. The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights. The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement. PLEASE SCROLL DOWN FOR TEXT. BOU 150th PROCEEDINGS Running Head: Conservation of declining migrants The challenges of conservation for declining migrants: are reserve-based initiatives during the breeding season appropriate for the Pied Flycatcher Ficedula hypoleuca? ANNE E.
    [Show full text]
  • From Mediterranean to Scandinavia – Timing and Body Mass Condition In
    ORNIS SVECICA 25:51–58, 2015 From Mediterranean to Scandinavia – timing and body mass condition in four long distance migrants Från Medelhavet till Skandinavien – tidsmässigt uppträdande och energireserver hos fyra långdistansflyttande tättingar CHRISTOS BARBOUTIS, LEO LARSSON, ÅSA STEINHOLTZ & THORD FRANSSON Abstract In spring, long-distance migrants are considered to adopt arrive at the Swedish study site with significantly higher a time-minimizing strategy to promote early arrival at body masses compared to when they arrive in Greece and breeding sites. The phenology of spring migration was this might indicate a preparation for arriving at breeding examined and compared between two insular stopover grounds with some overload. sites in Greece and Sweden for Icterine Warbler, Wood Warbler, Spotted Flycatcher and Collared Flycatcher. Christos Barboutis, Antikythira Bird Observatory, Hel- All of them migrate due north which means that some lenic Ornithological Society, 80 Themistokleous str, proportion of birds that pass through Greece are heading GR-10681, Athens, Greece; Natural History Museum of to Scandinavia. The Collared Flycatcher had the earli- Crete, University of Crete, PO Box 2208, 71409 Herak- est and the Icterine Warbler the latest arrival time. The lion, Crete, Greece. Email: [email protected] differences in median dates between Greece and Swe- (corresponding author) den were 3–4 weeks and the passages in Sweden were Leo Larsson & Åsa Steinholtz, Sundre Bird Observatory, generally more condensed in time. The average overall Sundre, Skoge 518, SE-623 30 Burgsvik, Sweden speed estimates were very similar and varied between Thord Fransson, Department of Environmental Research 129 and 137 km/d. In most of the species higher speed and Monitoring, Swedish Museum of Natural History, estimates were associated with years when birds arrived Box 50 007, SE-104 05 Stockholm, Sweden late in Greece.
    [Show full text]
  • Summer-Autumn Feeding Ecology of Pied Flycatchers Ficedula
    Bird Conservation International (2009) 19:224–238. ª BirdLife International 2009 doi:10.1017/S0959270909008351 Printed in the United Kingdom Summer-autumn feeding ecology of Pied Flycatchers Ficedula hypolueca and Spotted Flycatchers Muscicapa striata: the importance of frugivory in a stopover area in north-west Iberia A´ NGEL HERNA´ NDEZ Summary North-west Iberia is a crucial stopover region for European populations of Pied Flycatchers Ficedula hypoleuca and Spotted Flycatchers Muscicapa striata during their summer-autumn migration. Both species are almost completely insectivorous during breeding in Europe and wintering in sub-Saharan Africa, but are known to consume fleshy fruits during summer- autumn migration, though no detailed investigations have been carried out over long periods of time. In this study, the summer-autumn feeding ecology of Pied and Spotted Flycatchers in a stopover area in north-west Spain, with a landscape of hedgerows and irrigated meadows, was studied for five consecutive years (2002–2006). In general, the passage of both flycatcher species was noticeable from mid-August to the end of September, with a peak in the first ten days of September. The two flycatcher species consumed fruits throughout the stopover period in all years, with constant intensity of frugivory in time, though the importance of fruits was almost three times greater in the diet of Pied Flycatchers (c. 30% of feeding acts) than in that of Spotted Flycatchers (c. 10% of feeding acts). Both species preferred Dogwood Cornus sanguinea fruits, but also ate Elder Sambucus nigra berries and Bramble Rubus spp. drupelets. The high level of selection of Dogwood fruits was probably linked to their high lipid content, an essential nutrient for fattening in long-distance migrant passerines.
    [Show full text]
  • 11. Birds of the Paradise Gardens
    Mute Swan Cygnus olor The mute swan is a species of swan, and thus a member of the waterfowl family Anatidae. It is native to much of Europe and Asia, and the far north of Africa. It is an introduced species in North America, Australasia and southern Africa Tundra Swan Cygnus columbianus The tundra swan is a small Holarctic swan. The two taxa within it are usually regarded as conspecific, but are also sometimes split into two species: Bewick's swan of the Palaearctic and the whistling swan proper of the Nearctic Bean Goose Anser fabalis The bean goose is a goose that breeds in northern Europe and Asia. It has two distinct varieties, one inhabiting taiga habitats and one inhabiting tundra Red-breasted Goose Branta ruficollis The red-breasted goose is a brightly marked species of goose in the genus Branta from Eurasia. It is sometimes separated in Rufibrenta but appears close enough to the brant goose to make this unnecessary, despite its distinct appearance Common Shelduck Tadorna tadorna The common shelduck is a waterfowl species shelduck genus Tadorna. It is widespread and common in Eurasia, mainly breeding in temperate and wintering in subtropical regions; in winter, it can also be found in the Maghreb Eurasian Teal Anas crecca The Eurasian teal or common teal is a common and widespread duck which breeds in temperate Eurasia and migrates south in winter Mallard Anas platyrhynchos The mallard or wild duck is a dabbling duck which breeds throughout the temperate and subtropical Americas, Europe, Asia, and North Africa, and has been introduced to New Zealand, Australia, Peru, ..
    [Show full text]