Retinopathy of Prematurity WHAT IS RETINOPATHY of PREMATURITY?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ICO Guidelines for Glaucoma Eye Care
ICO Guidelines for Glaucoma Eye Care International Council of Ophthalmology Guidelines for Glaucoma Eye Care The International Council of Ophthalmology (ICO) Guidelines for Glaucoma Eye Care have been developed as a supportive and educational resource for ophthalmologists and eye care providers worldwide. The goal is to improve the quality of eye care for patients and to reduce the risk of vision loss from the most common forms of open and closed angle glaucoma around the world. Core requirements for the appropriate care of open and closed angle glaucoma have been summarized, and consider low and intermediate to high resource settings. This is the first edition of the ICO Guidelines for Glaucoma Eye Care (February 2016). They are designed to be a working document to be adapted for local use, and we hope that the Guidelines are easy to read and translate. 2015 Task Force for Glaucoma Eye Care Neeru Gupta, MD, PhD, MBA, Chairman Tin Aung, MBBS, PhD Nathan Congdon, MD Tanuj Dada, MD Fabian Lerner, MD Sola Olawoye, MD Serge Resnikoff, MD, PhD Ningli Wang, MD, PhD Richard Wormald, MD Acknowledgements We gratefully acknowledge Dr. Ivo Kocur, Medical Officer, Prevention of Blindness, World Health Organization (WHO), Geneva, Switzerland, for his invaluable input and participation in the discussions of the Task Force. We sincerely thank Professor Hugh Taylor, ICO President, Melbourne, Australia, for many helpful insights during the development of these Guidelines. International Council of Ophthalmology | Guidelines for Glaucoma Eye Care International -
Interactions Between Biomaterials and the Sclera: Implications on Myopia
Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor Kevin E. Healy Professor Xiaohua Gong Fall 2009 Interactions between Biomaterials and the Sclera: Implications on Myopia Progression © 2009 by James Su University of California, Berkeley Abstract Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine F. Wildsoet, Chair Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon’s skills and the patient’s myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue- inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. -
Treat Cataracts and Astigmatism with One
TREAT CATARACTS Cataract patients have a choice Eye with cataract See life through the AcrySof® IQ Toric IOL. of treatments, including the As the eye ages, the lens becomes AND ASTIGMATISM WITH breakthrough AcrySof® IQ Toric cloudier, allowing less light to pass Ask your doctor about your options. intraocular lens (IOL) that treats through. The light that doesn’t make ONE PROCEDURE pre-existing corneal astigmatism at the it to the retina is diffused or scattered, same time that it corrects cataracts. leaving vision defocused and blurry. With a single procedure, you have the potential to enjoy freedom from glasses or contacts for distance vision with enhanced image quality – and see life through a new lens. 1. Independent third party research; Data on File, December 2011. Cataracts and astigmatism defined. Important Product Information A cataract is like a cloud over the eye’s lens, Eye with astigmatism CAUTION: Restricted by law to sale by or on the order of a physician. DESCRIPTION: interfering with quality of vision and making The AcrySof® IQ Toric Intraocular Lenses (IOLs) are artificial lenses implanted in the normal activities, such as driving a car, reading When the surface of the cornea has eye of adult patients following cataract surgery. These lenses are designed to correct pre-existing corneal astigmatism, which is the inability of the eye to focus clearly at a newspaper or seeing people’s faces, an uneven curvature, shaped more any distance because of difference curvatures on the cornea, and provide distance vision. WARNINGS / PRECAUTIONS: You may experience and need to contact your increasingly difficult. -
Microscopic Anatomy of the Eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian Globes Mammalian Phylogeny General Anatomy Dog
Microscopic Anatomy of the eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian globes Mammalian Phylogeny General Anatomy Dog Arterial Blood Vessels of the Orbit General Anatomy Dog * Horizontal section Long Posterior Ciliary a. Blood enters the globe Short Post. Ciliary a Long Post. Ciliary a. Anterior Ciliary a. Blood Supply General Anatomy Dog Major arterial circle of the iris Orbital Anatomy Dog Brain Levator Dorsal rectus Ventral rectus Zygomatic Lymph node Orbital Anatomy Dog Orbital Anatomy Dog Cartilaginous trochlea and the tendon of the dorsal oblique m. Orbital Anatomy Dog Rabbit Orbital Anatomy Dog Zygomatic salivary gland mucinous gland Orbital Anatomy Dog Gland of the Third Eyelid Eye lids (dog) Eye lids (dog) Meibomian glands at the lid margin Holocrine secretion Eye lids (primate) Upper tarsal plate Lower tarsal plate Eye lids (rabbit) The Globe The Globe Dog Cat Orangutan Diurnal Horse Diurnal Cornea Epithelium Stromal lamellae Bowman’s layer Dolphin Descemet’s m Endothelium TEM of surface epithelium Cornea Doubling of Descemet’s Vimentin + endothelium Iris Walls: The vertebrate eye Iris Sphincter m. Dilator m Blue-eye, GFAP stain Iris Collagen Iris Cat Sphinctor m. Dilator m. Iris Cat Phyomelanocytes Iris Equine Corpora nigra (Granula iridica) seen in ungulates living without shade Ciliary body Pars plicata Ciliary muscle Pars plana Ciliary body Zonular ligaments Ciliary body Primarily made of fibrillin A major component of elastin Ciliary body Alcian Blue staining acid mucopolysaccharides: Hyaluronic acid Ciliary -
Presbyopia and Glaucoma: Two Diseases, One Pathophysiology? the 2017 Friedenwald Lecture
Lecture Presbyopia and Glaucoma: Two Diseases, One Pathophysiology? The 2017 Friedenwald Lecture Paul L. Kaufman,1 Elke Lutjen¨ Drecoll,2 and Mary Ann Croft1 1Department of Ophthalmology and Visual Sciences, Wisconsin National Primate Research Center, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States 2Institute of Anatomy II, Erlangen, Germany Correspondence: Paul L. Kaufman, Department of Ophthalmology and Visual Sciences, University of Wisconsin Clinical Sciences Center, 600 Highland Avenue, Madison, WI 53792-3220, USA; [email protected]. Citation: Kaufman PL, Lutjen¨ Drecoll E, Croft MA. Presbyopia and glaucoma: two diseases, one pathophysiology? The 2017 Friedenwald Lecture. Invest Ophthalmol Vis Sci. 2019;60:1801–1812. https://doi.org/10.1167/iovs.19-26899 resbyopia, the progressive loss of near focus as we age, is choroid and the retina stretch in parallel with each other during P the world’s most prevalent ocular affliction. Accommoda- the accommodative response. The question remains how far tive amplitude is at its maximum (~15 diopters) in the teen back the accommodative choroid/retina movement goes. years and declines fairly linearly thereafter (Fig. 1).1 By age 25 By ‘‘marking’’ points on retinal photographs (e.g., vascular about half the maximum accommodative amplitude has been bifurcations) in aphakic (to avoid lens magnification artifacts lost, by age 35 two-thirds are gone, and by the mid-40s all is during accommodation) monkey eyes, movement of the retina gone. Clinical symptoms usually begin at age ~40. The during accommodation can be quantified in terms of both accommodative apparatus of the rhesus monkey is very similar direction and magnitude (Fig. -
A Prospective Study on Hyperglycemia and Retinopathy of Prematurity
Journal of Perinatology (2014) 34, 453–457 © 2014 Nature America, Inc. All rights reserved 0743-8346/14 www.nature.com/jp ORIGINAL ARTICLE A prospective study on hyperglycemia and retinopathy of prematurity L Mohsen1, M Abou-Alam1, M El-Dib2, M Labib1, M Elsada3 and H Aly2 OBJECTIVE: Retinopathy of prematurity (ROP) constitutes a significant morbidity in premature infants that can lead to blindness. Multiple retrospective studies have identified neonatal hyperglycemia as a risk for developing ROP. However, in the absence of any reported prospective study, it is not clear whether hyperglycemia is associated with ROP independent of the commonly associated comorbidities. The objective of this study was to investigate whether hyperglycemia in premature infants is independently associated with ROP. STUDY DESIGN: Premature infants (o1500 g or ⩽ 32 weeks gestational age) were enrolled in a prospective longitudinal cohort study. All demographic, clinical and laboratory data were collected. Bedside whole-blood glucose concentration was measured every 8 h daily for 7 days. For any glucose readingo50 or>150 mg dl − 1, serum sample was sent to the laboratory for confirmation. Hyperglycemia was defined as any blood glucose level ⩾ 150 mg dl − 1. ROP patients were compared with non-ROP patients in a bivariate analysis. Variables significantly associated with ROP were studied in a logistic regression model. RESULT: A total of 65 patients were enrolled with gestational age 31.1 ± 1.2 weeks and birth weight 1385 ± 226 g. Thirty-one patients (48%) were identified with hyperglycemia. On eye examination, 19 cases (29.2%) had ROP (13 with stage 1, 4 with stage 2 and 2 with stage 3). -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life. -
Vitreous and Developmental Vitreoretinopathies Kevin R
CHAPTER 3 Vitreous and Developmental Vitreoretinopathies Kevin R. Tozer, Kenneth M. P. Yee, and J. Sebag Invisible (Fig. 3.1) by design, vitreous was long unseen the central vitreous and adjacent to the anterior cortical as important in the physiology and pathology of the eye. gel. HA molecules have a different distribution from col- Recent studies have determined that vitreous plays a sig- lagen, being most abundant in the posterior cortical gel nificant role in ocular health (1) and disease (1,2), includ- with a gradient of decreasing concentration centrally ing a number of important vitreoretinal disorders that and anteriorly (6,7). arise from abnormal embryogenesis and development. Both collagen and HA are synthesized during child- Vitreous embryology is presented in detail in Chapter 1. hood. Total collagen content in the vitreous gel remains Notable is that primary vitreous is filled with blood ves- at about 0.05 mg until the third decade (8). As collagen sels during the first trimester (Fig. 3.2). During the second does not appreciably increase during this time but the trimester, these vessels begin to disappear as the second- size of the vitreous does increase with growth, the den- ary vitreous is formed, ultimately resulting in an exqui- sity of collagen fibrils effectively decreases. This could sitely clear gel (Fig. 3.1). The following will review vitreous potentially weaken the collagen network and destabilize development and the congenital disorders that arise from the gel. However, since there is active synthesis of HA abnormalities in hyaloid vessel formation and regression during this time, the dramatic increase in HA concentra- during the primary vitreous stage and biochemical abnor- tion may stabilize the thinning collagen network (9). -
Strabismus, Amblyopia & Leukocoria
Strabismus, Amblyopia & Leukocoria [ Color index: Important | Notes: F1, F2 | Extra ] EDITING FILE Objectives: ➢ Not given. Done by: Jwaher Alharbi, Farrah Mendoza. Revised by: Rawan Aldhuwayhi Resources: Slides + Notes + 434 team. NOTE: F1& F2 doctors are different, the doctor who gave F2 said she is in the exam committee so focus on her notes Amblyopia ● Definition Decrease in visual acuity of one eye without the presence of an organic cause that explains that decrease in visual acuity. He never complaints of anything and his family never noticed any abnormalities ● Incidence The most common cause of visual loss under 20 years of life (2-4% of the general population) ● How? Cortical ignorance of one eye. This will end up having a lazy eye ● binocular vision It is achieved by the use of the two eyes together so that separate and slightly dissimilar images arising in each eye are appreciated as a single image by the process of fusion. It’s importance 1. Stereopsis 2. Larger field If there is no coordination between the two eyes the person will have double vision and confusion so as a compensatory mechanism for double vision the brain will cause suppression. The visual pathway is a plastic system that continues to develop during childhood until around 6-9 years of age. During this time, the wiring between the retina and visual cortex is still developing. Any visual problem during this critical period, such as a refractive error or strabismus can mess up this developmental wiring, resulting in permanent visual loss that can't be fixed by any corrective means when they are older Why fusion may fail ? 1. -
Cataract Surgery & Glaucoma
worldclasslasik.com http://www.worldclasslasik.com/cataract-surgery-new-jersey/cataract-surgery-glaucoma/ Cataract Surgery & Glaucoma The lens of your eye is responsible for focusing light on the objects you see. If the lens is clouded, then you can’t see things clearly, and this is known as a cataract. It can form gradually over many years or you can be born with a cataract. For some people, cataracts are not even noticeable. They just find themselves turning on more lights to read or having trouble with glares while driving at night. Most cataracts are problematic later in life. It is estimated that more than half of all Americans over the age of 80 will have cataracts or have had them corrected with surgery. Another common eye problem for seniors is glaucoma. Glaucoma is actually a group of eye diseases that affect the optic nerve by causing various types of damage due to high pressure. The optic nerve carries images from the retina to the brain, so advanced glaucoma can actually impair vision to the point of blindness. It is actually the leading cause of blindness in the world. However, glaucoma can be remedied in a number of ways. Early detection and treatment by your eye surgeon are critical in achieving optimal results. Resolve Cataracts and Glaucoma with Surgery While many adults over the age of 65 suffer from both cataracts and glaucoma, it is important to note that the two are not related. Glaucoma does not cause cataracts and cataracts do not cause glaucoma. That being said, cataract surgery involves creating a small incision in the lens of the eye to remove the affected, or “cloudy” area of the lens. -
Proposed International Clinical Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scales
Proposed International Clinical Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scales C. P. Wilkinson, MD,1 Frederick L. Ferris, III, MD,2 Ronald E. Klein, MD, MPH,3 Paul P. Lee, MD, JD,4 Carl David Agardh, MD,5 Matthew Davis, MD,3 Diana Dills, MD,6 Anselm Kampik, MD,7 R. Pararajasegaram, MD,8 Juan T. Verdaguer, MD,9 representing the Global Diabetic Retinopathy Project Group Purpose: To develop consensus regarding clinical disease severity classification systems for diabetic retinopathy and diabetic macular edema that can be used around the world, and to improve communication and coordination of care among physicians who care for patients with diabetes. Design: Report regarding the development of clinical diabetic retinopathy disease severity scales. Participants: A group of 31 individuals from 16 countries, representing comprehensive ophthalmology, retina subspecialties, endocrinology, and epidemiology. Methods: An initial clinical classification system, based on the Early Treatment Diabetic Retinopathy Study and the Wisconsin Epidemiologic Study of Diabetic Retinopathy publications, was circulated to the group in advance of a workshop. Each member reviewed this using e-mail, and a modified Delphi system was used to stratify responses. At a later workshop, separate systems for diabetic retinopathy and macular edema were developed. These were then reevaluated by group members, and the modified Delphi system was again used to measure degrees of agreement. Main Outcome Measures: Consensus regarding specific classification systems was achieved. Results: A five-stage disease severity classification for diabetic retinopathy includes three stages of low risk, afourthstageofseverenonproliferativeretinopathy,andafifthstageofproliferativeretinopathy.Diabeticmacular edema is classified as apparently present or apparently absent. If training and equipment allow the screener to make a valid decision, macular edema is further categorized as a function of its distance from the central macula. -
Eyes and Pupillary Assessment
Eye and Pupillary Assessment GFR Training January 29, 2017 What are some things you should look for? Pupil Size Pupil Shape Reactivity Tracking Redness Trauma What assessment questions may provide more information? Sudden blurry vision? Difficult to focus? Sudden double vision? Sudden loss of vision? Seeing things? Seeing black spots? Flashes of light? Any eye pain? Sudden, severe headaches? Any recent trauma? Anatomy What might happen if there is damage to the ciliary body or the nerves that control the ciliary body? Muscles in the iris control pupil size: What is the pupil? What might happen if there is damage to these muscles or to the nerves that control them? Eye Muscles and Nerves Normal Eyes Unusual Eyes Description Condition Unilateral Dilated Pupil III Nerve Compression Bilateral Dilated Pupils Midbrain Injury Irregular Pupils Orbital Trauma Conjugate Gaze Frontal Lobe Lesion Deviation Small / Pinpoint Pontine Injury, Opiate Administration Pupils of Different Sizes Irregular/Misshapen Pupils Abnormal Tracking/Movement When scanning a room, reading, etc., human eyes move in a rapid, jerky fashion. This is called saccadic eye movements. When following (tracking) a single object, eye movements should be smooth and not saccadic. With serious head injuries, eyes often exhibit abnormal tracking movements. Jerky Tracking Other things to look for: Slow tracking Unilateral tracking Lack of tracking (no control or no movement at all) ***Be sure to check both vertically and horizontally!!*** Eyes pointing in different directions Bruising Skull Fracture Broken Nose Possible Causes? Trauma Globe Rupture Protect Swelling Ice Foreign Objects One time GFD had a call for a middle-aged man who was using a power drill, and somehow the drill ended up in his eye.