A Prospective Study on Hyperglycemia and Retinopathy of Prematurity

Total Page:16

File Type:pdf, Size:1020Kb

A Prospective Study on Hyperglycemia and Retinopathy of Prematurity Journal of Perinatology (2014) 34, 453–457 © 2014 Nature America, Inc. All rights reserved 0743-8346/14 www.nature.com/jp ORIGINAL ARTICLE A prospective study on hyperglycemia and retinopathy of prematurity L Mohsen1, M Abou-Alam1, M El-Dib2, M Labib1, M Elsada3 and H Aly2 OBJECTIVE: Retinopathy of prematurity (ROP) constitutes a significant morbidity in premature infants that can lead to blindness. Multiple retrospective studies have identified neonatal hyperglycemia as a risk for developing ROP. However, in the absence of any reported prospective study, it is not clear whether hyperglycemia is associated with ROP independent of the commonly associated comorbidities. The objective of this study was to investigate whether hyperglycemia in premature infants is independently associated with ROP. STUDY DESIGN: Premature infants (o1500 g or ⩽ 32 weeks gestational age) were enrolled in a prospective longitudinal cohort study. All demographic, clinical and laboratory data were collected. Bedside whole-blood glucose concentration was measured every 8 h daily for 7 days. For any glucose readingo50 or>150 mg dl − 1, serum sample was sent to the laboratory for confirmation. Hyperglycemia was defined as any blood glucose level ⩾ 150 mg dl − 1. ROP patients were compared with non-ROP patients in a bivariate analysis. Variables significantly associated with ROP were studied in a logistic regression model. RESULT: A total of 65 patients were enrolled with gestational age 31.1 ± 1.2 weeks and birth weight 1385 ± 226 g. Thirty-one patients (48%) were identified with hyperglycemia. On eye examination, 19 cases (29.2%) had ROP (13 with stage 1, 4 with stage 2 and 2 with stage 3). There were more cases of ROP in the hyperglycemia group compared with the euglycemia group (45% vs 15%, P = 0.007). Patients who developed ROP had significantly higher maximum and average glucose concentrations when compared with non-ROP patients. Multiple factors have been associated with ROP on bivariate analysis, including gestational age, exposure to oxygen, respiratory support and poor weight gain. However, in a logistic regression model including all significant variables, average blood glucose in the first week of life was the factor independently associated with ROP with an odds ratio of: 1.77 (95% confidence interval: 1.08 to 2.86), P = 0.024. CONCLUSION: In a cohort of premature infants, elevated average blood glucose concentrations in the first week of life is independently associated with the development of ROP. Journal of Perinatology (2014) 34, 453–457; doi:10.1038/jp.2014.49; published online 27 March 2014 INTRODUCTION hyperalimentation,15,16 blood transfusions11,17 and vitamin E 18 Hyperglycemia is a significant risk factor for morbidity and deficiency. Moreover, ROP has been associated with the 19 mortality in preterm infants. There are multiple physiological presence of patent ductus arteriosus, bronchopulmonary and biochemical mechanisms in preterm infants that can lead to dysplasia,19 sepsis,16,20 systemic candidiasis21 and intraventricular excess glucose production, insulin resistance or glucose intoler- hemorrhage.22 ance; the sequelae of these disturbances in glucose metabolism Several retrospective studies have recently suggested hyper- – are extensive.1,2 Hyperglycemia could be associated with osmotic glycemia as a possible risk factor for ROP.23 27 Hyperglycemia is diuresis and dehydration, which increase the risk of cerebral commonly associated with many conditions in very low birth bleeding and electrolyte imbalance. There are also concerns that it weight infant, including sepsis, candidiasis, intraventricular may be associated with increased mortality and other morbidities, hemorrhage and postnatal steroids, all of which are frequently such as decreased immunity, increased infection, poor wound encountered in infants who later develop ROP.23 Meanwhile, it is healing and loss of skeletal and cardiac muscles.3,4 quite plausible that hyperglycemia imposes biological changes to Retinopathy of prematurity (ROP) remains a leading cause the retina; adults with poorly controlled diabetes develop a of morbidity in very low birth weight infants.5 The provision distinct neoproliferative retinopathy that is particularly identified of supplemental oxygen, while a major risk factor, is not the in patients with elevated serum glucose over prolonged periods.28 only cause of the disease as demonstrated by a series of low There has been a consensus agreement for the need to birth weight infants who developed ROP without ever receiving prospectively test the association of hyperglycemia with – any oxygen.6 Other proposed risks for the development of ROP ROP.29 31 To the best of our knowledge, we are not aware of include poor postnatal growth,7,8 hypoxia,9 hypercarbia,10 any prospective study to address such an association that is hypocarbia,11 exposure to prolonged and aggressive mechanical critically important, especially with the growing interest in early ventilation,12 inotrope therapy,6 postnatal steroids,13,14 prolonged and aggressive parenteral nutrition. The aim of this prospective 1Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt; 2Department of Neonatology, The George Washington University and Children’s National Medical Center, Washington, DC, USA and 3Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt. Correspondence: Dr H Aly, Newborn Services, The George Washington University Hospital, 900 23rd Street, NW, Suite G-2092, Room G-132, Washington, DC 20037, USA. E-mail: [email protected] Received 25 November 2013; revised 14 February 2014; accepted 14 February 2014; published online 27 March 2014 Hyperglycemia and ROP L Mohsen et al 454 cohort study was to determine whether elevated glucose RESULTS concentration is an independent risk factor for the development The study was conducted on 65 preterm neonates admitted to the of ROP in premature infants. NICU in Cairo University during a period of 6 months; out of the 65 enrolled subjects, 31 (48%) were hyperglycemic. The euglycemia and hyperglycemia groups did not differ in gestational age, birth METHODS weight or mode of delivery. Infants in the hyperglycemia group Patients were more likely to be females, had greater acuity of illness using We conducted a prospective cohort study on premature neonates the Clinical Risk Index for Babies Score, with medians (ranges) of admitted to the neonatal intensive care unit (NICU) at Cairo University 1 (0 to 6) vs 2 (0 to 7), P = 0.001, and received more frequent red Children’s Hospital, which is the largest referral tertiary care unit in the cell transfusions (Table 1). In the hyperglycemia group, there was country. Infants were included in the study if admitted within 24 h of life no significant difference between the mean bedside glucose vs − with gestational age (GA) ⩽ 32 weeks or birth weighto1500 g. Infants with serum laboratory testing; 267.6 ± 101.2 vs 250 ± 86.4 mg dl 1, major congenital anomalies were excluded from the study. The study was P = 0.46. approved by the ethics committee and was conducted in accordance with Forty-six infants (70.8%) had normal fundus examination, the University bylaws for human research. Parental consents were while 19 cases (29.2%) had ROP. Out of the 19 ROP cases, 13 obtained for all subjects. had stage-1, 4 infants had stage-2, and 2 infants had stage-3. Full maternal and perinatal history was collected for all the studied Compared with non-ROP infants (n = 46), cases with ROP (n = 19) neonates. Other NICU data such as the use of oxygen, ventilation and fi o phototherapy were documented. Data on date of start and day of full were signi cantly of younger gestational age (P 0.001), smaller establishment of enteral feeds, type of feeding and full caloric intake were birth weight (Po0.001), more likely to have respiratory distress recorded. (P = 0.001) and exposed to phototherapy (P = 0.007). Maternal and neonatal factors associated with ROP are presented in Table 2. Eye examination There were more cases of ROP in the hyperglycemia group Fundus examination was initially done at 4 to 6 weeks in compliance 32 compared with the euglycemia group (45% vs 15%, P = 0.007), with the recommendations of American Academy of Pediatrics. odds ratio 4.776 (95% confidence interval (CI): 1.46 to 15.60). Follow-up examinations were scheduled during the NICU stay and after fi Figure 1 presents average daily glucose concentrations in infants hospital discharge as based on retinal ndings. Examinations were fi performed by experienced pediatric ophthalmologists while masked with and without ROP during the rst week of life. Mean, to the glycemia condition of the infants. Retinal examination was maximum and minimum values for glucose concentrations in done using binocular indirect ophthalmoscope, lid speculum and scleral ROP and non-ROP infants are shown in Table 3. Infants with ROP depressors. Before examination, proper dilation of the pupil was performed had significantly higher average and maximum glucose values. using a topical anesthetic followed by an eye drop combination Hypoglycemia was detected in 13 (20%) of the studied population. (0.2% cyclopentolate and 1% phenylephrine). Stages of severity and the The incidence of ROP in infants with hypoglycemia was 15%, zones for the extent of ROP were categorized by the lowest zone whereas ROP in non-hypoglycemic patients was 33%; this differ- and the highest stage observed in each eye using the international ence was not significant (P = 0.315). classification of ROP.33,34 Duration of respiratory support (continuous positive airway pressure or mechanical ventilation), duration of oxygen therapy Glucose measurement and the concentration of the administered oxygen (FiO2)duringthe Routine laboratory investigations were obtained from all cases, including first 3 days were all significantly higher in ROP cases (Table 4). complete blood picture, blood chemistry and blood gases. In addition, Compared with non-ROP infants, infants who developed ROP had glucose concentration was checked using point-of-care glucometer delayed onset to introduce enteral feeds (7.6 ± 4.5 vs 5 ± 3.4 days, (Optuim Xceed, Abbott, lake Forest, IL, USA).
Recommended publications
  • Treat Cataracts and Astigmatism with One
    TREAT CATARACTS Cataract patients have a choice Eye with cataract See life through the AcrySof® IQ Toric IOL. of treatments, including the As the eye ages, the lens becomes AND ASTIGMATISM WITH breakthrough AcrySof® IQ Toric cloudier, allowing less light to pass Ask your doctor about your options. intraocular lens (IOL) that treats through. The light that doesn’t make ONE PROCEDURE pre-existing corneal astigmatism at the it to the retina is diffused or scattered, same time that it corrects cataracts. leaving vision defocused and blurry. With a single procedure, you have the potential to enjoy freedom from glasses or contacts for distance vision with enhanced image quality – and see life through a new lens. 1. Independent third party research; Data on File, December 2011. Cataracts and astigmatism defined. Important Product Information A cataract is like a cloud over the eye’s lens, Eye with astigmatism CAUTION: Restricted by law to sale by or on the order of a physician. DESCRIPTION: interfering with quality of vision and making The AcrySof® IQ Toric Intraocular Lenses (IOLs) are artificial lenses implanted in the normal activities, such as driving a car, reading When the surface of the cornea has eye of adult patients following cataract surgery. These lenses are designed to correct pre-existing corneal astigmatism, which is the inability of the eye to focus clearly at a newspaper or seeing people’s faces, an uneven curvature, shaped more any distance because of difference curvatures on the cornea, and provide distance vision. WARNINGS / PRECAUTIONS: You may experience and need to contact your increasingly difficult.
    [Show full text]
  • Ophthalmic Features in Prader-Willi Syndrome Patients with Type-2 Diabetes Mellitus
    CORE Metadata, citation and similar papers at core.ac.uk Dokkyo Journal of Medical Sciences 46(2)(2019)46(2):63〜 68,2019 Ophthalmic features in Prader-Willi Syndrome 63 Original Ophthalmic Features in Prader-Willi Syndrome Patients with Type-2 Diabetes Mellitus Tetsuya Muto 1), Yuji Oto 2), Nobuyuki Murakami 2), Shigeki Machida 1) 1)Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan 2)Department of Pedatrics, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan SUMMARY Purpose:To investigate and compare features of diabetic retinopathy(DR)in patients with Prader-Wil- li Syndrome(PWS)and those without PWS. Methods:Overall, 33 PWS patients with type-2 diabetes mellitus(T2DM)secondary to PWS(65 eyes) and 55 age-matched patients with T2DM(109 eyes)without congenital heredity diseases were reviewed. Medical records of 65 eyes with PWS(PWS group:mean age 24.7±5.9 years)and 109 eyes without PWS (control group:mean age 22.9±6.2 years)were acquired and compared from January 2000 to November 2018. Best-corrected visual acuity(BCVA)was determined and DR scores were assigned. Results:BCVA was significantly low in PWS group compared with the controls(P<0.001). Pseudopha- kia was frequently observed in patients in the PWS group(P=0.024). No significant differences were found with respect to cataract(P=0.065)and DR score(P=0.77)between patients in the PWS and con- trol groups. Investigations into the possible causes of the low BCVA in the PWS group found no significant difference regarding strabismus(P=0.065).
    [Show full text]
  • Piloting the Treatment of Retinopathy in India Diabetic Retinopathy and Retinopathy of Prematurity
    Piloting the Treatment of Retinopathy in India Diabetic Retinopathy and Retinopathy of Prematurity Report of an Independent External Evaluation Amaltas Piloting the Treatment of Retinopathy in India Diabetic Retinopathy and Retinopathy of Prematurity Amaltas July 2019 Acknowledgements This report provides an independent, external evaluation of a large programme of work on retinopathy funded by the Queen Elizabeth Diamond Jubilee Trust Fund with additional funding from the Helmsley Trust Fund. We gratefully acknowledge the support from LSHTM and PHFI. Dr. GVS Murthy, Dr. Clare Gilbert, Dr. Rajan Shukla and Dr. Tripura Batchu extended every support to the evaluators. The wonderful images are the work of photographer Rajesh Pande. Work on the programme was helmed by the Indian Institute of Public Health, Hyderabad, a centre of the Public Health Foundation of India, and the London School of Hygiene and Tropical Medicine, United Kingdom. The programme itself was a collaborative effort of many government and non government organisations and partners in India. This report has been prepared by Amaltas Consulting Private Limited, India. Amaltas (www.amaltas.asia) is a Delhi based organization with a mission to work within the broad scope of development to provide high quality consulting and research in support of accelerating improvements in the lives of people. The report was written by Dr. Suneeta Singh and Shivanshi Kapoor, Amaltas with support from Dr. Deepak Gupta, Consultant. TABLE OF CONTENTS Acronyms List of Figures List of Tables Executive
    [Show full text]
  • Diabetic Retinopathy
    RETINA HEALTH SERIES | Facts from the ASRS The Foundation American Society of Retina Specialists Committed to improving the quality of life of all people with retinal disease. Diabetic Retinopathy: Diabetic retinopathy (pronounced ret in OP uh thee) is a complication of diabetes that causes damage to the blood vessels of the retina— the light-sensitive tissue that lines the back part of the eye, allowing you to see fine detail. Diabetic retinopathy is the most common cause of irreversible blindness in working-age Americans. As many people with type 1 diabetes suffer blindness SYMPTOMS as those with the more common type 2 disease. Diabetic retinopathy occurs in more than half of the people who develop diabetes. It is possible to have diabetic retinopathy for a long time Causes: The primary cause of diabetic retinopathy is diabetes—a condition in without noticing symptoms until which the levels of glucose (sugar) in the blood are too high. Elevated sugar substantial damage has occurred. levels from diabetes can damage the small blood vessels that nourish the Symptoms of diabetic retinopathy retina and may, in some cases, block them completely. may occur in one or both eyes. When damaged blood vessels leak fluid into the retina it results in a Symptoms may include: condition known as diabetic macular edema which causes swelling in the • Blurred or double vision center part of the eye (macula) that provides the sharp vision needed for • Difficulty reading reading and recognizing faces. • The appearance of spots— Prolonged damage to the small blood vessels in the retina results in poor commonly called “floaters”— circulation to the retina and macula prompting the development of growth in your vision factors that cause new abnormal blood vessels (neovascularization) and scar • A shadow across the field of vision tissue to grow on the surface of the retina.
    [Show full text]
  • Frequency of Low Vision Patient and Their Causes Presenting in Madinah Teaching Hospital, Pakistan
    Advances in Ophthalmology & Visual System Research Article Open Access Frequency of low vision patient and their causes presenting in Madinah Teaching Hospital, Pakistan Abstract Volume 9 Issue 6 - 2019 Aim: The aim of our study to determine the frequency of low vision patient and their causes presenting in Madinah Teaching Hospital. Fatima Iqbal,1 Iqra Khalil,1 Hafiza Ayesha Khalil,2 Mariam Sadiq,3 Hafiza Azka Noor,3 Methods: 400 patients were screened in the duration of five month from JAN to MAY Mawra Zahid 2019.80 subjects were taken as a low vision patient according to WHO, whose visual 1 acuity was less than 6/18 with correction. The main causes of low vision were observed Lecturer in School of Optometry, University of Faisalabad, Pakistan high refractive errors, retinitis pigmentosa, cataract, glaucoma and diabetic retinopathy all 2Optometrist, Fred Hollow Foundation, Pakistan patients presenting in ophthalmology department with either gender and age ranging from 3Optometrist, LRBT Toba Tek Singh, Pakistan 10-80 years. Uncooperative and mentally retarded persons were excluded in our study. 4Demonstrator, University of Lahore, Pakistan After complete history, we examined the all individual’s visual acuity with log-mar chart, color vision with ishihara and contrast sensitivity with Pelli-robson chart. Data was entered Correspondence: Fatima Iqbal, Lecturer in School of in to SPSS latest version and analyzed by descriptive analysis. Optometry, University of Faisalabad, Pakistan, Tel 03315538865, Email [email protected] Results:
    [Show full text]
  • Fact Sheet About Diabetic Macular Edema (Dme)
    FACT SHEET ABOUT DIABETIC MACULAR EDEMA (DME) WHAT IS DME? Diabetic Macular Edema (DME) or "swelling of the macula" is a common complication in the eyes of patients with diabetes. It is a frequent cause of vision loss in patients with diabetes, and can eventually lead to blindness.1,2 The macula is the part of the retina responsible for central or fine vision. In DME, blood vessels in the retina are damaged by chronic high blood sugar levels. A breakdown in the blood-retinal barrier and increased vascular permeability allows fluid from blood vessels to leak into the retina, causing macular swelling.2 Fluid in the macula can cause severe vision loss or blindness.2 Vascular endothelial growth factor (VEGF), a naturally occurring family of growth factors in the body, appears to play a critical role in the development of DME.3 Increased VEGF production contributes to the vascular disruptions and leakage that characterize DME, as well as the formation of new blood vessels (a process known as angiogenesis) seen in more advanced forms of diabetic retinopathy (DR).2 DME STATISTICS According to the Centers for Disease Control and Prevention, approximately 29.1 million adults are living with diabetes (types I & II) in the U.S. 4 Of those, approximately 1.5 million people are diagnosed with DME.5 o The prevalence of DME is especially high among racial and ethnic minorities, particularly in African Americans.6 DME is the leading cause of blindness in young adults in developed countries.7 The increasing number of individuals with diabetes worldwide suggests that DME will continue to be a major contributor to vision loss and associated functional impairment.
    [Show full text]
  • Keratoconus Into Focus
    SEPTEMBER 2019 # 37 In My View In Practice Profession Sitting Down With Musings of a prospective The amblyopia app making Why the fight for female Stefanie Schmickler: business- glaucoma patient screening accessible to all leadership is far from over minded, patient-focused 12 – 13 32 – 35 46 – 49 50 – 51 Bringing Keratoconus into Focus Sharpening up our response to this underdiagnosed condition 14– 26 NORTH AMERICA www.theophthalmologist.com FOR ROTATIONAL STABILITY, THERE’S NO COMPARISON1,2 1. Lee BS, Chang DF. Comparison of the rotational stability of two toric intraocular lenses in 1273 consecutive eyes. Ophthalmology. 2018;0:1-7. 2. Potvin R, et al. Toric intraoclar lens orientation and residual refractive astigmatism: an analysis. Clin Ophthalmol. 2016;10:1829-1836. Please see Important Product Information on the adjacent page. AcrySof®IQ Toric ASTIGMATISM-CORRECTING IOL © 2018 Novartis 7/18 US-TOR-18-E-1605 105064 US-TOR-18-E-1605 TO.indd 1 1/30/19 4:04 PM ACRYSOF® IQ TORIC IOL IMPORTANT PRODUCT INFORMATION CAUTION: Federal (USA) law restricts this device to the sale by or on the order of a physician. INDICATIONS: The AcrySof® IQ Toric posterior chamber intraocular lenses are Image intended for primary implantation in the capsular bag of the eye for visual correction of aphakia and pre-existing corneal astigmatism secondary to removal of a cataractous lens in of the adult patients with or without presbyopia, who desire improved uncorrected distance vision, reduction of residual refractive cylinder and Month increased spectacle independence for distance vision. WARNING/PRECAUTION: Careful preoperative evaluation and sound clinical judgment should be used by the surgeon to decide the risk/benefit ratio before implanting a lens in a patient with any of the conditions described in the Directions for Use labeling.
    [Show full text]
  • 5 (Blue) Cone Pathway Vulnerability in Retinitis Pigmentosa, Diabetes and Glaucoma
    Investigative Ophthalmology & Visual Science, Vol. 30, No. 8, August 1989 Copyright © Association for Research in Vision and Ophthalmology 5 (Blue) Cone Pathway Vulnerability in Retinitis Pigmentosa, Diabetes and Glaucoma Vivienne C. Greenstein,* Donald C. Hood,t Robert Rirch4 David Sreinberger4 and Ronald E. Carr* A variety of retinal diseases lead to a decrease in the sensitivity of the S (blue) cone pathways. To determine the possible sites and mechanisms of this loss we compared the sensitivities of an S (blue/pi-1) and an M (green/pi-4) cone pathway in patients with retinal diseases that differ as to their primary locus of sensitivity loss. The sensitivities of an S and an M cone pathway were assessed in patients with retinitis pigmentosa, insulin-dependent diabetes mellitus and open-angle glaucoma using Stiles two-color increment threshold technique. A greater loss in sensitivity of an S than an M cone pathway was found for all three disease groups; however, the diabetic patients showed a more selective loss. The results suggest that multiple sites are involved and that the combined effects of metabolic abnormalities and hypoxia contribute to the selective loss. Invest Ophthalmol Vis Sci 30:1732- 1737,1989 A selective loss in sensitivity to short-wavelength The three diseases do not necessarily produce the light has been reported in diseases as diverse as retini- same degree of relative S cone pathway loss and a tis pigmentosa (RP), diabetes mellitus and glau- comparative study may provide some understanding coma.'"7 This selective loss has been attributed to of the factors that contribute to the apparent vulnera- vulnerability of the S "blue" cone photoreceptors to bility or selective sensitivity loss of the S cone path- disease.
    [Show full text]
  • Dry Eye Syndrome in Type II Diabetic Patients Attending a Medical College Teaching Hospital
    12 Ophthalmology and Allied Sciences Volume 4 Number 1, January - April 2018 Original Article DOI: http://dx.doi.org/10.21088/oas.2454.7816.4118.2 Dry Eye Syndrome in Type II Diabetic Patients Attending A Medical College Teaching Hospital Gnanajyothi C. Bada*, Satish S. Patil** *Assistant Professor, Department of Ophthalmology, Khaja Banda Nawaz Institute of Medical Sciences, Kalaburagi, Karnataka 585104, India. **Assistant ProfessorDepartment of Physiology, M R Medical College, Kalaburagi, Karnataka 585105, India. Abstract Introduction: Diabetes mellitus is one of the leading health problem all over the world. Dry eye syndrome (DES) is common in diabetes mellitus. The study was done to detect theprevalence of DES in type II diabetic patients and to determine the association of dry eyes with diabetic retinopathy. Methodology: Diabetic patients(n=200) attending Ophthalmology OPD at Khaja Bande Nawaz Institute of Medical Sciences (KBNIMS), Kalaburagi during the period fromApril to December 2017 were included in the study group, basedon the inclusion & exclusion criteria. Results: Our study showed that the prevalence of DES in diabetes was 51%, with higher rate in females and older age group. 33% of diabetic retinopathy patients had DES even though it was not statistically significant. Conclusion: Since there exists an association between diabetes and DES, all diabetic patients should be screened for DES to prevent ocular surface damage. Keywords: Diabetes Mellitus; Diabetic Retinopathy; Dry Eye Syndrome (DES). Introduction itchiness, redness, pain, ocular fatigue and visual disturbance [6]. DES results in corneal and conjunctival epithelial alterations such as punctate Diabetes mellitus is one of the leading health keratopathy, recurrent erosions, persistent epithelial problem all over the world [1].
    [Show full text]
  • Effect of Glaucoma on Development of Diabetic Retinopathy in Long Standing Diabetics
    Research Article Journal of Clinical Ophthalmology and Eye Disorders Published: 01 Mar, 2021 Effect of Glaucoma on Development of Diabetic Retinopathy in Long Standing Diabetics Anuj Kumar Singal* Department of Ophthalmology, JSS Medical College, India Abstract Aim: To compare the prevalence and severity of diabetic retinopathy in patients with glaucoma and compare it with patients without any evidence of glaucoma. Methods and Materials: In this retrospective observational study, a total of 70 diabetics with a history of diabetes since a minimum of ten years and under regular treatment presenting to the ophthalmology OPD were taken for the study. The right eye was taken into the study. These 70 eyes of 70 patients underwent detailed ophthalmic examination and the presence or absences of retinopathy (as per Modified Airlie House classification of diabetic retinopathy) as well as severity of retinopathy and glaucoma were noted. Results: Mean age of the patients was 60.39 ± 10 years. Males were predominant in the study. Among the 70 eyes, 38 eyes were diagnosed with glaucoma. The remaining 32 eyes did not show any signs of glaucoma. The mean duration of diabetes was similar in both glaucomatous and non-glaucomatous patients (12.2 vs. 12.7 yrs). Most patients (63%) with glaucoma had no retinopathy changes and none of these patients had severe retinopathy. On the other hand, most patients without any signs of glaucoma were found to have some retinopathy changes (72%) with nearly half of them having severe retinopathy changes. This was statistically highly significant (p<0.0001). The Intraocular pressure was found to be lower in patients with retinopathy changes.
    [Show full text]
  • Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials
    cells Review Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials Vladimir Holan 1,2,*, Katerina Palacka 1,2 and Barbora Hermankova 1 1 Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; [email protected] (K.P.); [email protected] (B.H.) 2 Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic * Correspondence: [email protected] Abstract: Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmen- tosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased Citation: Holan, V.; Palacka, K.; retinas. This view is supported by the recent results of numerous experimental studies in different Hermankova, B.
    [Show full text]
  • 5 Things You Should Know About Diabetic Eye Disease
    Diabetic Eye Disease A program of the National Institutes of Health 5 Things You Should Know About Diabetic Eye Disease Did you know that diabetes can cause eye 4 Stay on TRACK— disease? If left untreated, it can cause vision loss That is: Take your medications as prescribed by or even blindness. To help you keep your vision your doctor; Reach and maintain a healthy weight; healthy, here are five things the National Eye Add more physical activity to your daily routine; Institute (NEI) would like you to know about diabetic Control your ABC’s—A1C, blood pressure, and eye disease: cholesterol levels; and Kick the smoking habit. A group of eye problems— 1 5 Get a dilated eye exam— People with diabetes may face several eye If you have diabetes, be sure to have a problems as a complication of this disease. comprehensive dilated eye exam at least once a They include cataract, glaucoma, and diabetic year. Diabetic eye disease can be detected early retinopathy, which is the leading cause of blindness and treated before noticeable vision loss occurs. in American adults age 20–74. No symptoms, no pain— 2 Video: In its early stages, diabetic retinopathy has no This video describes what the doctor sees symptoms. A person may not notice vision changes when examining the retina (the light-sensitive until the disease advances. Blurred vision may occur when the macula swells from the leaking fluid tissue at the back of the eye), macula (the part (called macular edema). If new vessels have grown of the retina needed for sharp, central vision), on the surface of the retina, they can bleed into the and optic nerve (which connects the retina to eye, blocking vision.
    [Show full text]