Identification of a Functional Human-Unique 351-Bp Alu Insertion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association Analyses of Known Genetic Variants with Gene
ASSOCIATION ANALYSES OF KNOWN GENETIC VARIANTS WITH GENE EXPRESSION IN BRAIN by Viktoriya Strumba A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2009 Doctoral Committee: Professor Margit Burmeister, Chair Professor Huda Akil Professor Brian D. Athey Assistant Professor Zhaohui S. Qin Research Statistician Thomas Blackwell To Sam and Valentina Dmitriy and Elizabeth ii ACKNOWLEDGEMENTS I would like to thank my advisor Professor Margit Burmeister, who tirelessly guided me though seemingly impassable corridors of graduate work. Throughout my thesis writing period she provided sound advice, encouragement and inspiration. Leading by example, her enthusiasm and dedication have been instrumental in my path to becoming a better scientist. I also would like to thank my co-advisor Tom Blackwell. His careful prodding always kept me on my toes and looking for answers, which taught me the depth of careful statistical analysis. His diligence and dedication have been irreplaceable in most difficult of projects. I also would like to thank my other committee members: Huda Akil, Brian Athey and Steve Qin as well as David States. You did not make it easy for me, but I thank you for believing and not giving up. Huda’s eloquence in every subject matter she explained have been particularly inspiring, while both Huda’s and Brian’s valuable advice made the completion of this dissertation possible. I would also like to thank all the members of the Burmeister lab, both past and present: Sandra Villafuerte, Kristine Ito, Cindy Schoen, Karen Majczenko, Ellen Schmidt, Randi Burns, Gang Su, Nan Xiang and Ana Progovac. -
An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ...................................................................................... -
DNA Sequence Insertion and Evolutionary Variation in Gene Regulation (Mobile Elements/Long Terminal Repeats/Alu Sequences/Factor-Binding Sites) Roy J
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9374-9377, September 1996 Colloquium Paper This paper was presented at a colloquium entitled "Biology of Developmental Transcription Control, " organized by Eric H. Davidson, Roy J. Britten, and Gary Felsenfeld, held October 26-28, 1995, at the National Academy of Sciences in Irvine, CA. DNA sequence insertion and evolutionary variation in gene regulation (mobile elements/long terminal repeats/Alu sequences/factor-binding sites) RoY J. BRITrEN Division of Biology, California Institute of Technology, 101 Dahlia Avenue, Corona del Mar, CA 92625 ABSTRACT Current evidence on the long-term evolution- 3 and 4). Sequence change, obscuring the original structure, ary effect of insertion of sequence elements into gene regions has occurred in the long history, and the underlying rate of is reviewed, restricted to cases where a sequence derived from base substitution that is responsible is known (5). a past insertion participates in the regulation of expression of The requirements for a convincing example are: (i) that a useful gene. Ten such examples in eukaryotes demonstrate there be a trace of a known class of elements present in gene that segments of repetitive DNA or mobile elements have been region; (ii) that there is evidence that it has been there long inserted in the past in gene regions, have been preserved, enough to not just be a transient mutation; (iii) that some sometimes modified by selection, and now affect control of sequence residue of the mobile element or repeat participates transcription ofthe adjacent gene. Included are only examples in regulation of expression of the gene; (iv) that the gene have in which transcription control was modified by the insert. -
Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes
G C A T T A C G G C A T genes Article Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes Filip Pajpach , Linda Shearwin-Whyatt and Frank Grützner * School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; fi[email protected] (F.P.); [email protected] (L.S.-W.) * Correspondence: [email protected] Abstract: Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplica- tions and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meio- sis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved Citation: Pajpach, F.; in mammals. -
Transcriptome-Wide Effects of Inverted Sines on Gene Expression And
Tajaddod et al. Genome Biology (2016) 17:220 DOI 10.1186/s13059-016-1083-0 RESEARCH Open Access Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity Mansoureh Tajaddod1†, Andrea Tanzer3†, Konstantin Licht2†, Michael T. Wolfinger2,3, Stefan Badelt3, Florian Huber1,4, Oliver Pusch2, Sandy Schopoff1, Michael Janisiw2, Ivo Hofacker3 and Michael F. Jantsch2,5* Abstract Background: Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Results: Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Conclusions: Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. -
Sequences Enriched in Alu Repeats Drive Nuclear Localization of Long Rnas in Human Cells
bioRxiv preprint doi: https://doi.org/10.1101/189746; this version posted September 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells Yoav Lubelsky and Igor Ulitsky* Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel * - Corresponding author, [email protected] +972-8-9346421 Abstract Long noncoding RNAs (lncRNAs) are emerging as key players in multiple cellular pathways, but their modes of action, and how those are dictated by sequence remain elusive. While lncRNAs share most molecular properties with mRNAs, they are more likely to be enriched in the nucleus, a feature that is likely to be crucial for function of many lncRNAs, but whose molecular underpinnings remain largely unclear. In order identify elements that can force nuclear localization we screened libraries of short fragments tiled across nuclear RNAs, which were cloned into the untranslated regions of an efficiently exported mRNA. The screen identified a short sequence derived from Alu elements and found in many mRNAs and lncRNAs that increases nuclear accumulation and reduces overall expression levels. Measurements of the contribution of individual bases and short motifs to the element functionality identified a combination of RCCTCCC motifs that are bound by the abundant nuclear protein HNRNPK. Increased HNRNPK binding and C-rich motifs are predictive of substantial nuclear enrichment in both lncRNAs and mRNAs, and this mechanism is conserved across species. Our results thus detail a novel pathway for regulation of RNA accumulation and subcellular localization that has been co-opted to regulate the fate of transcripts that integrated Alu elements. -
Isolation, Characterization, and Mapping of Four Novel Polymorphic Markers and an H3.3B Pseudogene to Chromosome 9P21-22
348J Hum Genet (1999) 44:348–349 © Jpn Soc Hum Genet and Springer-Verlag 1999 BRIEF REPORT — CASE REPORT Elias Aliprandis · Juliette Harris · Barney Yoo Bruce D. Gelb · John A. Martignetti Isolation, characterization, and mapping of four novel polymorphic markers and an H3.3B pseudogene to chromosome 9p21-22 Received: April 16, 1999 / Accepted: May 20, 1999 Abstract Alterations in chromosomal region 9p21-22 are (Cannon-Albright et al. 1994), and multiple familial trich- among the most frequently encountered cytogenetic changes oepithelioma (Harada et al. 1996). We describe the isola- present in a number of human malignancies. In addition, the tion, characterization, fine mapping, and ordering of four causative genes of a number of hereditary cancers have been novel polymorphic markers, the previously identified genetically mapped to this region. We describe the isolation marker D9S1846, and a processed replacement histone and precise localization of four novel polymorphic markers H3.3B pseudogene and its flanking L1 and Alu elements. and a previously identified marker, D9S1846, from this re- gion. Moreover, we have identified a retroposon-rich area within this oncogenic region containing a processed H3.3B pseudogene flanked by an L1 sequence and an Alu element. Source and isolation of polymorphic DNA markers and Together, these finely mapped and ordered reagents should an H3.3B pseudogene prove useful for genetic mapping, sequencing, and loss of heterozygosity studies of the 9p21-22 region. Two P1 clones and one PAC clone (731, 232, and 160 8P, respectively; Research Genetics, Huntsville, AL, USA) from Key words Chromosome 9p21-22 · Polymorphic markers · the region were restriction enzyme digested and the resulting Histone H3.3B Pseudogene · Loss of heterozygosity · fragments were separated electrophoretically and transferred to Retroposon a nylon membrane (NEN, Boston, MA, USA) using standard methods (Maniatis et al. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Origins and Functional Impact of Copy Number Variation in the Human Genome
doi:10.1038/nature08516 ARTICLES Origins and functional impact of copy number variation in the human genome Donald F. Conrad1*, Dalila Pinto2*, Richard Redon1,3, Lars Feuk2,4, Omer Gokcumen5, Yujun Zhang1, Jan Aerts1, T. Daniel Andrews1, Chris Barnes1, Peter Campbell1, Tomas Fitzgerald1, Min Hu1, Chun Hwa Ihm5, Kati Kristiansson1, Daniel G. MacArthur1, Jeffrey R. MacDonald2, Ifejinelo Onyiah1, Andy Wing Chun Pang2, Sam Robson1, Kathy Stirrups1, Armand Valsesia1, Klaudia Walter1, John Wei2, Wellcome Trust Case Control Consortium{, Chris Tyler-Smith1, Nigel P. Carter1, Charles Lee5, Stephen W. Scherer2,6 & Matthew E. Hurles1 Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs. -
Detection Rate. FC: Fold Change. GO: Gene Ontology. AUC: Area Under
Figure S1. Flow chart of the study. DR: detection rate. FC: fold change. GO: Gene Ontology. AUC: area under curve. KEGG: Kyoto Encyclopedia of Genes and Genomes. GEO: Gene Expression Omnibus. Figure S2. Independent validation of miRNAs and the classifier. A, ΔCt of 6 selected miRNAs in the independent cohort. *, P < 0.05. **, P < 0.01. ***, P < 0.001. B, Receiver operating curve of the classifier in the independent cohort. AUC: area under curve. Figure S3. Venn of predicted target genes from 3 platforms. Figure S4. GO enrichment analysis. GO: Gene Ontology. Table S1. miRNA expression profile in screening stage. Table S2. miRNA expression profile in validation stage. Table S3. Efficacy of the classifier. Table S4. miRNA expression profile in independent validation stage. Table S5. Predicted target genes. Table S6a. KEGG enrichment analysis. KEGG: Kyoto Encyclopedia of Genes and Genomes. Table S6b. GO_BP enrichment analysis. GO: Gene Ontology. BP: Biological Process. Table S6c. GO_CC enrichment analysis. CC: Cellular Component. Table S6d. GO_MF enrichment analysis. MF: Molecular Function. Table S7. GEO expression array datasets involved in this study. GEO: Gene Expression Omnibus. Table S8a. Predicted target genes covered by the selected GEO datasets. GEO: Gene Expression Omnibus. 1 Table S8b. Expression profiles of predicted target genes of hsa-miR-26b-5p in GEO datasets. Table S8c. Expression profiles of predicted target genes of hsa-miR-146b-5p in GEO datasets. Table S8d. Expression profiles of predicted target genes of hsa-miR-191-5p in GEO datasets. Table S8e. Expression profiles of predicted target genes of hsa-miR-484 in GEO datasets. -
Spatial Protein Interaction Networks of the Intrinsically Disordered Transcription Factor C(%3$
Spatial protein interaction networks of the intrinsically disordered transcription factor C(%3$ Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie/Molekularbiologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Von Evelyn Ramberger, M.Sc. Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing.Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Matthias Selbach 3. Prof. Dr. Gunnar Dittmar Tag der mündlichen Prüfung: 12.8.2020 For T. Table of Contents Selbstständigkeitserklärung ....................................................................................1 List of Figures ............................................................................................................2 List of Tables ..............................................................................................................3 Abbreviations .............................................................................................................4 Zusammenfassung ....................................................................................................6 Summary ....................................................................................................................7 1. Introduction ............................................................................................................8 1.1. Disordered proteins -
Flotillin 1 Antibody (R31142)
Flotillin 1 Antibody (R31142) Catalog No. Formulation Size R31142 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt O75955 Applications Western blot : 0.5-1ug/ml Limitations This Flotillin 1 antibody is available for research use only. Western blot testing of Flotillin 1 antbody; Lane 1: rat lung; 2: (r) brain; 3: (r) ovary; 4: human SMMC-7721; 5: (h) MFC-7 cell lysate. Expected/observed molecular weight ~49kDa. Description Flotillin 1 is a protein that in humans is encoded by the FLOT1 gene. The International Radiation Hybrid Mapping Consortium mapped the gene to chromosome 6. Bickel et al.(1997) found that mouse Flot1 behaves as a resident integral membrane protein of caveolae. It consistently copurified with Flot2 and with caveolin-1 in the purification of caveolin-rich membranes. Hazarika et al.(1999) found that stable transfection of Flot1, which they called ESA/flotillin-2, in COS-1 cells induced filopodia formation and changed the epithelial morphology to that of neuronal cells. Santamaria et al.(2005) found that prostate tumor overexpressed gene-1 interacted with Flotillin1 in detergent-insoluble membrane fractions. Flotillin1 colocalized with PTOV1 at the plasma membrane and in the nucleus, and it entered the nucleus concomitant with PTOV1 shortly before initiation of S phase. Application Notes The stated application concentrations are suggested starting amounts.