Empowering the Detection of Chip-Seq “Basic Peaks” (Bpeaks) In

Total Page:16

File Type:pdf, Size:1020Kb

Empowering the Detection of Chip-Seq “Basic Peaks” (Bpeaks) In Denecker and Lelandais BMC Res Notes (2018) 11:698 https://doi.org/10.1186/s13104-018-3802-y BMC Research Notes RESEARCH NOTE Open Access Empowering the detection of ChIP‑seq “basic peaks” (bPeaks) in small eukaryotic genomes with a web user‑interactive interface Thomas Denecker* and Gaëlle Lelandais Abstract Objective: bPeaks is a peak calling program to detect protein DNA-binding sites from ChIPseq data in small eukary- otic genomes. The simplicity of the bPeaks method is well appreciated by users, but its use via an R package is challenging and time-consuming for people without programming skills. In addition, user feedback has highlighted the lack of a convenient way to carefully explore bPeaks result fles. In this context, the development of a web user interface represents an important added value for expanding the bPeaks user community. Results: We developed a new bPeaks application (bPeaks App). The application allows the user to perform all the peak-calling analysis steps with bPeaks in a few mouse clicks via a web browser. We added new features relative to the original R package, particularly the possibility to import personal annotation fles to compare the location of the detected peaks with specifc genomic elements of interest of the user, in any organism, and a new organization of the result fles which are directly manageable via a user-interactive genome browser. This signifcantly improves the ability of the user to explore all detected basic peaks in detail. Keywords: ChIP-seq, Peak calling, Protein DNA-binding sites, Small eukaryotic genomes, bPeaks Introduction [5]. Te general idea was to take advantage of sim- ChIP-seq, i.e. chromatin immunoprecipitation sequenc- pler peak calling for species with small genome sizes ing, is an experimental approach to analyze protein (< 20 Mb). Te program bPeaks thus performs an explo- interactions with DNA [1]. Peak detection (also referred ration of ChIP-seq results at the nucleotide scale. It uses as “peak calling”) consists of identifying all the genomic a sliding window, which compares the read distributions regions in which a signifcant enrichment of DNA between the immunoprecipitation (IP) sample and a con- sequences (or reads) in a ChIP sample is observed com- trol sample. We implemented the bPeaks program with pared to a control sample. Tese regions are expected to the R language and the associated package is available represent DNA-binding sites for the studied protein [2]. at the CRAN website [6]. Since its original publication, A considerable number of peak calling software packages the bPeaks R package has been downloaded more than have been developed (for instance [3, 4], etc.) and choos- 11,360 times (July 2018) and successfully used to identify ing the appropriate software, optimized for a specifc bio- DNA-binding sites for diferent proteins in several yeast logical system of interest, is a prerequisite for successful species [7–10]. ChIP-seq data interpretation. Our colleagues, essentially experimental biologists, In this context, we proposed a methodology to iden- appreciate the simplicity of the bPeaks methodology. tify “basic Peaks” (bPeaks) in small eukaryotic genomes Te program uses a combination of only four thresh- olds to mimic “good peak” properties, as described by investigators who visually inspect ChIP-seq results on a *Correspondence: thomas.denecker@u‑psud.fr Institut de Biologie Intégrative de la Cellule (I2BC), Centre National de la genome browser [5]. However, they highlighted several Recherche Scientifque: UMR9198, Université Paris-Saclay, Université Paris- difculties. First, working with an R program is a chal- Sud - Paris 11, 11 ‑ Bâtiment 400, Orsay, France lenging task for people with only limited bioinformatic © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Denecker and Lelandais BMC Res Notes (2018) 11:698 Page 2 of 7 skills. Initial installation of the necessary software and (i) evaluate the overall quality of the analyzed ChIP-seq libraries, importing of the ChIP-seq data in R, and run- data (Lorenz curve and PBC calculation), (ii) facilitate ning a bPeaks search can be excessively difcult for sim- the exploration of output fles (with a user-interactive ply technical reasons and may thus be an obstacle to the genome browser), and (iii) upload annotation fles to in-depth analysis of the results. Also, bPeaks generates a compare the location of the detected peaks with particu- large number of output fles (several dozen), which are lar genomic elements of interest to the user, in any organ- all automatically written and stored in a single operating ism. bPeaks App is an open source program available on system (OS) folder. Tese fles were meant to be helpful Github [11]. It has the advantage that it can be deployed for further investigation (for example, detection of regu- locally (on a personal workstation) or on a server. Here, latory motifs), but feedback from users brought to our we present the technical solutions that were chosen and attention the need for their better organization and docu- explain the main functionalities of the bPeaks App. mentation. Finally, the bPeaks R package only comprises pre-registered annotations of genes for yeast species Main text because our group’s research activities are focused on Methods functional genomics in yeast. Tis is an important limita- General overview tion for researchers interested in other organisms. Te bPeaks App is a web application which uses the We developed a new application to overcome these lim- original bPeaks R package [6]. Te backend of the appli- itations. Referred hereafter as the “bPeaks App” (bPeaks cation is based on three mainstream open source tech- application), it is used via a web browser and makes it nologies: Github [12], Docker [13], and PostgresSQL possible to perform all the analysis steps required to [14] (see Fig. 1a). Te frontend solutions of the appli- identify protein DNA-binding sites with ChIP-seq results cation were chosen to provide users a particularly in a few mouse clicks. We developed new functionalities easy-to-use experience using Shiny, the Web Applica- in the bPeaks App, relative to the original R package, to tion Framework for R [15]. Te Plotly R package [16] ab Fig. 1 Technical solutions to develop the bPeaks App. a Open source softwares used to develop the application are shown here. It is divided into three sections: (1) development and test (in blue), (2) database storage (in red), and (3) fnal production (in green). b Tables defned in the PostgreSQL database that highlight the functioning of the bPeaks App Denecker and Lelandais BMC Res Notes (2018) 11:698 Page 3 of 7 was used to obtain dynamic graphical representa- Criterion to evaluate ChIP‑seq data quality tions, together with Google chart [17]. Te application Lorenz curves and PCR Bottleneck Coefcients (PBCs) requires a database to control user access. Te solu- are classical criteria to evaluate ChIP-seq data quality tion proposed by Shiny requires payment. Tus, we [23] and were both implemented into the bPeaks App. preferred another approach, based on a PostgreSQL Details of the calculations are presented in Additional database. Put very simply, the database is comprised fle 1. of three tables: one to manage user information, one to manage an information dashboard and one for gene Results annotations (Fig. 1b). Te connection between R and bPeaks App PostgreSQL was accomplished using RPostgreSQL [18] With the new bPeaks App, our aim was to (1) simplify and the protection of user passwords achieved with the the use of the bPeaks peak calling method for those pgcrypto extension. with no bioinformatics skills, (2) add several ChIP-seq data representations to assess the overall quality of the initial experiment, and (3) facilitate the exploration of Strategy for versioning the application peak calling results. Also, we wanted to guarantee the Two complementary axes were considered to ensure reproducibility of any results obtained with bPeaks App, appropriate versioning of the bPeaks App: (i) R package systematically tracing all the analysis steps and computa- dependencies and (ii) OS dependencies. Te package tional tool versions. We decided to divide the application manager packrat [19] was used to precisely follow the lat- into two parts referred hereafter as “bPeaks analyzer” est versions of all the packages used for development of and “bPeaks explorer”. bPeaks analyzer focuses solely the bPeaks App. It saves libraries locally and generates a on the peak calling step. Output fles are automatically packrat.lock fle. Tis fle lists the detailed package ver- renamed and reorganized in diferent OS folders. Tese sions that were used, including all dependencies. Te fles represent the starting point for the bPeaks explorer bPeaks App was built on a containerization paradigm part, which allows dynamic and user-interactive visuali- (see Fig. 1a) with Docker, since R software is also depend- zation of the detected peaks, as well as peak localization ent on the OS. Our objective was to entirely pack the relative to particular genomic elements (coding or pro- application and its dependencies in a virtual container. moter sequences, DNA repeated regions, etc.). All these Tus, it was possible to build images that contain eve- features in bPeaks explorer are novel compared to previ- rything required for the bPeaks App to function.
Recommended publications
  • Introduction to Chip-Seq
    Introduction to ChIP-seq Shamith Samarajiwa CRUK Summer School in Bioinformatics July 2019 Important!!! • Good Experimental Design • Optimize Conditions (Cells, Antibodies, Sonication etc.) • Biological Replicates (at least 3)!! ○ sample biological variation & improve signal to noise ratio ○ capture the desired effect size ○ statistical power to test null hypothesis • ChIP-seq controls – Knockout, Input (Try not to use IgG) What is ChIP Sequencing? ● Combination of chromatin immunoprecipitation (ChIP) with ultra high-throughput massively parallel sequencing. The typical ChIP assay usually take 4–5 days, and require approx. 106~ 107 cells. Allows mapping of Protein–DNA interactions or chromatin modifications in vivo on a genome scale. ● Enables investigation of ○ Transcription Factor binding ○ DNA binding proteins (HP1, Lamins, HMGA etc) ○ RNA Pol-II occupancy ○ Histone modification marks ●Single cell ChIP-seq is possible (Rotem et al, 2015 Nat. Biotech.) Origins of ChIP-seq technology ● Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al. “High-resolution profiling of histone methylations in the human genome.” Cell 2007 ● Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. “Genome-wide mapping of in vivo protein-DNA interactions.” Science 316, 2007 ● Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.” Nature 2007 ● Robertson et al., "Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing." Nat Methods. 2007 ChIP-seq methodology Cross-link cells Isolate genomic DNA Sonication Immuno-precipitation Park 2009 Nat. Rev Genet. Advances in technologies for nucleic acid-protein interaction detection • ChIP-chip : combines ChIP with microarray technology.
    [Show full text]
  • Peak-Calling for Chip-Seq and ATAC-Seq
    Peak-calling for ChIP-seq and ATAC-seq Shamith Samarajiwa CRUK Autumn School in Bioinformatics 2017 University of Cambridge Overview ★ Peak-calling: identify enriched (signal) regions in ChIP-seq or ATAC-seq data ○ Software packages ○ Practical and Statistical aspects (Normalization, IDR, QC measures) ○ MACS peak calling ○ Overview of transcription factor, DNA binding protein, histone mark and nucleosome free region peaks ○ Narrow and Broad peaks ○ A brief look at the MACS2 settings and methodology ○ ATAC-seq signal detection Signal to Noise modified from Carl Herrmann Strand dependent bimodality Wilbanks et al. 2010 PLOS One Peak Calling Software ★ Comprehensive list is at: https://omictools.com/peak-calling-category MACS2 (MACS1.4) Most widely used peak caller. Can detect narrow and broad peaks. Epic (SICER) Specialised for broad peaks BayesPeak R/Bioconductor Jmosaics Detects enriched regions jointly from replicates T-PIC Shape based EDD Detects megabase domain enrichment GEM Peak calling and motif discovery for ChIP-seq and ChIP-exo SPP Fragment length computation and saturation analysis to determine if read depth is adequate. Quality Measures • Fraction of reads in peaks (FRiP) is dependant on data type. FRiP can be calculated with deepTools2 • PCR Bottleneck Coefficient (PBC) is a measure of library complexity Preseq and preseqR for determining N1= Non redundant, uniquely mapping reads library complexity N2= Uniquely mapping reads Daley et al., 2013, Nat. Methods Quality Measures • Relative strand cross-correlation The RSC is the ratio of the fragment-length cross-correlation value minus the background cross-correlation value, divided by the phantom-peak cross-correlation value minus the background cross-correlation value.
    [Show full text]
  • Annominer Is a New Web-Tool to Integrate Epigenetics, Transcription
    www.nature.com/scientificreports OPEN AnnoMiner is a new web‑tool to integrate epigenetics, transcription factor occupancy and transcriptomics data to predict transcriptional regulators Arno Meiler1,3, Fabio Marchiano2,3, Margaux Haering2, Manuela Weitkunat1, Frank Schnorrer1,2 & Bianca H. Habermann1,2* Gene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into diferent gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell‑type specifc gene expression. We have developed the AnnoMiner web‑server, an innovative and fexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user‑provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two diferent transcriptional regulators together with gene features. Third, AnnoMiner ofers to explore the transcriptional deregulation of genes nearby, or within a specifed genomic region surrounding a user‑provided peak. AnnoMiner’s fourth function performs transcription factor or histone modifcation enrichment analysis for user‑provided gene lists by utilizing hundreds of public, high‑quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied
    [Show full text]
  • Fstitch: a Fast and Simple Algorithm for Detecting Nascent RNA Transcripts
    FStitch: A fast and simple algorithm for detecting nascent RNA transcripts Joseph Azofeifa Mary A. Allen Manuel Lladser Department of Computer BioFrontiers Institute Department of Applied Science University of Colorado Mathematics University of Colorado 596 UCB, JSCBB University of Colorado 596 UCB, JSCBB Boulder, CO 80309 526 UCB Boulder, CO 80309 Boulder, CO 80309 ∗ Robin Dowell Department of MCD Biology & Computer Science BioFrontiers Institute University of Colorado 596 UCB, JSCBB Boulder, CO 80309 ABSTRACT Keywords We present a fast and simple algorithm to detect nascent Nascent Transcription, Logisitic Regression, Hidden Markov RNA transcription in global nuclear run-on sequencing Models (GRO-seq). GRO-seq is a relatively new protocol that cap- tures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state 1. INTRODUCTION RNA levels, which are affected by transcription, post-trans- Almost all cellular stimulations trigger global transcriptional criptional processing, and RNA stability. A detailed study changes. To date, most studies of transcription have em- of GRO-seq data has the potential to inform on many as- ployed RNA-seq or microarrays. These assays, though pow- pects of the transcription process. GRO-seq data, however, erful, measure steady state RNA levels. Consequently, they presents unique analysis challenges that are only beginning are not true measures of transcription because steady state to be addressed. Here we describe a new algorithm, Fast levels are influenced by not only transcription but also RNA Read Stitcher (FStitch), that takes advantage of two pop- stability. Only recently has a method for direct measur- ular machine-learning techniques, a hidden Markov model ment of transcription genome-wide become available.
    [Show full text]
  • A Deep Learning Peak Caller for ATAC-Seq, Chip-Seq, and Dnase-Seq 1,2 1,2 2 Lance D
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428108; this version posted January 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. LanceOtron: a deep learning peak caller for ATAC-seq, ChIP-seq, and DNase-seq 1,2 1,2 2 Lance D. Hentges ,​ Martin J. Sergeant ,​ Damien J. Downes ,​ Jim R. ​ ​ ​ 1,2 1* Hughes ​ & Stephen Taylor ​ ​ 1 MRC​ WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular 2 Medicine, University of Oxford, Oxford, UK. MRC​ Molecular Haematology Unit, MRC ​ Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. * To​ whom correspondence should be addressed. Abstract Genomics technologies, such as ATAC-seq, ChIP-seq, and DNase-seq, have revolutionized molecular biology, generating a complete genome’s worth of signal in a single assay. Coupled with the use of genome browsers, researchers can now see and identify important DNA encoded elements as peaks in an analog signal. Despite the ease with which humans can visually identify peaks, converting these signals into meaningful genome-wide peak calls from such massive datasets requires complex analytical techniques. Current methods use statistical frameworks to identify peaks as sites of significant signal enrichment, discounting that the analog data do not follow any archetypal distribution. Recent advances in artificial intelligence have shown great promise in image recognition, on par or exceeding human ability, providing an opportunity to reimagine and improve peak calling. We present an interactive and intuitive peak calling framework, LanceOtron, built around image recognition using a wide and deep neural network.
    [Show full text]
  • HMMRATAC: a Hidden Markov Modeler for ATAC-Seq
    bioRxiv preprint doi: https://doi.org/10.1101/306621; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 HMMRATAC: a Hidden Markov ModeleR for ATAC-seq. 2 3 Evan D. Tarbell1 and Tao Liu1* 4 5 1 Department of Biochemistry, University at Buffalo, Buffalo, NY, 14203, USA 6 * To whom correspondence should be addressed. Tel: 716-829-2749; Fax: 716-849-6890; Email: 7 [email protected] 8 9 ABSTRACT 10 11 ATAC-seq has been widely adopted to identify accessible chromatin regions across the genome. 12 However, current data analysis still utilizes approaches initially designed for ChIP-seq or DNase- 13 seq, without taking into account the transposase digested DNA fragments that contain additional 14 nucleosome positioning information. We present the first dedicated ATAC-seq analysis tool, a 15 semi-supervised machine learning approach named HMMRATAC. HMMRATAC splits a single 16 ATAC-seq dataset into nucleosome-free and nucleosome-enriched signals, learns the unique 17 chromatin structure around accessible regions, and then predicts accessible regions across the 18 entire genome. We show that HMMRATAC outperforms the popular peak-calling algorithms on 19 published human and mouse ATAC-seq datasets. 20 21 INTRODUCTION 22 23 The genomes of all known eukaryotes are packaged into a nucleoprotein complex called 24 chromatin. The nucleosome is the fundamental, repeating unit of chromatin, consisting of 25 approximately 147 base pairs of DNA wrapped around an octet of histone proteins(1).
    [Show full text]
  • Peak-Calling for Chip-Seq
    Peak-calling for ChIP-seq Shamith Samarajiwa CRUK Summer School in Bioinformatics 2019 University of Cambridge Overview ★ Peak-calling: identify enriched (signal) regions in ChIP-seq or ATAC-seq data ○ Software packages ○ Practical and Statistical aspects (Normalization, IDR, QC measures) ○ MACS peak calling ○ Overview of transcription factor, DNA binding protein, histone mark and nucleosome free region peaks ○ Narrow and Broad peaks ○ A brief look at the MACS2 settings and methodology ○ ATAC-seq signal detection Signal to Noise modified from Carl Herrmann Strand dependent bimodality Wilbanks et al. 2010 PLOS One Peak Calling Software ★ Comprehensive list is at: https://omictools.com/peak-calling-category MACS2 (MACS1.4) Most widely used peak caller. Can detect narrow and broad peaks. Epic (SICER) Specialised for broad peaks BayesPeak R/Bioconductor Jmosaics Detects enriched regions jointly from replicates T-PIC Shape based EDD Detects megabase domain enrichment GEM Peak calling and motif discovery for ChIP-seq and ChIP-exo SPP Fragment length computation and saturation analysis to determine if read depth is adequate. Quality Measures • Fraction of reads in peaks (FRiP) is dependant on data type. FRiP can be calculated with deepTools2 • PCR Bottleneck Coefficient (PBC) is a measure of library complexity Preseq and preseqR for determining N1= Non redundant, uniquely mapping reads library complexity N2= Uniquely mapping reads Daley et al., 2013, Nat. Methods Quality Measures • Relative strand cross-correlation The RSC is the ratio of the fragment-length cross-correlation value minus the background cross-correlation value, divided by the phantom-peak cross-correlation value minus the background cross-correlation value. The minimum possible value is 0 (no signal), highly enriched experiments have values greater than 1, and values much less than 1 may indicate low quality.
    [Show full text]
  • Peak Calling Software Histone Modifications
    Peak Calling Software Histone Modifications Multiplied Emmett always inarm his conservative if Winny is nectariferous or prolongating abashedly. Superconfident and unconditioned Lonny never gaps astray when Sal wager his sylva. Is Donal enneadic when Klee hewed tenderly? We call differential calls using software design primers compatible with forward strand cross contamination in read count as test data analysis parameter values per run across a given experiment. Here, must also depart them DNase peaks for convenience. DNA interactions between two biological conditions. Not lest be confused with another peak finding program called FindPeaks which was under very. It is suitable for use in small laboratories, as well as in large production centers, and can be used in a cloud environment for very high throughput environments. All histone modification sites for calling software usability is therefore, with point source features; however nearly all. Ii result measures how, histone modifications continues until all strain replicates using software programs shown below, is a called peaks in our pipeline. For diagnostics, fold enrichment step. We display along with widely different set by default options will change from every experiment follows a predictive model building step when many people have been done. Despite the success of these algorithms, many studies continue to use just one or two types of epigenetic signal to define enhancers in the specified cell type. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. Deep residual learning for image recognition.
    [Show full text]
  • Features That Define the Best Chip-Seq Peak Calling Algorithms Reuben Thomas, Sean Thomas, Alisha K
    Briefings in Bioinformatics, 18(3), 2017, 441–450 doi: 10.1093/bib/bbw035 Advance Access Publication Date: 11 May 2016 Paper Features that define the best ChIP-seq peak calling algorithms Reuben Thomas, Sean Thomas, Alisha K. Holloway and Katherine S. Pollard Corresponding author: Katherine S Pollard, Gladstone Institutes, San Francisco, CA 94158, USA. Tel.: 415-734-2711. Fax: 415- 355-0141; E-mail: [email protected] Abstract Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an important tool for studying gene regulatory proteins, such as transcription factors and histones. Peak calling is one of the first steps in the analysis of these data. Peak calling consists of two sub-problems: identifying candidate peaks and testing candidate peaks for statistical significance. We surveyed 30 methods and identified 12 features of the two sub-problems that distinguish methods from each other. We picked six methods GEM, MACS2, MUSIC, BCP, Threshold-based method (TM) and ZINBA] that span this feature space and used a combination of 300 simulated ChIP-seq data sets, 3 real data sets and mathematical analyses to identify features of methods that allow some to perform better than the others. We prove that methods that explicitly combine the signals from ChIP and input samples are less powerful than methods that do not. Methods that use windows of different sizes are more powerful than the ones that do not. For statistical testing of candidate peaks, methods that use a Poisson test to rank their candidate peaks are more powerful than those that use a Binomial test. BCP and MACS2 have the best operating char- acteristics on simulated transcription factor binding data.
    [Show full text]
  • Comparative Analysis of Commonly Used Peak Calling Programs for Chip
    Comparative analysis of commonly used peak calling programs for ChIP- Seq analysis Hyeongrin Jeon1, Hyunji Lee1, Byunghee Kang1, Insoon Jang1, Original article Tae-Young Roh1,2,3* 1Department of Life Sciences, Pohang University of Science and Technology (POSTECH), eISSN 2234-0742 Pohang 37673, Korea 2 Genomics Inform 2020;18(4):e42 Division of Integrative Biosciences and Biotechnology, Pohang University of Science and https://doi.org/10.5808/GI.2020.18.4.e42 Technology (POSTECH), Pohang 37673, Korea 3SysGenLab Inc., Pohang 37613, Korea Received: October 6, 2020 Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP- Revised: October 26, 2020 Seq) is a powerful technology to profile the location of proteins of interest on a whole-ge- Accepted: November 22, 2020 nome scale. To identify the enrichment location of proteins, many programs and algorithms have been proposed. However, none of the commonly used peak calling programs could *Corresponding author: accurately explain the binding features of target proteins detected by ChIP-Seq. Here, pub- E-mail: [email protected] licly available data on 12 histone modifications, including H3K4ac/me1/me2/me3, H3K9ac/ me3, H3K27ac/me3, H3K36me3, H3K56ac, and H3K79me1/me2, generated from a human embryonic stem cell line (H1), were profiled with five peak callers (CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). The performance of the peak calling programs was com- pared in terms of reproducibility between replicates, examination of enriched regions to variable sequencing depths, the specificity-to-noise signal, and sensitivity of peak predic- tion. There were no major differences among peak callers when analyzing point source his- tone modifications. The peak calling results from histone modifications with low fidelity, such as H3K4ac, H3K56ac, and H3K79me1/me2, showed low performance in all parame- ters, which indicates that their peak positions might not be located accurately.
    [Show full text]
  • Chip-Seq Analysis Report Demo Report
    ChIP-Seq Analysis Report Demo Report Overseas Department Sep 21, 2016 Novogene Co., Ltd en.novogene.com Contents I Pipeline .................................................................................................................... 1 II Results .................................................................................................................... 2 1 Data quality control ......................................................................................... 2 1.1 FastQC of Raw_reads .......................................................................... 2 1.2 Trimming of raw data .................................................................... 3 1.3 FastQC of Clean_reads ........................................................................ 4 2 Mapping .......................................................................................................... 4 2.1 Summary of mapping ........................................................................... 4 2.2 MAPQ .................................................................................................. 5 2.3 Genome-wide distribution of the mapped reads .................................. 6 2.4 Distribution of the reads mapped to the gene ...................................... 7 2.5 Sample correlation detection ................................................................ 8 2.6 Visualization of pileup signal ............................................................... 9 3 Fragment size prediction ..............................................................................
    [Show full text]
  • PEAK CALLING for Chip-SEQ
    PEAK CALLING FOR ChIP-SEQ ChIP-SEQ AND PEAK CALLING IN THIS GUIDE WE WILL REVIEW THE Chromatin-immunoprecipitation sequencing (ChIP-seq) is FOLLOWING TOPICS: the most widely used technique for analyzing Protein:DNA • Introduction of ChIP-seq and peak calling interactions. Very briefly, cells are cross-linked, fragmented and • What do peak callers do? immunoprecipitated with an antibody specific to the target • Choosing a peak calling algorithm protein; the resulting ChIP DNA fragments are used as the • How do peak callers compare template in a next-generation sequencing library preparation and many millions of short sequence reads are generated for analysis. The computational analysis is heavily dependent on the detection of “peaks”, regions of the genome where et al details each of these steps and discusses how peak multiple reads align that are indicative of protein binding. This finding tools approach the separate steps very differently article focuses on peak calling, presents the major tools used (3). A follow up review by Wilbanks et al evaluated the today and lists additional tools for ChIP Seq. performance of 11 ChIP-seq peak callers nearly all of which are still widely used today (4). Each step can have parameters WHAT DO PEAK CALLERS DO? that can be adjusted by the user, but changing these can significantly affect the final peak lists. Care must be taken Peak calling programs help to define sites of Protein:DNA that data sets are analysed using the same methods. The binding by identifying regions where sequence reads are ENCODE consortium produced guidelines for analysis of enriched in the genome after mapping.
    [Show full text]