The Truncated Moment Problem

Total Page:16

File Type:pdf, Size:1020Kb

The Truncated Moment Problem The Truncated Moment Problem Philipp J. di Dio To my parents They gave me the freedom to worry only about mathematics. The Truncated Moment Problem Von der Fakult¨atf¨urMathematik und Informatik der Universit¨atLeipzig angenommene DISSERTATION zur Erlangung des akademischen Grades DOCTORRERUMNATURALIUM (Dr. rer. nat.) im Fachgebiet Mathematik vorgelegt von Dipl.-Math. B.Sc. Philipp J. di Dio geboren am 25.02.1986 in Lutherstadt Wittenberg. Einreichungsdatum: 10. Januar 2018. Die Annahme der Dissertation wurde empfohlen von: 1. Prof. Dr. Konrad Schm¨udgen,Universit¨atLeipzig 2. Prof. Dr. Claus Scheiderer, Universit¨atKonstanz Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 28. Mai 2018 mit dem Gesamtpr¨adikat magna cum laude. Contents 1 Introduction 1 2 Preliminaries 5 2.1 Basic Definitions for the Moment Problem and Carath´eodory Numbers . .5 2.2 Three Theorems of Hans Richter . .9 2.3 Apolar Scalar Product and Real Waring Rank . 10 3 Carath´eodory Numbers CA and CA;± 11 3.1 The Moment Cone SA and its Connection to CA ........................ 11 3.2 Continuous Functions . 15 3.3 Differentiable Functions . 18 3.4 Upper Bound Estimates on CA;± and the Real Waring Rank . 27 3.5 One-Dimensional Monomial Case with Gaps . 28 3.6 Multidimensional Monomial Case . 38 4 Set of Atoms, Determinacy, and Core Variety 47 4.1 Set W(s) of Atoms . 47 4.2 Determinacy of Moment Sequences . 54 4.3 Core Variety . 57 5 Weyl-Circles 59 5.1 Preliminaries . 59 5.2 Main Tool . 61 5.3 Hamburger Moment Problem . 62 5.4 Stieltjes Moment Problem on [a; 1).............................. 63 5.5 Truncated Moment Problem on [a; b].............................. 66 5.6 Truncated Moment Problem on R n (a; b)........................... 67 6 Applications 69 6.1 Numerical Integration . 69 6.2 Carath´eodory Number of Convex Hulls of Curves . 71 6.3 Non-negative Functions and Polynomials . 74 6.4 Tangent Planes . 74 6.5 Truncated Moment Problem for Gaussian Measures . 75 7 Conclusions and Open Problems 83 Acknowledgment I Selbst¨andigkeitserkl¨arung III Index and Symbols V Bibliography V i ii CONTENTS Chapter 1 Introduction Let A be a (finite- or infinite-dimensional) vector space of (real valued) functions on a locally compact Hausdorff space X with basis A. The (generalized) moment problem asks: Given a (real) sequence s = (sa)a2A. Does there exists a (positive) Borel measure µ on X such that Z sa = a(x) dµ(x) for all a 2 A; (1.1) X or equivalently is the Riesz functional Ls defined by Ls(a) = sa for all a 2 A represented by a (positive) Borel measure µ: Z Ls(f) = f(x) dµ(x) for all f 2 A? (1.2) X R α The name moment problem stems from the special case of monomials: sα = Rn x dµ(x) is the αth Nn moment of the (probability) measure µ for all α 2 0 , e.g. in probability theory or physics. This is also called classical moment problem and is widely studied together with many versions of this problem. These studies can be found in [Akh65], [KN77], and [Sch17b]. More, including historic remarks and developments, can be found in [SV97], [CF00], [CF05], [FP05], [Mar08], [Lau09], [Las15], and [Fia16]. Several of the present results in this work were published in [SdD17], [dDS18a], and [dDS18b] jointly with K. Schm¨udgen. Others are not jet published. α The generalization is made by going from monomials x to functions ai on X . While the classical moment problem deals with infinitely many moments and is mostly called full moment problem, if finitely many moments are investigated, it is called truncated. The study of the (truncated) general moment problem leads naturally to the study of gaps, i.e., where not all monomials xα are present. This will be one of our main interests in this work and all results in this work are new in the special monominial as well as the general case. Another distinction is between one- (X ⊆ R) and multidimensional (X ⊆ Rn). But this is only a technical distinction, since in the one-dimensional case techniques can be used which do not exist in higher dimensions, e.g., the fundamental theorem of algebra. The (truncated) moment problem appears in several mathematical areas and also techniques from several areas can be applied. Some are depicted in the following scheme: Probability Physics: Numerics: k Optimization Theory: E[Xα] R xαdµ(x) Z X ai(x) dµ(x) ≈ cjai(xj) j=1 Functional Analysis: Real Algebraic Geometry: The Truncated Moment Problem (Mxf)(x) = xf(x) non-negative polynomials Z p(x ; : : : ; x ) si = ai(x) dµ(x) i = 1; : : : ; m 1 n X Non-linear Analysis: Sk;A Linear Algebra: Differential Geometry: Convex Bodies: SA m Convex Analysis: @SA sA(x) = (ai(x))i=1 DSk;A 1 2 CHAPTER 1. INTRODUCTION The (truncated) moment problem connects all these areas: results and techniques transfer trough the moment problem from one to another and give an interesting interplay between these fields. So studying the (truncated) moment problem on its own right is beneficial even in other fields. In the current work we will investigate the (general) truncated moment problem. As shown, its range of application is vast and also often studied, see e.g. [KN77] or [Sch17b] and references therein. We concentrate our effort to two less studies aspects and fundamental questions therein: Carath´eodory numbers and set of atoms. Even for the most important cases where A is the set of polynomials in n variables of degree at most d little is known there. Our treatment is very general and we are therefore able to treat the polynomial cases where all monomials are present, but also the cases with gaps. The starting point of our investigations is a fundamental result by Richter (Theorem 2.23) [Ric57, m Satz 4]: Every truncated moment sequence s = (si)i=1 has a k-atomic representing measure with k ≤ m. So instead of dealing with all possible measures, it is sufficient to deal with k-atomic measures (linear combinations of δx-measures). To efficiently deal with k-atomic measures, we introduce the moment Rm m curve sA : X! ; x 7! (ai(x))i=1, i.e., sA(x) is the moment sequence of δx, and the moment map Pk Pk Sk;A(C; X) = i=1 cisA(xi), i.e., the moment sequence of i=1 ciδxi . From the Richter Theorem and the existence of atomic representing measures fundamental questions arise: Chapter 3: How many atoms are required to represent a fixed/all truncated moment sequence(s)? Chapter 4: What are the possible atom positions appearing in an atomic representing measure? Chapter 5: Does there exist a \good" description of all representing measures of a truncated moment sequence? In Chapter 3 we investigate the Carath´eodory number. Since every moment sequence s has a k- atomic representing measure, there is a smallest k. It is called the Carath´eodory number CA(s) of s. The maximum over all moment sequences is called the Carath´eodory number CA. Interestingly, despite its importance, little is known about CA even for the polynomial case with all monomials, let alone with gaps (some monomials are missing) or even continuous functions. From the map Sk;A we already find the first fundamental result in this work: A general lower bound on the Carath´eodory number CA. Under the assumption of sufficient differentiablity with n being the number of variables we find m ≤ C in Theorem 3.38: n + 1 A The main ingredient in the proof is the application of Sard's Theorem [Sar42]. This lower bound is so general, that it not only holds for polynomials on Rn, but also for polynomials with gaps or Cr-functions n n on subsets X ⊆ R . Even for polynomials on R lower bounds are rarely known, e.g. for A2;2k−1 the polynomials in 2 variables of degree at most 2k − 1 the M¨ollerbound [M¨ol76]is forty years old. The l jA2;2k−1j m 1 2 difference between 3 and M¨ollersbound grows as ∼ 6 k (Lemma 3.45). The implications of this result to numerics is discussed in Section 6.1. In Theorem 3.55 we also use the lower bound on the Carath´eodory number to reprove upper bounds on the real Waring rank of a homogeneous polynomial previously proved by Blekherman and Teitler [BT15]. d R d+1 In [Ric57] Richter proved that for A = f1; x; : : : ; x g on the Carath´eodory number is 2 , i.e., our lower bound is the Carath´eodory number in this case. This study was also extended to unions of intervals of R, see e.g. [KN77]. But for systems with gaps little is known. In Theorem 3.68 we gave a d2 dm R m criterion when A = f1; x ; : : : ; x g on also has Carath´eodory number CA = 2 at our lower bound. In Example 3.69 with A = f1; x2; x3; x5; x6g this condition is fulfilled, i.e., the Carath´eodory number is 3. A nice little byproduct is Corollary 3.70: Every non-negative polynomial a + bx2 + cx3 + dx5 + ex6 has at most 2 real zeros. Example 3.71 shows that when the condition in Theorem 3.68 is not meet, then m CA > 2 is possible. Our method is suited to study non-negative polynomials with gaps further. In Section 6.2 we treat the convex hulls of curves (a special case of the one-dimensional truncated moment problem) and especially their Carath´eodory numbers.
Recommended publications
  • The Multivariate Moments Problem: a Practical High Dimensional Density Estimation Method
    National Institute for Applied Statistics Research Australia University of Wollongong, Australia Working Paper 11-19 The Multivariate Moments Problem: A Practical High Dimensional Density Estimation Method Bradley Wakefield, Yan-Xia Lin, Rathin Sarathy and Krishnamurty Muralidhar Copyright © 2019 by the National Institute for Applied Statistics Research Australia, UOW. Work in progress, no part of this paper may be reproduced without permission from the Institute. National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong NSW 2522, Australia Phone +61 2 4221 5435, Fax +61 2 42214998. Email: [email protected] The Multivariate Moments Problem: A Practical High Dimensional Density Estimation Method October 8, 2019 Bradley Wakefield National Institute for Applied Statistics Research Australia School of Mathematics and Applied Statistics University of Wollongong, NSW 2522, Australia Email: [email protected] Yan-Xia Lin National Institute for Applied Statistics Research Australia School of Mathematics and Applied Statistics University of Wollongong, NSW 2522, Australia Email: [email protected] Rathin Sarathy Department of Management Science & Information Systems Oklahoma State University, OK 74078, USA Email: [email protected] Krishnamurty Muralidhar Department of Marketing & Supply Chain Management, Research Director for the Center for Business of Healthcare University of Oklahoma, OK 73019, USA Email: [email protected] 1 Abstract The multivariate moments problem and it's application to the estimation of joint density functions is often considered highly impracticable in modern day analysis. Although many re- sults exist within the framework of this issue, it is often an undesirable method to be used in real world applications due to the computational complexity and intractability of higher order moments.
    [Show full text]
  • THE HAUSDORFF MOMENT PROBLEM REVISITED to What
    THE HAUSDORFF MOMENT PROBLEM REVISITED ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR ABSTRACT. We investigate to what extent finitely additive probability measures on the unit interval are determined by their moment sequence. We do this by studying the lower envelope of all finitely additive probability measures with a given moment sequence. Our investigation leads to several elegant expressions for this lower envelope, and it allows us to conclude that the information provided by the moments is equivalent to the one given by the associated lower and upper distribution functions. 1. INTRODUCTION To what extent does a sequence of moments determine a probability measure? This problem has a well-known answer when we are talking about probability measures that are σ-additive. We believe the corresponding problem for probability measures that are only finitely additive has received much less attention. This paper tries to remedy that situation somewhat by studying the particular case of finitely additive probability measures on the real unit interval [0;1] (or equivalently, after an appropriate transformation, on any compact real interval). The question refers to the moment problem. Classically, there are three of these: the Hamburger moment problem for probability measures on R; the Stieltjes moment problem for probability measures on [0;+∞); and the Hausdorff moment problem for probability measures on compact real intervals, which is the one we consider here. Let us first look at the moment problem for σ-additive probability measures. Consider a sequence m of real numbers mk, k ¸ 0. It turns out (see, for instance, [12, Section VII.3] σ σ for an excellent exposition) that there then is a -additive probability measure Pm defined on the Borel sets of [0;1] such that Z k σ x dPm = mk; k ¸ 0; [0;1] if and only if m0 = 1 (normalisation) and the sequence m is completely monotone.
    [Show full text]
  • Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation
    Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation Jia-Jie Zhu Wittawat Jitkrittum Empirical Inference Department Empirical Inference Department Max Planck Institute for Intelligent Systems Max Planck Institute for Intelligent Systems Tübingen, Germany Tübingen, Germany [email protected] Currently at Google Research, NYC, USA [email protected] Moritz Diehl Bernhard Schölkopf Department of Microsystems Engineering Empirical Inference Department & Department of Mathematics Max Planck Institute for Intelligent Systems University of Freiburg Tübingen, Germany Freiburg, Germany [email protected] [email protected] Abstract functional gradient, which apply to general optimization and machine learning tasks. We propose kernel distributionally robust op- timization (Kernel DRO) using insights from 1 INTRODUCTION the robust optimization theory and functional analysis. Our method uses reproducing kernel Imagine a hypothetical scenario in the illustrative figure Hilbert spaces (RKHS) to construct a wide where we want to arrive at a destination while avoiding range of convex ambiguity sets, which can be unknown obstacles. A worst-case robust optimization generalized to sets based on integral probabil- (RO) (Ben-Tal et al., 2009) approach is then to avoid ity metrics and finite-order moment bounds. the entire unsafe area (left, blue). Suppose we have This perspective unifies multiple existing ro- historical locations of the obstacles (right, dots). We bust and stochastic optimization methods. may choose to avoid only the convex polytope that We prove a theorem that generalizes the clas- contains all the samples (pink). This data-driven robust sical duality in the mathematical problem of decision-making idea improves efficiency while retaining moments.
    [Show full text]
  • On the Combinatorics of Cumulants
    Journal of Combinatorial Theory, Series A 91, 283304 (2000) doi:10.1006Âjcta.1999.3017, available online at http:ÂÂwww.idealibrary.com on On the Combinatorics of Cumulants Gian-Carlo Rota Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Jianhong Shen School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 E-mail: jhshenÄmath.umn.edu View metadata, citation and similar papers at core.ac.uk brought to you by CORE Communicated by the Managing Editors provided by Elsevier - Publisher Connector Received July 26, 1999 dedicated to the memory of gian-carlo rota We study cumulants by Umbral Calculus. Various formulae expressing cumulants by umbral functions are established. Links to invariant theory, symmetric functions, and binomial sequences are made. 2000 Academic Press 1. INTRODUCTION Cumulants were first defined and studied by Danish scientist T. N. Thiele. He called them semi-invariants. The importance of cumulants comes from the observation that many properties of random variables can be better represented by cumulants than by moments. We refer to Brillinger [3] and Gnedenko and Kolmogorov [4] for further detailed probabilistic aspects on this topic. Given a random variable X with the moment generating function g(t), its nth cumulant Kn is defined as d n Kn= n log g(t). dt } t=0 283 0097-3165Â00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. 284 ROTA AND SHEN That is, m K : n tn= g(t)=exp : n tn ,(1) n0 n! \ n1 n! + where, mn is the nth moment of X. Generally, if _ denotes the standard deviation, then 2 2 K1=m1 , K2=m2&m1=_ .
    [Show full text]
  • The Truncated Stieltjes Moment Problem Solved by Using Kernel Density Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 236 (2012) 4193–4213 Contents lists available at SciVerse ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam The truncated Stieltjes moment problem solved by using kernel density functions P.N. Gavriliadis ∗, G.A. Athanassoulis Department of Naval Architecture and Marine Engineering, National Technical University of Athens, Heroon Polytechniou 9, GR-157 73 Zografos, Athens, Greece article info a b s t r a c t Article history: In this work the problem of the approximate numerical determination of a semi-infinite Received 4 July 2010 supported, continuous probability density function (pdf) from a finite number of its Received in revised form 6 September 2011 moments is addressed. The target space is carefully defined and an approximation theorem is proved, establishing that the set of all convex superpositions of appropriate Kernel MSC: Density Functions (KDFs) is dense in this space. A solution algorithm is provided, based 65R32 on the established approximate representation of the target pdf and the exploitation 65F22 of some theoretical results concerning moment sequence asymptotics. The solution 45Q05 algorithm also permits us to recover the tail behavior of the target pdf and incorporate Keywords: this information in our solution. A parsimonious formulation of the proposed solution Truncated Stieltjes moment problem procedure, based on a novel sequentially adaptive scheme is developed, enabling a very Kernel density function efficient moment data inversion. The whole methodology is fully illustrated by numerical Probability density function examples.
    [Show full text]
  • Stieltjes Moment Sequences for Pattern-Avoiding Permutations Alin Bostan, Andrew Elvey-Price, Anthony Guttmann, Jean-Marie Maillard
    Stieltjes moment sequences for pattern-avoiding permutations Alin Bostan, Andrew Elvey-Price, Anthony Guttmann, Jean-Marie Maillard To cite this version: Alin Bostan, Andrew Elvey-Price, Anthony Guttmann, Jean-Marie Maillard. Stieltjes moment se- quences for pattern-avoiding permutations. The Electronic Journal of Combinatorics, Open Journal Systems, In press, pp.59. 10.37236/xxxx. hal-02425917v3 HAL Id: hal-02425917 https://hal.archives-ouvertes.fr/hal-02425917v3 Submitted on 17 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Stieltjes moment sequences for pattern-avoiding permutations Alin Bostan Andrew Elvey Price Inria and Universit´eParis-Saclay LaBRI, Universit´eBordeaux I 1 rue Honor´ed'Estienne d'Orves 351 cours de la Lib´eration 91120 Palaiseau, France 33405 Talence Cedex, France [email protected] [email protected] Anthony John Guttmann Jean-Marie Maillard School of Mathematics and Statistics LPTMC, CNRS, Sorbonne Universit´e The University of Melbourne 4 Place Jussieu, Tour 23, case 121 Vic. 3010, Australia 75252 Paris Cedex 05, France [email protected] [email protected] Submitted: Feb 28, 2020; Accepted: Sep 16, 2020; Published: TBD © The authors.
    [Show full text]
  • Moments, Cumulants and Diagram Formulae for Non-Linear Functionals of Random Measures Giovanni Peccati, Murad Taqqu
    Moments, cumulants and diagram formulae for non-linear functionals of random measures Giovanni Peccati, Murad Taqqu To cite this version: Giovanni Peccati, Murad Taqqu. Moments, cumulants and diagram formulae for non-linear functionals of random measures. 2008. hal-00338132 HAL Id: hal-00338132 https://hal.archives-ouvertes.fr/hal-00338132 Preprint submitted on 11 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Moments, cumulants and diagram formulae for non-linear functionals of random measures Giovanni PECCATI∗ and Murad S. TAQQU† November 11, 2008 Abstract This survey provides a unified discussion of multiple integrals, moments, cumulants and diagram formulae associated with functionals of completely random measures. Our approach is combinatorial, as it is based on the algebraic formalism of partition lattices and M¨obius functions. Gaussian and Poisson measures are treated in great detail. We also present several combinatorial interpretations of some recent CLTs involving sequences of random variables belonging to a fixed Wiener chaos. Key Words – Central Limit Theorems; Cumulants; Diagonal measures; Diagram for- mulae; Gaussian fields; M¨obius function; Moments; Multiple integrals; Partitions; Poisson measures; Random Measures. AMS Subject Classification – 05A17; 05A18; 60C05; 60F05; 60H05.
    [Show full text]
  • Ten Lectures on the Moment Problem
    Konrad Schmüdgen Ten Lectures on the Moment Problem August 31, 2020 arXiv:2008.12698v1 [math.FA] 28 Aug 2020 Preface If µ is a positive Borel measure on the line and k is a nonnegativeinteger, the number k sk sk(µ)= x dµ(x) (0.1) ≡ ZR is called the k-th moment of µ. For instance, if the measure µ comes from the dis- tribution function F of a random variable X, then the expectation value of X k is just the k-the moment, +∞ k k E[X ]= sk = x dF(x), Z ∞ − 2 2 2 2 and the variance of X is Var(X)= E[(X E[X]) ]= E[X ] E[X] = s2 s1 (of course, provided the corresponding numbers− are finite). − − The moment problem is the inverse problem of “finding" the measure when the moments are given. In order to apply functional-analytic methods it is convenient to rewrite the mo- ment problem in terms of linear functionals. For a real sequence s = (sn)n N0 let Ls ∈ n denote the linear functional on the polynomial algebra R[x] defined by Ls(x )= sn, n N0. Then, by the linearity of the integral, (0.1) holds for all k if and only if ∈ +∞ Ls(p)= p(x)dµ(x) for p R[x]. (0.2) Z ∞ ∈ − That is, the moment problem asks whether a linear functional on R[x] admits an integral representation (0.2) with some positive measure µ on R. This is the simplest version of the moment problem, the so-called Hamburger moment problem.
    [Show full text]
  • Recovery of Distributions Via Moments 4 5 5 6 Robert M
    IMS Collections Vol. 0 (2009) 251{265 c Institute of Mathematical Statistics, 2009 1 1 arXiv: math.PR/0000011 2 2 3 3 4 Recovery of Distributions via Moments 4 5 5 6 Robert M. Mnatsakanov1,∗ and Artak S. Hakobyan2,∗ 6 7 7 West Virginia University 8 8 9 Abstract: The problem of recovering a cumulative distribution function (cdf) 9 10 and corresponding density function from its moments is studied. This problem 10 is a special case of the classical moment problem. The results obtained within 11 11 the moment problem can be applied in many indirect models, e.g., those based 12 on convolutions, mixtures, multiplicative censoring, and right-censoring, where 12 13 the moments of unobserved distribution of actual interest can be easily esti- 13 14 mated from the transformed moments of the observed distributions. Nonpara- 14 metric estimation of a quantile function via moments of a target distribution 15 15 represents another very interesting area where the moment problem arises. In 16 all such models one can use the procedure, which recovers a function via its 16 17 moments. In this article some properties of the proposed constructions are de- 17 18 rived. The uniform rates of convergence of the approximants of cdf, its density 18 function, and quantile function are obtained as well. 19 19 20 20 21 Contents 21 22 22 23 1 Introduction................................... 251 23 24 2 Some Notations and Assumptions....................... 253 24 25 3 Asymptotic Properties of Fα,ν and fα,ν ................... 254 25 26 4 Some Applications and Examples....................... 258 26 27 Acknowledgments................................
    [Show full text]
  • The Moment Problem Associated with the Stieltjes–Wigert Polynomials
    J. Math. Anal. Appl. 277 (2003) 218–245 www.elsevier.com/locate/jmaa The moment problem associated with the Stieltjes–Wigert polynomials Jacob Stordal Christiansen Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark Received 17 May 2001 Submitted by T. Fokas Abstract We consider the indeterminate Stieltjes moment problem associated with the Stieltjes–Wigert polynomials. After a presentation of the well-known solutions, we study a transformation T of the set of solutions. All the classical solutions turn out to be fixed under this transformation but this is not the case for the so-called canonical solutions. Based on generating functions for the Stieltjes– Wigert polynomials, expressions for the entire functions A, B, C,andD from the Nevanlinna (n) parametrization are obtained. We describe T (µ) for n ∈ N when µ = µ0 is a particular N-extremal solution and explain in detail what happens when n →∞. 2002 Elsevier Science (USA). All rights reserved. Keywords: Indeterminate moment problems; Stieltjes–Wigert polynomials; Nevanlinna parametrization 1. Introduction T.J. Stieltjes was the first to give examples of indeterminate moment problems. In [18] he pointed out that if f is an odd function satisfying f(u+ 1/2) =±f(u),then ∞ − unu loguf(log u) du = 0 0 E-mail address: [email protected]. 0022-247X/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved. PII:S0022-247X(02)00534-6 J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218–245 219 for all n ∈ Z. In particular, ∞ − unu logu sin(2π log u) du = 0,n∈ Z, 0 so independent of λ we have ∞ ∞ 1 − 1 − + 2 √ unu logu 1 + λ sin(2π logu) du= √ unu logu du= e(n 1) /4.
    [Show full text]
  • Moment Problems and Semide Nite Optimization
    Moment Problems and Semidenite Optimization y z Dimitris Bertsimas Ioana Pop escu Jay Sethuraman April Abstract Problems involving moments of random variables arise naturally in many areas of mathematics economics and op erations research Howdowe obtain optimal b ounds on the probability that a random variable b elongs in a set given some of its moments Howdowe price nancial derivatives without assuming any mo del for the underlying price dynamics given only moments of the price of the underlying asset Howdoweob tain stronger relaxations for sto chastic optimization problems exploiting the knowledge that the decision variables are moments of random variables Can we generate near optimal solutions for a discrete optimization problem from a semidenite relaxation by interpreting an optimal solution of the relaxation as a covariance matrix In this pap er we demonstrate that convex and in particular semidenite optimization metho ds lead to interesting and often unexp ected answers to these questions Dimitris Bertsimas Sloan Scho ol of Management and Op erations ResearchCenter Rm E MIT Cambridge MA db ertsimmitedu Research supp orted by NSF grant DMI and the Singap oreMIT alliance y Ioana Pop escu Decision Sciences INSEAD Fontainebleau Cedex FRANCE ioanap op escuin seadfr z Jay Sethuraman Columbia University DepartmentofIEORNewYork NY jayccolumbiaedu Intro duction Problems involving moments of random variables arise naturally in many areas of mathe matics economics and op erations research Let us give some examples that motivate the
    [Show full text]
  • The Classical Moment Problem
    The classical moment problem Sasha Sodin∗ March 5, 2019 These lecture notes were prepared for a 10-hour introductory mini-course at LTCC. A cap was imposed at 50 pages; even thus, I did not have time to cover the sections indicated by an asterisk. If you find mistakes or misprints, please let me know. Thank you very much! The classical moment problem studies the map S taking a (positive Borel) measure µ on R to its moment sequence (sk)k≥0, Z k sk[µ] = λ dµ(λ) . The map is defined on the set of measures with finite moments: −∞ −k µ(R \ [−R, R]) = O(R ) , i.e. ∀k µ(R \ [−R, R]) = O(R ) . The two basic questions are 1. existence: characterise the image of S, i.e. for which sequences (sk)k≥0 of real numbers can one find µ such that sk[µ] = sk for k = 0, 1, 2, ··· ? 2. uniqueness, or determinacy: which sequences in the image have a unique pre- image, i.e. which measures are characterised by their moments? In the case of non-uniqueness, one may wish to describe the set of all solutions. The classical moment problem originated in the 1880-s, and reached a definitive state by the end of the 1930-s. One of the original sources of motivation came from probability theory, where it is important to have verifiable sufficient conditions for determinacy. Determinacy is also closely related to several problems in classical analysis, particularly, to the study of the map taking a (germ of a) smooth function f to the sequence of (k) its Taylor coefficients (f (0))k≥0.
    [Show full text]