Ten Lectures on the Moment Problem

Total Page:16

File Type:pdf, Size:1020Kb

Ten Lectures on the Moment Problem Konrad Schmüdgen Ten Lectures on the Moment Problem August 31, 2020 arXiv:2008.12698v1 [math.FA] 28 Aug 2020 Preface If µ is a positive Borel measure on the line and k is a nonnegativeinteger, the number k sk sk(µ)= x dµ(x) (0.1) ≡ ZR is called the k-th moment of µ. For instance, if the measure µ comes from the dis- tribution function F of a random variable X, then the expectation value of X k is just the k-the moment, +∞ k k E[X ]= sk = x dF(x), Z ∞ − 2 2 2 2 and the variance of X is Var(X)= E[(X E[X]) ]= E[X ] E[X] = s2 s1 (of course, provided the corresponding numbers− are finite). − − The moment problem is the inverse problem of “finding" the measure when the moments are given. In order to apply functional-analytic methods it is convenient to rewrite the mo- ment problem in terms of linear functionals. For a real sequence s = (sn)n N0 let Ls ∈ n denote the linear functional on the polynomial algebra R[x] defined by Ls(x )= sn, n N0. Then, by the linearity of the integral, (0.1) holds for all k if and only if ∈ +∞ Ls(p)= p(x)dµ(x) for p R[x]. (0.2) Z ∞ ∈ − That is, the moment problem asks whether a linear functional on R[x] admits an integral representation (0.2) with some positive measure µ on R. This is the simplest version of the moment problem, the so-called Hamburger moment problem. Moments and the moment problem have natural d-dimensional versions. For a Rd Nd positive measure µ on and a multi-index α = (α1,...,αd ) 0 , the α-the mo- ments is defined by ∈ α1 αd sα (µ)= x x dµ(x). ZRd 1 ··· d 3 4 Let be a closed subset of Rd. An important variant of the moment problem, called theK -moment problem, requires that the representing µ is supported on . If only a finiteK number of moments are given, we have the truncated moment problemK . Moments were applied to the study of functions by the Russian mathematicians P.L. Chebychev (1874) and A.A. Markov (1884). However, the moment problem first appeared in a famous memoir (1894) of the Dutch mathematician T.J. Stieltjes. He formulated and solved this problem for the half-line and gave the first explicit example of an indeterminate problem. The cases of the real line and of bounded intervals were studied only later by H. Hamburger (1920) and F. Hausdorff (1920). Because of the simplicity of its formulation it is surprising that the moment prob- lem has deep interactions with many branches of mathematics (functional analysis, function theory, real algebraic geometry, spectral theory, optimization, numerical analysis, convex analysis, harmonic analysis and others) and a broad range of ap- plications. The AMS volume “Moments in Mathematics", edited by H.J. Landau (1987), and the book “Moments, Positive Polynomials and Their Applications" by J.P. Lasserre (2015) illustrate this in a convincing manner. The following notes grew out from a series of lectures given at the “School on Sums of Squares, Moment Problems, and Polynomial Optimization", which was organized from 1.1.2019 till 31.3.2019 at the Vietnam Institute for Advanced Studies in Mathematics (VIASM) in Hanoi. I would like to thank my Vietnamese colleague, Prof. Trinh Le Cong, for the kind invitation and his warm hospitality during this visit. The audience consisted of researchers, young scientists, and graduate students. The first three lectures deal with one-dimensional full and truncated moment problems and contain well-known classical material. The topics of the other lec- tures were chosen according to the themes of the VIASM school. In Lectures 4–7, we investigate the multi-dimensional full moment problem with particular empha- sis on the interactions with real algebraic geometry. Lecture 7 gives a digression into applications of moment methods and real algebraic geometry to polynomial op- timization. The final Lectures 8–10 are devoted to the multidimensional truncated moment problem. In Lectures 4–10, I have covered selected advanced results as well as recent developments. The following are smoothed and slightly extended versions of the handouts I had given to the audience. I have tried to maintain the casual style of the lectures and to illustrate the theory by many examples. The notes are essentially based on my book “The Moment Problem”, Graduate Text in Mathematics, Springer, 2017, which is quoted as [MP] in what follows. For some results complete proofs are given, while for most of them I referred to [MP]. These notes have no bibliography. The book [MP] contains additional material and also detailed references for the 5 main results. Finally, it should be emphasized that these notes are not a book on the moment problem. It is more appropriate to think of them as an entrance guide into some developments of the beautiful subject. Contents 1 Integral representations of linear functionals ...................... 9 1.1 Positive linear functionalson adapted spaces..... ... ............ 10 1.2 Positivepolynomialsonintervals .................. ........... 13 1.3 Momentproblemsonintervals ....................... ........ 14 2 One-dimensional moment problem: determinacy .................. 17 2.1 An indeterminate measure: lognormal distribution . ........... 17 2.2 Carleman’s condition for the Hamburger moment problem . ....... 18 2.3 Krein’s condition for the Hamburger moment problem . ....... 19 2.4 Carleman and Krein conditions for the Stieltjes moment problem .. 20 3 The one-dimensional truncated moment problem on a bounded interval ................................................... .... 23 3.1 Existenceofasolution ............................ .......... 23 3.2 Themomentconeanditsboundarypoints............... ....... 24 3.3 Interiorpointsandprincipalmeasures .............. ........... 26 4 The moment problem on compact semi-algebraic sets .............. 29 4.1 Basic notionsfrom real algebraicgeometry ........... .......... 29 4.2 Strict Positivstellensatz and solution of the moment problem ...... 31 4.3 Localizing functionalsand Hankel matrices...... .... ........... 33 4.4 Momentproblemcriteriabased on semirings ........... ........ 34 4.5 Two technical results and the proof of Theorem4.11 ... .. ........ 35 5 The moment problem on closed semi-algebraic sets: the fibre theorem 39 5.1 Positive functionals which are not moment functionals . .......... 39 5.2 Properties(MP) and (SMP) and the fibre theorem......... ....... 40 5.3 First application: cylinder sets with compact base. ............ 43 5.4 (SMP)forsubsetsoftherealline .................... ......... 44 5.5 Second application: the two-sided complex moment problem...... 45 7 8 Contents 6 The moment problem on closed sets: determinacy and Carleman condition ................................................... ... 47 6.1 Variousnotionsofdeterminacy ..................... .......... 47 6.2 Determinacyviamarginalmeasures .................. ......... 48 6.3 The multivariate Carleman condition and Nussbaum’s theorem .... 49 6.4 Some operator-theoreticreformulations .... ..... ... ............ 51 7 Polynomial optimization and semidefinite programming ............ 53 7.1 Semidefiniteprogramming.......................... ......... 53 7.2 Lasserre relaxations of polynomial optimization with constraints ... 55 7.3 Polynomialoptimizationwith constraints ........... ........... 57 8 Truncated multidimensional moment problem: existence via positivity 59 8.1 TheRichter-TchakaloffTheorem .................... ......... 60 8.2 Positive semidefinite 2n-sequences............................ 61 8.3 The truncated moment problem on projectivespace . ........ 62 8.4 Stochel’stheorem ................................ .......... 64 9 Truncated multidimensional moment problem: existence via flat extensions ................................................... .. 67 9.1 Hankelmatrices.................................. .......... 67 9.2 The full moment problem with finite rank Hankel matrix.. ....... 69 9.3 Flat extensionsand the flat extensiontheorem ......... .......... 70 9.4 Hankel matrices of functionals with finitely atomic measures...... 71 10 Truncated multidimensional moment problem: core variety and moment cone .................................................. 75 10.1 Strictly positive linear functionals .... ..... ..... ............... 75 10.2 Thecorevariety................................. ........... 76 10.3 Themomentcone .................................. ........ 79 Lecture 1 Integral representations of linear functionals Abstract: An integral representation theorem of positive functionals on Choquet’s adapted spaces is obtained. As applications, Haviland’s theorem is derived and existence results for moment problems on intervals are developed. All variants of the moment problem deal with integral representations of certain linear functionals. We begin with a rather general setup. Suppose is a locally compact topological Hausdorff space. The Borel algebra B( ) is theXσ-algebra generated by the open subsets of . X X Definition 1.1. A Radon measure on is a measure µ : B( ) [0,+∞] such that µ(K) < ∞ for each compact subset KXof and X → X µ(M)= sup µ(K) : K M, K compact for all M B( ). (1.1) { ⊆ } ∈ X Thus, in our terminology Radon measures are always nonnegative! Closed subsets of Rd are locally compact in the induced topology of Rd. Further, suppose E is a vector space of continuous real-valued functions on . In a very general and modern form, the moment problem is the following problem:X Given a linear functional L : E R and a closed subset of , when does there exist a Radon measure µ supported→ on such that K X K L( f )= f (x)dµ(x) for f E? (1.2) ZX ∈ In this case, L is called a -moment functional
Recommended publications
  • The Multivariate Moments Problem: a Practical High Dimensional Density Estimation Method
    National Institute for Applied Statistics Research Australia University of Wollongong, Australia Working Paper 11-19 The Multivariate Moments Problem: A Practical High Dimensional Density Estimation Method Bradley Wakefield, Yan-Xia Lin, Rathin Sarathy and Krishnamurty Muralidhar Copyright © 2019 by the National Institute for Applied Statistics Research Australia, UOW. Work in progress, no part of this paper may be reproduced without permission from the Institute. National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong NSW 2522, Australia Phone +61 2 4221 5435, Fax +61 2 42214998. Email: [email protected] The Multivariate Moments Problem: A Practical High Dimensional Density Estimation Method October 8, 2019 Bradley Wakefield National Institute for Applied Statistics Research Australia School of Mathematics and Applied Statistics University of Wollongong, NSW 2522, Australia Email: [email protected] Yan-Xia Lin National Institute for Applied Statistics Research Australia School of Mathematics and Applied Statistics University of Wollongong, NSW 2522, Australia Email: [email protected] Rathin Sarathy Department of Management Science & Information Systems Oklahoma State University, OK 74078, USA Email: [email protected] Krishnamurty Muralidhar Department of Marketing & Supply Chain Management, Research Director for the Center for Business of Healthcare University of Oklahoma, OK 73019, USA Email: [email protected] 1 Abstract The multivariate moments problem and it's application to the estimation of joint density functions is often considered highly impracticable in modern day analysis. Although many re- sults exist within the framework of this issue, it is often an undesirable method to be used in real world applications due to the computational complexity and intractability of higher order moments.
    [Show full text]
  • THE HAUSDORFF MOMENT PROBLEM REVISITED to What
    THE HAUSDORFF MOMENT PROBLEM REVISITED ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR ABSTRACT. We investigate to what extent finitely additive probability measures on the unit interval are determined by their moment sequence. We do this by studying the lower envelope of all finitely additive probability measures with a given moment sequence. Our investigation leads to several elegant expressions for this lower envelope, and it allows us to conclude that the information provided by the moments is equivalent to the one given by the associated lower and upper distribution functions. 1. INTRODUCTION To what extent does a sequence of moments determine a probability measure? This problem has a well-known answer when we are talking about probability measures that are σ-additive. We believe the corresponding problem for probability measures that are only finitely additive has received much less attention. This paper tries to remedy that situation somewhat by studying the particular case of finitely additive probability measures on the real unit interval [0;1] (or equivalently, after an appropriate transformation, on any compact real interval). The question refers to the moment problem. Classically, there are three of these: the Hamburger moment problem for probability measures on R; the Stieltjes moment problem for probability measures on [0;+∞); and the Hausdorff moment problem for probability measures on compact real intervals, which is the one we consider here. Let us first look at the moment problem for σ-additive probability measures. Consider a sequence m of real numbers mk, k ¸ 0. It turns out (see, for instance, [12, Section VII.3] σ σ for an excellent exposition) that there then is a -additive probability measure Pm defined on the Borel sets of [0;1] such that Z k σ x dPm = mk; k ¸ 0; [0;1] if and only if m0 = 1 (normalisation) and the sequence m is completely monotone.
    [Show full text]
  • Hardy's Condition in the Moment Problem for Probability Distributions
    Hardy’s Condition in the Moment Problem for Probability Distributions Jordan Stoyanov1 and Gwo Dong Lin2,3 1 Newcastle University, Newcastle upon Tyne, UK 2 Academia Sinica, Taipei, TAIWAN 3 Corresponding author: Gwo Dong Lin, e-mail: [email protected] Abstract √ In probabilistic terms Hardy’s condition is written as follows: E[ec X ] < ∞, where X is a nonnegative random variable and c > 0 a constant. If this holds, then all moments of X are finite and the distribution of X is uniquely determined by the mo- ments. This condition, based on two papers by G. H. Hardy (1917/1918), is weaker than Cram´er’s condition requiring the existence of a moment generating function 1 of X. We elaborate Hardy’s condition and show that the constant 2 (square root) is the best possible for the moment determinacy of X. We describe relationships between Hardy’s condition and properties of the moments of X. We use this new con- dition to establish a result on the moment determinacy of an arbitrary multivariate distribution. Keywords: moments, moment problem, Hardy’s condition, Cram´er’scondition, Car- leman’s condition 1. Introduction A web-search for ‘Hardy’s condition in the moment problem for probability distribu- tions’ shows that nothing is available. The reader is invited to check and eventually confirm that this is the case. In this paper we provide details about a not so well-known criterion for unique- ness of a probability distribution by its moments. The criterion is based on two old papers by G. H.
    [Show full text]
  • The Classical Moment Problem As a Self-Adjoint Finite Difference Operator
    THE CLASSICAL MOMENT PROBLEM AS A SELF-ADJOINT FINITE DIFFERENCE OPERATOR Barry Simon∗ Division of Physics, Mathematics, and Astronomy California Institute of Technology Pasadena, CA 91125 November 14, 1997 Abstract. This is a comprehensive exposition of the classical moment problem using methods from the theory of finite difference operators. Among the advantages of this approach is that the Nevanlinna functions appear as elements of a transfer matrix and convergence of Pad´e approximants appears as the strong resolvent convergence of finite matrix approximations to a Jacobi matrix. As a bonus of this, we obtain new results on the convergence of certain Pad´e approximants for series of Hamburger. §1. Introduction The classical moment problem was central to the development of analysis in the pe- riod from 1894 (when Stieltjes wrote his famous memoir [38]) until the 1950’s (when Krein completed his series on the subject [15, 16, 17]). The notion of measure (Stielt- jes integrals), Pad´e approximants, orthogonal polynomials, extensions of positive lin- ear functionals (Riesz-Markov theorem), boundary values of analytic functions, and the Herglotz-Nevanlinna-Riesz representation theorem all have their roots firmly in the study of the moment problem. This expository note attempts to present the main results of the theory with two main ideas in mind. It is known from early on (see below) that a moment problem is associated to a certain semi-infinite Jacobi matrix, A. The first idea is that the basic theorems can be viewed as results on the self-adjoint extensions of A. The second idea is that techniques from the theory of second-order difference and differential equations should be useful in the theory.
    [Show full text]
  • The Truncated Matrix Hausdorff Moment Problem∗
    METHODS AND APPLICATIONS OF ANALYSIS. c 2012 International Press Vol. 19, No. 1, pp. 021–042, March 2012 002 THE TRUNCATED MATRIX HAUSDORFF MOMENT PROBLEM∗ SERGEY M. ZAGORODNYUK† Abstract. In this paper we obtain a description of all solutions of the truncated matrix Hausdorff moment problem in a general case (no conditions besides solvability are assumed). We use the basic results of Krein and Ovcharenko about generalized sc-resolvents of Hermitian contractions. Necessary and sufficient conditions for the determinateness of the moment problem are obtained, as well. Several numerical examples are provided. Key words. Moment problem, generalized resolvent, contraction. AMS subject classifications. 44A60. 1. Introduction. In this paper we analyze the following problem: to find a N 1 non-decreasing matrix-valued function M(x) = (mk,j (x))k,j−=0 on [a,b], which is left- continuous in (a,b), M(a) = 0, and such that b n (1) x dM(x)= Sn, n =0, 1, ..., ℓ, Za ℓ where Sn is a prescribed sequence of Hermitian (N N) complex matrices, { }n=0 × N N, ℓ Z+. Here a,b R: a<b. This problem is said to be the truncated matrix∈ Hausdorff∈ moment∈ problem. If this problem has a unique solution, it is said to be determinate. In the opposite case it is said to be indeterminate. In the scalar case this problem was solved by Krein, see [1] and references therein. The operator moment problem on [ 1, 1] with an odd number of prescribed moments 2d − Sn n=0 was considered by Krein and Krasnoselskiy in [2].
    [Show full text]
  • On the Moment Determinacy of Products of Non-Identically Distributed Random Variables
    PROBABILITY AND MATHEMATICAL STATISTICS Vol. 36, Fasc. 1 (2016), pp. 21–33 ON THE MOMENT DETERMINACY OF PRODUCTS OF NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES BY GWO DONG L I N (TAIPEI) AND JORDAN S T OYA N OV (NEWCASTLE AND LJUBLJANA) Abstract. We show first that there are intrinsic relationships among different conditions, old and recent, which lead to some general state- ments in both the Stieltjes and the Hamburger moment problems. Then we describe checkable conditions and prove new results about the moment (in)determinacy for products of independent and non-identically distributed random variables. We treat all three cases: when the random variables are nonnegative (Stieltjes case), when they take values in the whole real line (Hamburger case), and the mixed case. As an illustration we characterize the moment determinacy of products of random variables whose distribu- tions are generalized gamma or double generalized gamma all with distinct shape parameters. Among other corollaries, the product of two independent random variables, one exponential and one inverse Gaussian, is moment determinate, while the product is moment indeterminate for the cases: one exponential and one normal, one chi-square and one normal, and one inverse Gaussian and one normal. 2010 AMS Mathematics Subject Classification: Primary: 60E05, 44A60; Secondary: 62E10. Key words and phrases: Product of random variables, Stieltjes mo- ment problem, Hamburger moment problem, Cramér’s condition, Carle- man’s condition, Krein’s condition, Hardy’s condition. 1. INTRODUCTION There is a long standing interest in studying products of random variables; see, e.g., [13], [16], [23], [6], [22], [10], [27] and the references therein.
    [Show full text]
  • Recursiveness, Positivity, and Truncated Moment Problems
    HOUSTON JOURNAL OF MATHEMATICS Volume 17, No. 4, 1991 RECURSIVENESS, POSITIVITY, AND TRUNCATED MOMENT PROBLEMS I•A•L E. CURTO LAWRENCE A. FIALKOW Abstract. Using elementary techniques from linear algebra, we de- scribe a recursire model for singular positive Hankel matrices. We then use this model to obtain necessary and sufficient conditions for existence or uniqueness of positive Borel measures which solve the truncated moment problems of Hamburger, Hausdorff and Stieltjes. We also present analogous results concerning Toeplitz matrices and the truncated trigonometric moment problem. Dedicated to the memory of Domingo A. Herrero 1. Introduction. Given an infinite sequenceof complexnumbers 7 - {70,71,--' } and a subsetK C_C, the K-powermoment problem with data 7 entails finding a positiveBorel measurey on C suchthat (1.1) / tJdp(t)=7j (J •- O) and supp p C_K. The classicaltheorems of Stieltjes,Toeplitz, Hamburger and Hausdorffpro- vide necessaxyand sufficientconditions for the solubilityof (1.1) in case K = [0,+o•),K ---T := (t e C: Itl- 1},K - • andK - [a,bl(a,b e [•), respectively([AhKI, [Akhl, [KrNI, [Lanl, [Sat], [ShT]). For example, when K = •, Hamburger'sTheorem implies that (1.1) is solubleif and Both authorswere partially supportedby grantsfrom NSF. Rafil Curto was alsopartially supportedby a Universityof Iowa faculty scholaraward. 603 604 R. E. CURTO AND L. A. FIALKOW onlyif the Hankelmatrices A(n):= (7i+j)in,j=o(n = 0,1,... ) arepositive semidefinite[ShT, Theorem1.1.2]. The classicaltheory also providesuniqueness theorems and parame- terizationsof the setsof solutions.Parts of the theory havebeen extendedto covermore general support sets for/• ([SEMI, [Gas],[Sch]), and the "mul- tidimensionalmoment problem" has also been studied extensively (lAtz], [Ber], [Fug],[Put]).
    [Show full text]
  • Symmetric Moment Problems and a Conjecture of Valent
    Symmetric moment problems and a conjecture of Valent C. Berg and R. Szwarc∗ October 14, 2018 Abstract In 1998 G. Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes having polynomial birth and death rates of degree p 3. Ro- ≥ manov recently proved that the order is 1/p as conjectured, see [14]. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval [π/(p sin(π/p)), π/(p sin(π/p) cos(π/p))], which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as p . →∞ The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal poly- nomials P and those of the second kind Q satisfy P 2 (0) c n−1/β n n 2n ∼ 1 and Q2 (0) c n−1/α, where 0 < α,β < 1 can be different, and c , c 2n−1 ∼ 2 1 2 are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of α, β. Here α β means that n ∼ n arXiv:1509.06540v2 [math.CA] 27 Jan 2017 α /β 1. This also leads to a new proof of Romanov’s Theorem that n n → the order is 1/p. 2010 Mathematics Subject Classification: Primary 44A60; Secondary 11M32, 30D15, 60J80 Keywords: indeterminate moment problems, birth and death processes with poly- nomials rates, multi-zeta values.
    [Show full text]
  • Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation
    Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation Jia-Jie Zhu Wittawat Jitkrittum Empirical Inference Department Empirical Inference Department Max Planck Institute for Intelligent Systems Max Planck Institute for Intelligent Systems Tübingen, Germany Tübingen, Germany [email protected] Currently at Google Research, NYC, USA [email protected] Moritz Diehl Bernhard Schölkopf Department of Microsystems Engineering Empirical Inference Department & Department of Mathematics Max Planck Institute for Intelligent Systems University of Freiburg Tübingen, Germany Freiburg, Germany [email protected] [email protected] Abstract functional gradient, which apply to general optimization and machine learning tasks. We propose kernel distributionally robust op- timization (Kernel DRO) using insights from 1 INTRODUCTION the robust optimization theory and functional analysis. Our method uses reproducing kernel Imagine a hypothetical scenario in the illustrative figure Hilbert spaces (RKHS) to construct a wide where we want to arrive at a destination while avoiding range of convex ambiguity sets, which can be unknown obstacles. A worst-case robust optimization generalized to sets based on integral probabil- (RO) (Ben-Tal et al., 2009) approach is then to avoid ity metrics and finite-order moment bounds. the entire unsafe area (left, blue). Suppose we have This perspective unifies multiple existing ro- historical locations of the obstacles (right, dots). We bust and stochastic optimization methods. may choose to avoid only the convex polytope that We prove a theorem that generalizes the clas- contains all the samples (pink). This data-driven robust sical duality in the mathematical problem of decision-making idea improves efficiency while retaining moments.
    [Show full text]
  • On the Combinatorics of Cumulants
    Journal of Combinatorial Theory, Series A 91, 283304 (2000) doi:10.1006Âjcta.1999.3017, available online at http:ÂÂwww.idealibrary.com on On the Combinatorics of Cumulants Gian-Carlo Rota Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Jianhong Shen School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 E-mail: jhshenÄmath.umn.edu View metadata, citation and similar papers at core.ac.uk brought to you by CORE Communicated by the Managing Editors provided by Elsevier - Publisher Connector Received July 26, 1999 dedicated to the memory of gian-carlo rota We study cumulants by Umbral Calculus. Various formulae expressing cumulants by umbral functions are established. Links to invariant theory, symmetric functions, and binomial sequences are made. 2000 Academic Press 1. INTRODUCTION Cumulants were first defined and studied by Danish scientist T. N. Thiele. He called them semi-invariants. The importance of cumulants comes from the observation that many properties of random variables can be better represented by cumulants than by moments. We refer to Brillinger [3] and Gnedenko and Kolmogorov [4] for further detailed probabilistic aspects on this topic. Given a random variable X with the moment generating function g(t), its nth cumulant Kn is defined as d n Kn= n log g(t). dt } t=0 283 0097-3165Â00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. 284 ROTA AND SHEN That is, m K : n tn= g(t)=exp : n tn ,(1) n0 n! \ n1 n! + where, mn is the nth moment of X. Generally, if _ denotes the standard deviation, then 2 2 K1=m1 , K2=m2&m1=_ .
    [Show full text]
  • The Truncated Stieltjes Moment Problem Solved by Using Kernel Density Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 236 (2012) 4193–4213 Contents lists available at SciVerse ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam The truncated Stieltjes moment problem solved by using kernel density functions P.N. Gavriliadis ∗, G.A. Athanassoulis Department of Naval Architecture and Marine Engineering, National Technical University of Athens, Heroon Polytechniou 9, GR-157 73 Zografos, Athens, Greece article info a b s t r a c t Article history: In this work the problem of the approximate numerical determination of a semi-infinite Received 4 July 2010 supported, continuous probability density function (pdf) from a finite number of its Received in revised form 6 September 2011 moments is addressed. The target space is carefully defined and an approximation theorem is proved, establishing that the set of all convex superpositions of appropriate Kernel MSC: Density Functions (KDFs) is dense in this space. A solution algorithm is provided, based 65R32 on the established approximate representation of the target pdf and the exploitation 65F22 of some theoretical results concerning moment sequence asymptotics. The solution 45Q05 algorithm also permits us to recover the tail behavior of the target pdf and incorporate Keywords: this information in our solution. A parsimonious formulation of the proposed solution Truncated Stieltjes moment problem procedure, based on a novel sequentially adaptive scheme is developed, enabling a very Kernel density function efficient moment data inversion. The whole methodology is fully illustrated by numerical Probability density function examples.
    [Show full text]
  • Solution of the Truncated Complex Moment Problem for Flat Data
    SOLUTION OF THE TRUNCATED COMPLEX MOMENT PROBLEM FOR FLAT DATA Raul´ E. Curto Lawrence A. Fialkow i Contents Chapter 1. Introduction 1 Chapter 2. Moment Matrices 9 Chapter 3. Positive Moment Matrices and Representing Measures 15 Chapter 4. Existence of Representing Measures 22 Chapter 5. Extension of Flat Positive Moment Matrices 26 Chapter 6. Applications 35 Chapter 7. Generalizations to Several Variables 41 References 48 List of Symbols 51 iii Abstract We introduce a matricial approach to the truncated complex moment problem, and apply it to the case of moment matrices of flat data type, for which the columns corresponding to the homogeneous monomials in z andz ¯ of highest degree can be written in terms of monomials of lower degree. Necessary and sufficient conditions for the existence and uniqueness of representing measures are obtained in terms of positivity and extension criteria for moment matrices. We discuss the connection between complex moment problems and the subnormal completion problem for 2-variable weighted shifts, and present in detail the construction of solutions for truncated complex moment problems associated with monomials of degrees one and two. Finally, we present generalizations to multivariable moment and completion problems. iv For In´es, Carina, Roxanna and Vilsa and For Deborah, Velaho, Ruth, Jarmel, Tawana and Atiba v CHAPTER 1 Introduction Given a doubly indexed finite sequence of complex numbers γ : γ00, γ01, γ10, ..., γ0,2n, ..., γ2n,0,withγ00 > 0andγji =¯γij , the truncated complex moment problem entails finding a positive Borel measure µ supported in the complex plane C such that Z i j (1.1) γij = z¯ z dµ (0 ≤ i + j ≤ 2n); µ is called a representing measure for γ.
    [Show full text]