Redescription of Pseudorinelepis Genibarbis (Loricariidae: Hypostominae) with Comments on Behavior As It Relates to Air-Holding

Total Page:16

File Type:pdf, Size:1020Kb

Redescription of Pseudorinelepis Genibarbis (Loricariidae: Hypostominae) with Comments on Behavior As It Relates to Air-Holding 53 Ichthyol. Explor. Freshwaters, Vol. 10, No.1, pp. 53-61, 4 figs., 1 tab., January 1999 © 1999 by Verlag Dr. Friedrich Pfeil, Miinchen, FRG - ISSN 0936-9902 Redescription of Pseudorinelepis genibarbis (Loricariidae: Hypostominae) with comments on behavior as it relates to air-holding Jonathan W. Armbruster* and Michael Hardman** The loricariid catfish genus Pseudorinelepis is revised. Analysis revealed no difference between the nominal species of Pseudorinelepis and only P. genibarbis is recognized as valid. The Pseudorinelepis from the Rio Branco of Brazil may represent an undescribed species. Pseudorinelepis was examined for its behavior as it relates to the ability of a large esophageal diverticulum to hold air. Pseudorine/epis was shown to breathe air, and, when disturbed, would swim through the water column remaining neutrally buoyant. Introduction logical, and physiological evolution of the lung/ swim bladder in sarcopterygians and basal actin­ Pseudorinelepis Bleeker is a small genus (4 nomi­ opterygians. Unfortunately, very little informa­ nal species) of suckermouth armored catfish from tion is available on the life history characteristics the Amazon basin characterized by a peculiar of members of the Rhinelepis group, and only modification of the digestive tract. At the distal Rhinelepis is known to breathe air (Santos et aI., end of the esophagus is a large, U-shaped diver­ 1994). It has been suggested that Pseudorinelepis ticulum that was hypothesized by Armbruster and Rhinelepis use their diverticula mainly for (1998b) to be an accessory respiratory organ. This respiration, but may also use it for hydrostatic diverticulum is also found in Pogonopoma Regan, control. The diverticulum in Pogonopoma and Pogonopomoides Gosline, and Rhinelepis Spix Pogonopomoides is similar to a swim bladder and which, together with Pseudorinelepis, represent is suggested to function only as a hydrostatic the Rhinelepis group of Loricariidae (Armbruster, organ (Armbruster, 1998a-b). 1998a-b). The evolution of the diverticulum ap­ The four species currently recognized in Pseu­ pears to mirror the evolution of the lung/swim dorinelepis are: P. genibarbis (Valenciennes, 1840), bladder in other fishes, and may represent a use­ P. agassizii (Steindachner, 1877), P. pellegrini (Re­ ful model for studying the behavioral, morpho- gan, 1904), and P. carachama (Fowler, 1940) (Arm- * lllinois Natural History Survey, 607 E. Peabody, Champaign, IL 61820, USA. Present address: Department of Zoology and Wildlife Science, 331 Funchess Hall, Auburn University, AL 36849-5414, USA. ** Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. Present address: lllinois Natural History Survey, 607 E. Peabody, Champaign, IL 61820, USA. Ichthvol. Explor. Freshwaters, Vol. 10, No.1 54 bruster & Page, 1997). Despite this small number Pseudorinelepis specimens and provided the im­ of species, the taxonomic history of Pseudorinel­ petus to examine the species of Pseudorinelepis, epis is complex. Pseudorinelepis genibarbis was orig­ examine behavior in aquaria, and to examine the inally described by Valenciennes (in Cuvier & ability to breathe air. In this study, 41 specimens Valenciennes, 1840) in Rhinelepis. Bleeker (1862) of Pseudorinelepis, including all types except that described Pseudorinelepis to include P. genibarbis of P. genibarbis (which is lost) were examined to which is the type species by monotypy; however, determine if P. agassizii, P. carachama, and P. pel­ Pseudorinelepis was not recognized by subsequent legrini are valid. A neotype is designated for authors until Isbriicker (1980). Steindachner (1877) Rhinelepis genibarbis. The behavior of Pseudorinel­ described P. agassizii in Rhinelepis. Regan (1904) epis as it relates to buoyancy and air-breathing is placed P. agassizii into the synonymy of P. geni­ also described. barbis and described P. pellegrini based on minor differences with the types of P. agassizii and P. genibarbis. Regan (1904) placed P. genibarbis and Methods P. pellegrini in the subgenus Pogonopoma of Ple­ costomus Gronovius (= Hypostomus Lacepede). Ei­ Morphometric features were measured with dig­ genmann (1910) described Canthopomus to include ital calipers to the nearest 0.1 mm. Measurements P. genibarbis as the type species, P. agassizii as a are as defined below or as defined in Boeseman synonym of P. genibarbis, and P. pellegrini as val­ (1968) or Armbruster & Page (1996) and include: id. Fowler (1940) described Monistiancistrus cara­ standard length, head length (from the snout tip chama and suggested that it was closely related to to the posterior tip of the supraoccipital), clei­ Ancistrus. Eigenmann & Allen (1942) recognized thral width (width of the body just posterior to all four species currently in Pseudorinelepis; how­ the posterior margin of the cleithral process that ever, they placed P. agassizii in Canthopomus with is just dorsal to the pectoral fin), snout length, it now erroneously cited as the type species, re­ orbit diameter, interorbital width, dorsal spine turned P. genibarbis to Rhinelepis and retained length, folded dorsal fin length, dorsal base length P. pellegrini in the subgenus Plecostomus (Pogono­ (from the point between the dorsal-fin spinelet poma) and P. carachama in Monistiancistrus. Eigen­ and spine to the posterior end of the membrane mann & Allen (1942) incorrectly suggested that connecting the last dorsal-fin ray to the body), Canthopomus Eigenmann (1910) was a nomen dorsal-caudal length (from the posterior end of nudum. In Eigenmann (1910), the genus name the membrane that connects the last dorsal-fin Canthopomus is clearly stated as a new genus and ray to the body to the posterior edge of the pe­ described species are indicated as belonging to nultimate dorsal procurrent caudal-fin spine), Canthopomus, thereby satisfying Article 12 of the thorax length (from the insertion of the pectoral­ International Code of Zoological Nomenclature fin spine to the insertion of the pelvic-fin spine for genus-group names described prior to 1931 [pelvic insertion defined as a bony, subcutane­ (ICZN, 1985). Gosline (1947) returned P. genibar­ ous process just anterior to the point where the bis, and P. pellegrini to Canthopomus in which he pelvic-fin spine passes through the skin]), pecto­ also recognized P. agassizii as valid. Isbriicker ral spine length, abdominal length (from the in­ (1980) recognized Canthopomus as a synonym of sertion of the pelvic-fin spine to the insertion of Pseudorinelepis, retained P. carachama in Monis­ the anal-fin spine), pelvic spine length (from the tiancistrus, and concluded that Monistiancistrus insertion of the pelvic-fin spine to the tip of the belonged in the Ancistrinae. Isbriicker & Nijssen spine), postanallength (from the posterior inser­ (1982) moved Monistiancistrus to the Hypostom­ tion of the anal fin to the posterior margin of the inae and later placed Monistiancistrus into the penultimate ventral procurrent caudal-fin spine), synonymy of Pseudorinelepis (Nijssen & Isbriick­ caudal peduncle depth (measured vertically from er, 1986). Isbriicker (1992) removed Monistiancis­ the posterior margin of the adipose fin mem­ trus from the synonymy of Pseudorinelepis and brane), anal width (body width at the anal-fin placed it in the synonymy of Hypostomus, and, spine), snout-opercle length, and head width. finally, Armbruster & Page (1997) returned Mon­ Counts are as in Armbruster & Page (1996) istiancistrus to the synonymy of Pseudorinelepis. except that the unbranched ray of the anal fin Recent collecting efforts in the Iquitos region was counted as a spine and dorsal-caudal plates of Peru has resulted in the collection of several are the number of plates in a dorsal series start- Armbruster & Hardman: Redescription of Pseudorineiepis genibarbis 55 ing from the plate just posterior to the last plate 70 contacted by the dorsal-fin membrane up to and 0 including the elongate plate covering the base of 0 60 0 0 the dorsal-most caudal-fin ray. Values for the 0 neotype are given in parentheses when different. ..c oeg 0 Q) 0 Maximum number of teeth is the number of teeth -Q) l- 50 000 00 in the jaw ramus with the most teeth. Institution 0 0 E 0 abbreviations are as in Leviton et al. (1985) with ~ 00 the addition of HAP, Instituto de Investigaciones E 0000 'x 40 de la Amazonia Peruana, Iquitos, Peru. Numbers ctI o 0 following catalog numbers are the number of ::E. 0 0 specimens examined. Specimens were grouped 30 into five popUlations: the Rio Branco (upper Rio 0 Negro drainage), the Brazilian Amazon (in and 20 near the mainstem Amazon), the Rio Madeira, 0 100 200 300 400 the Peruvian Amazon (in and near the mainstem Amazon from the Brazilian border to the conflu­ SL (mm) ence of the Rios Marafton and Ucayali), and the Ucayali/Maranon (all collections examined were Fig. 1. Maximum number of teeth vs. standard length from the Rio Ucayali proper or the swampy area in PseudorineZepis genibarbis. between the two rivers near their confluence). The locality of the type of P. pellegrini is given only as Upper Amazon (Regan, 1904); P. pellegrini dorinelepis. Color is variable, but observations on was coded as an unknown population. the live specimens suggests that they may change All measurements were natural log-trans­ their color to match the substrate. Color patterns formed and a principal components analysis was in live specimens range from tan to almost black, performed using a covariance matrix in Systat and specimens may have spots
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Modifications of the Digestive Tract for Holding Air in Loricariid and Scoloplacid Catfishes
    Copeia, 1998(3), pp. 663-675 Modifications of the Digestive Tract for Holding Air in Loricariid and Scoloplacid Catfishes JONATHAN W. ARMBRUSTER Loricariid catfishes have evolved several modifications of the digestive tract that • appear to fWIction as accessory respiratory organs or hydrostatic organs. Adapta­ tions include an enlarged stomach in Pterygoplichthys, Liposan:us, Glyptoperichthys, Hemiancistrus annectens, Hemiancistrus maracaiboensis, HyposWmus panamensis, and Lithoxus; a U-shaped diverticulum in Rhinelepis, Pseudorinelepis, Pogonopoma, and Po­ gonopomoides; and a ringlike diverticulum in Otocinclus. Scoloplacids, closely related to loricariids, have enlarged, clear, air-filled stomachs similar to that of Lithoxus. The ability to breathe air in Otocinclus was confirmed; the ability of Lithoxus and Scoloplax to breathe air is inferred from morphology. The diverticula of Pogonopomoides and Pogonopoma are similar to swim bladders and may be used as hydrostatic organs. The various modifications of the stomach probably represent characters that define monophyletic clades. The ovaries of Lithoxus were also examined and were sho~ to have very few (15--17) mature eggs that were large (1.6-2.2 mm) for the small size of the fish (38.6-41.4 mm SL). Los bagres loricariid an desarrollado varias modificaciones del canal digestivo que aparentan fWIcionar como organos accesorios de respiracion 0 organos hidrostati­ cos. Las adaptaciones incluyen WI estomago agrandado en Pterygoplichthys, Liposar­ cus, Glyproperichthys, Hemiancistrus annectens, Hemiancistrus maracaiboensis, Hyposto­ mus panamensis, y Lithoxus; WI diverticulum en forma de U en Rhinelepis, Pseudori­ nelepis, Pogonopoma, y Pogonopomoides; y WI diverticulum en forma de circulo en Otocinclus. Scoloplacids, de relacion cercana a los loricariids, tienen estomagos cla­ ros, agrandados, llenos de aire similares a los de Lithoxus.
    [Show full text]
  • FAMILY Loricariidae Rafinesque, 1815
    FAMILY Loricariidae Rafinesque, 1815 - suckermouth armored catfishes SUBFAMILY Lithogeninae Gosline, 1947 - suckermoth armored catfishes GENUS Lithogenes Eigenmann, 1909 - suckermouth armored catfishes Species Lithogenes valencia Provenzano et al., 2003 - Valencia suckermouth armored catfish Species Lithogenes villosus Eigenmann, 1909 - Potaro suckermouth armored catfish Species Lithogenes wahari Schaefer & Provenzano, 2008 - Cuao suckermouth armored catfish SUBFAMILY Delturinae Armbruster et al., 2006 - armored catfishes GENUS Delturus Eigenmann & Eigenmann, 1889 - armored catfishes [=Carinotus] Species Delturus angulicauda (Steindachner, 1877) - Mucuri armored catfish Species Delturus brevis Reis & Pereira, in Reis et al., 2006 - Aracuai armored catfish Species Delturus carinotus (La Monte, 1933) - Doce armored catfish Species Delturus parahybae Eigenmann & Eigenmann, 1889 - Parahyba armored catfish GENUS Hemipsilichthys Eigenmann & Eigenmann, 1889 - wide-mouthed catfishes [=Upsilodus, Xenomystus] Species Hemipsilichthys gobio (Lütken, 1874) - Parahyba wide-mouthed catfish [=victori] Species Hemipsilichthys nimius Pereira, 2003 - Pereque-Acu wide-mouthed catfish Species Hemipsilichthys papillatus Pereira et al., 2000 - Paraiba wide-mouthed catfish SUBFAMILY Rhinelepinae Armbruster, 2004 - suckermouth catfishes GENUS Pogonopoma Regan, 1904 - suckermouth armored catfishes, sucker catfishes [=Pogonopomoides] Species Pogonopoma obscurum Quevedo & Reis, 2002 - Canoas sucker catfish Species Pogonopoma parahybae (Steindachner, 1877) - Parahyba
    [Show full text]
  • The Pandas Are Coming, the Pandas Are Coming!!! by DRAS Member Derek P.S
    WTFish?: The Pandas Are Coming, The Pandas Are Coming!!! by DRAS Member Derek P.S. Tustin ometimes it is interesting living in the Greater Toronto Area, isn’t it? S Recently deemed to be the fourth largest city in North America (leaping past Chicago by 84,000 people) behind Mexico City, New York and Los Angeles, we truly are a world class city. (Interestingly enough, the Greater Toronto Area, that being the recognized metropolitan area of the city and those living in the immediate suburbs, is actually the 51st largest metropolitan area in the world with 6,139,000 people. Tokyo is first with 37,126,000 and Chicago is 28th, with 9,121,000(1). So we still have some catching up to do...) And since I seem to be heading off on tangents today, have you ever considered what makes a city “world class”? According to some, it is a “city generally considered to be an important node in the global economic system.”(2) Given Toronto’s impact on the national economy, and the subsequent influence within the international economic community, it can easily be argued that Toronto is such a city. But there are also cultural factors that come into play. Toronto is blessed with many such attractions, but the one that stands out in my mind is the Toronto Zoo. Sometimes I think we all take for granted what a wonderful facility we have right next door. The Toronto Zoo is consistently ranked as one of the top ten zoos in the world (3, 4, 5), and acknowledged as being one of the largest zoos in the world (6).
    [Show full text]
  • Peckoltia Brevis ERSS
    Peckoltia brevis (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2013 Revised, September 2018 Web Version, 12/17/2020 Organism Type: Fish Overall Risk Assessment Category: Uncertain Photo: Hantanplan. Licensed under Creative Commons Attribution 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Peckoltia-brevis.JPG. (September 2018). 1 Native Range and Status in the United States Native Range From Armbruster (2008): “From the Rios Purus, Juruá, Marañon and upper Amazon of Brazil and Peru and also found in the upper Río Madeira of Bolivia […]. Two collections from the Río Orinoco basin in Vichada, Colombia appear to be Peckoltia brevis.” Status in the United States No records of Peckoltia brevis in the wild or in trade in the United States were found. 1 Peckoltia brevis falls within Group I of New Mexico’s Department of Game and Fish Director’s Species Importation List (New Mexico Department of Game and Fish 2010). Group I species “are designated semi-domesticated animals and do not require an importation permit.” Means of Introductions in the United States No records of Peckoltia brevis in the wild in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2018), Peckoltia brevis (La Monte 1935) is the current valid name of this species. Peckoltia brevis was originally described as Hemiancistrus brevis La Monte 1935. From ITIS (2018): Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Siluriformes Family Loricariidae Subfamily Hypostominae Genus Peckoltia Species Peckoltia brevis (La Monte, 1935) Size, Weight, and Age Range From Armbruster (2008): “Largest specimen examined 105.7 mm SL.” Environment From Froese and Pauly (2018): “Freshwater; demersal; pH range: 5.8 - 7.8; dH range: 15 - 28.
    [Show full text]
  • A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae)
    Copeia 2009, No. 1, 50–56 A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae) Nathan K. Lujan1, Mariangeles Arce2, and Jonathan W. Armbruster1 Baryancistrus beggini, new species, is described from the upper Rı´o Orinoco and lower portions of its tributaries, the Rı´o Guaviare in Colombia and Rı´o Ventuari in Venezuela. Baryancistrus beggini is unique within Hypostominae in having a uniformly dark black to brown base color with a blue sheen in life, and the first three to five plates of the midventral series strongly bent, forming a distinctive keel above the pectoral fins along each side of the body. It is further distinguished by having a naked abdomen, two to three symmetrical and ordered predorsal plate rows including the nuchal plate, and the last dorsal-fin ray adnate with adipose fin via a posterior membrane that extends beyond the preadipose plate up to half the length of the adipose-fin spine. Se describe una nueva especie, Baryancistrus beggini, del alto Rı´o Orinoco y las partes bajas de sus afluentes: el rı´o Guaviare en Colombia, y el rı´o Ventuari en Venezuela. Baryancistrus beggini es la u´ nica especie entre los Hypostominae que presenta fondo negro oscuro a marro´ n sin marcas, con brillo azuloso en ejemplares vivos. Las primeras tres a cinco placas de la serie medioventral esta´n fuertemente dobladas, formando una quilla notable por encima de las aletas pectorales en cada lado del cuerpo. Baryancistrus beggini se distingue tambie´n por tener el abdomen desnudo, dos o tres hileras de placas predorsales sime´tricas y ordenadas (incluyendo la placa nucal) y el u´ ltimo radio de la aleta dorsal adherido a la adiposa a trave´s de una membrana que se extiende posteriormente, sobrepasando la placa preadiposa y llegando hasta la mitad de la espina adiposa.
    [Show full text]
  • Academy of Natural Sciences
    Academy of Natural Sciences The Neotropical Cascudinhos: Systematics and Biogeography of the Otocinclus Catfishes (Siluriformes: Loricariidae) Author(s): Scott A. Schaefer Source: Proceedings of the Academy of Natural Sciences of Philadelphia, Vol. 148 (Oct. 31, 1997), pp. 1-120 Published by: Academy of Natural Sciences Stable URL: http://www.jstor.org/stable/4065046 Accessed: 26-03-2015 15:15 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/4065046?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Academy of Natural Sciences is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the Academy of Natural Sciences of Philadelphia. http://www.jstor.org This content downloaded from 192.134.151.170 on Thu, 26 Mar 2015 15:15:03 UTC All use subject to JSTOR Terms and Conditions PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPIA 148: 1-120. 31 OCTOBER 1997 The Neotropical cascudinhos:Systematics and biogeography of the Otocinclus catfishes (Siluriformes:Loricariidae) SCOTT A. SCHAEFER Department of Ichthyology,American Museumof Natural History, Central Park Westat 79th Street,New York, NY 10024-5192, USA ABSTRACT - The genus OtocinclusCope (1872) of the siluriform family Loricariidaeis diagnosed as monophyletic on the basis of shared derived characters of the cranial and hyobranchial skeleton, dorsal gill arch musculature, and gut.
    [Show full text]
  • Procaudotestis Cordiformis Sp. Nov. (Digenea: Apocreadiidae), Parasite of Rhinelepis Strigosa (Osteichthyes: Loricariidae) from Uruguay River Basin, Uruguay
    41 PROCAUDOTESTIS CORDIFORMIS SP. NOV. (DIGENEA: APOCREADIIDAE), PARASITE OF RHINELEPIS STRIGOSA (OSTEICHTHYES: LORICARIIDAE) FROM URUGUAY RIVER BASIN, URUGUAY Oscar Castro1, María L. Félix2,3 & José M. Venzal 3* 1 Departamento de Parasitología Veterinaria, Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, CP 11600 Montevideo, Uruguay. 2,3 Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP 50000 Salto, Uruguay. 3 Laboratorio de Vectores y enfermedades transmitidas, Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay. * Corresponding author: [email protected] ABSTRACT Palabras clave: Procaudotestis cordiformis sp. nov., Apocreadiidae, Rhinelepis strigosa, cuenca del río Procaudotestis cordiformis sp. nov. (Digenea: Uruguay. Apocreadiidae) is described from specimens collected in the loricariid catfish Rhinelepis strigosa (Osteichthyes: Loricariidae) from Uruguay River basin, INTRODUCTION Uruguay. The new species is morphologically similar to the only species known of the genus, Procaudotestis The loricariid catfish Rhinelepis strigosa uruguayensis Szidat, 1954. P. cordiformis is proposed Valenciennes, 1840 (Loricariidae: Hypostominae) for specimens with the following features: a heart-like inhabits the basins of the Parana and Uruguay rivers body form, pharynx disproportionately larger, testes in Argentina, Brazil, Paraguay and Uruguay (Ferraris, more anteriorly located, ovary and anterior testis with 2007). For the genus Rhinelepis Agassiz, 1829 only overlapping fields, vitellaria less extended in relation to body length and with fields not confluent posteriorly, another species is considered valid, Rhinelepis aspera and eggs wider than those described for P. Spix & Agassiz, 1829 (Froese & Pauly, 2015). uruguayensis. An amended diagnosis of the genus Parasitism by Protozoa, Monogenea and Nematoda Procaudotestis is proposed.
    [Show full text]
  • Abstracts Submitted to the 8 International Congress on The
    Abstracts Submitted to the 8th International Congress on the Biology of Fish Portland, Oregon, USA July 28- August 1, 2008 Compiled by Don MacKinlay Fish Biology Congress Abstracts 1 HISTOLOGICAL AND HISTOCHEMICAL STUDY OF LIVER AND PANCREAS IN ADULT OTOLITHES RUBER IN PERSIAN GULF Abdi , R. , Sheibani , M and Adibmoradi , M. Symposium: Morphometrics Presentation: Oral Contact: Rahim Abdi, Khoramshahr University of Marine science and Technology Khoramshahr Khozestan 64199-43175 Iran E-Mail: [email protected] Abstract: In this study, the digestive system of 10 adult Otolithes ruber, were removed and the livers and pancreases were put in the formalin 10 % to be fixed. The routine procedures of preparation of tissues were followed and the paraffin blocks were cut at 6 microns, stained with H&E, PAS and Gomori studied under light microscope. The results of microscopic studies showed that liver as the greatest accessory organ surrounds the pancreatic tissue. Liver is a lobulated organ which surrounds the pancreas as an accessory gland among its lobules. Hepatic tissue of this fish is similar to many other osteichthyes. Hepatocytes include glycogen stores and fat vacuoles located around the hepatic sinusoids. Pancreas as a mixed gland microscopically was composed of lobules consisting of serous acini(exocrine portion) and langerhans islets (endocrine portion). However, pancreatic lobules are usually seen as two rows of acini among which there is a large blood vessel. ECOLOGICAL CONSEQUENCES OF A TRANSPANTING EXOTIC FISH SPECIES TO FRESHWATER ECOSYSTEMS OF IRAN: A CASE STUDY OF RAINBOW TROUT ONCORHYNCHUS MYKISS (WALBAUM, 1792) Abdoli, A., Patimar, R., Mirdar, J., Rahmani, H., and Rasooli, P.
    [Show full text]
  • Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
    Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade.
    [Show full text]
  • About Me Facebook Badge Globe Popular Posts
    Species New to Science: [Mammalogy • 2018] Taxonomic Review of th... http://novataxa.blogspot.com.br/2017/12/cyclopes.html new & recent described Flora & Fauna species from all over the World esp. Asia, Oriental, Indomalayan & Malesiana region Wednesday, December 13, 2017 About Me pskhun View my complete profile Facebook Badge Globe Popular Posts [Botany • 2018] Thismia thaithongiana • A New Species of Mycoheterotroph (Dioscoreaceae: Thismieae) from An Unusual Habitat in Thailand Thismia thaithongiana Chantanaorr. & Suddee in Chantanaorrapint & Suddee, 2018. facebook.com/ ForestHerbarium ... [Botany • 2018] Nephelaphyllum maliauensis • A New Species (Orchidaceae; Collabiinae) from the Maliau Basin, Sabah, Borneo, with A Discussion of the Taxonomic Identities of N. pulchrum, N. latilabre and N. flabellatum Nephelaphyllum maliauensis in Suetsugu, Suleiman & Tsukaya, 2018 DOI: 10.11646/phytotaxa.336.1.7 Nephelaphyllum is... 1 de 16 31/01/2018 18:06 Species New to Science: [Mammalogy • 2018] Taxonomic Review of th... http://novataxa.blogspot.com.br/2017/12/cyclopes.html [Ichthyology • 2018] Spectracanthicus javae • A New Species of the Genus Spectracanthicus (Loricariidae, Hypostominae, Ancistrini) from the Rio s (Rio Araguaia Basin), with A Description ofיJava Gross Brain Morphology Spectracanthicus javae Chamon, Pereira, Mendonca & Akama, 2018 DOI: 10.1111/jfb.13526 Abstract A new species o... [Entomology • 2018] Drepanosticta emtrai • A New Species of Damselfly (Odonata: Zygoptera: Platystictidae) from Vietnam with A Discussion of Drepanosticta vietnamica Asahina, 1997 Drepanosticta emtrai Dow, Kompier & Phan , 2018 DOI: 10.11646/zootaxa.4374.2.7 VNCreatures.net Abstract ... [Paleontology • 2018] Kootenayscolex barbarensis • A New Burgess Shale Polychaete and the Origin of the Annelid Head Revisited Kootenayscolex barbarensis Nanglu & Caron, 2018 DOI: 10.1016/j.cub.2017.12.019 Highlights: •An abundant C..
    [Show full text]
  • Zootaxa, the Genus Peckoltia with the Description of Two New Species and a Reanalysis
    ZOOTAXA 1822 The genus Peckoltia with the description of two new species and a reanalysis of the phylogeny of the genera of the Hypostominae (Siluriformes: Loricariidae) JONATHAN W. ARMBRUSTER Magnolia Press Auckland, New Zealand Jonathan W. Armbruster The genus Peckoltia with the description of two new species and a reanalysis of the phylogeny of the genera of the Hypostominae (Siluriformes: Loricariidae) (Zootaxa 1822) 76 pp.; 30 cm. 14 July 2008 ISBN 978-1-86977-243-7 (paperback) ISBN 978-1-86977-244-4 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1822 © 2008 Magnolia Press ARMBRUSTER Zootaxa 1822: 1–76 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) The genus Peckoltia with the description of two new species and a reanalysis of the phylogeny of the genera of the Hypostominae (Siluriformes: Loricariidae) JONATHAN W. ARMBRUSTER Department of Biological Sciences, Auburn University, 331 Funchess, Auburn, AL 36849, USA; Telephone: (334) 844–9261, FAX: (334) 844–9234.
    [Show full text]