Symposium Highlighting UGA’S Undergraduate Research

Total Page:16

File Type:pdf, Size:1020Kb

Symposium Highlighting UGA’S Undergraduate Research 2019 CUROSymposium highlighting UGA’s undergraduate research April 8-9 • Classic Center • Athens, GA Program & AbstractsBook of 2019 CUROSymposium highlighting UGA’s undergraduate research Welcome to the 2019 CURO Symposium. Hosted by the Center for Undergraduate Research Opportunities, this two-day event highlights exceptional undergraduate research at the University of Georgia. Across campus, administrators, faculty and staff members, and graduate and undergraduate students have collaborated to make this an invaluable academic event. This year’s CURO Symposium is the largest to date, with more than 650 undergraduates communicating their substantial research accomplishments. The presenters are pursuing 96 different majors from 13 schools and colleges and are conducting research with 361 faculty members from 80 departments. The CURO Symposium is a celebration of our students’ hard work and engagement in research, as well as the commitment of their faculty mentors to their success, which would not be possible without UGA’s broad and substantial investment in outstanding experiential learning opportunities. Thank you for your continued support of undergraduate research and CURO. David S. Williams, Maria Navarro, Associate Provost and Associate Director of Director of Honors and CURO Honors and CURO Table of Contents Welcome from Director and Associate Director . inside cover Symposium Schedule . 1 Research Mentoring Awards . .2 . Best Paper Awards . 3. Oral Sessions for Monday, April 9 . 4 . Awards and Keynote Session . 10 Poster Session . 11 Oral Sessions for Tuesday, April 10 . .34 . Abstracts . 42 Index of Presenters and Faculty Mentors . .206 . Acknowledgments . back. cover Schedule Monday / April 8, 2019 All oral sessions on Monday are in Athena Breakout Rooms A, B, C, D, G, H, I, and J. Tuesday / April 9, 2019 11:15 a .m -12:05. p .m . Oral Session 1 All oral sessions on Tuesday are in Athena Breakout Rooms A, B, C, D, G, H, and I. 12:20-1:10 p .m . Oral Session 2 9:30 a .m -10:45. a .m . Oral Session 5 1:25-2:15 p .m . Oral Session 3 11:00 a .m -12:15. p .m . Oral Session 6 2:30-3:20 p .m . Oral Session 4 12:30-1:45 p .m . Oral Session 7 3:30-4:30 p .m . Awards and Keynote Session 2:00-3:15 p .m . Athena Room E Oral Session 8 4:30-6:30 p .m . 3:30-4:45 p .m . Poster Session and Reception Oral Session 9 Grand Hall South 2019 CURO Symposium 1 CURO Research Mentoring Awards he Office of the Senior Vice President for Academic Affairs and Provost and the Honors Program Testablished the CURO Research Mentoring Awards, formerly the EURM awards, in 2001. These awards recognize outstanding faculty who consistently engage undergraduate researchers through CURO programming (courses, the Symposium, summer fellows, theses, etc.) and enhance the learning experience of undergraduate researchers at the University of Georgia. Award recipients have provided superior research opportunities and mentoring and have collaborated with undergraduate researchers on publications and presentations at professional conferences. Before 2014, awards were designated as “Early Career” and “Master Level” and were granted to corresponding faculty ranks. The 2019 recipients are Dr. Vanessa Ezenwa, left, Professor, Odum School of Ecology, and Department of Infectious Diseases, College of Veterinary Medicine, and Dr. Michelle vanDellen, right, Associate Professor, Department of Psychology. Previous recipients and their years are listed below. To view a complete list of recipients, visit curo.uga.edu/faculty/research_mentoring_awards.html . 2018 recipients 2016 recipients • Dr. Michael Terns, Distinguished Research • Dr. Mable Fok, Assistant Professor, Electrical and Professor, Biochemistry and Molecular Biology, Electronics Engineering, College of Engineering Franklin College of Arts and Sciences • Dr. Richard Lewis, UGA Foundation Professor in • Dr. Sarah Shannon, Assistant Professor, Sociology, Family and Consumer Sciences, Foods and Nutrition, Franklin College of Arts and Sciences College of Family and Consumer Sciences 2017 recipients 2015 recipients • Dr. Kevin McCully, Professor of Kinesiology, • Dr. Jeb Byers, Professor, Odum School of Ecology Director of the Exercise Muscle Physiology • Dr. Erik Hofmeister, Associate Professor of Laboratory, College of Education Anesthesiology, Chief of Small Animal Surgery and • Dr. Brenda Cude, Professor, Financial Planning, Anesthesia, College of Veterinary Medicine Housing and Consumer Economics, College of Family and Consumer Sciences 2 2019 CURO Symposium CURO Symposium Best Paper Awards ince 2001, CURO Symposium Best Paper Awards have recognized excellence in papers developed Sfrom work being presented at that year’s Symposium. Applicants may submit in one or more of the following categories: Arts, Humanities and Media; Business; Life Sciences; Physical and Environmental Sciences; Public and International Affairs; Social Sciences; and Technology, Engineering and Math. Each recipient is recognized at the Symposium’s Awards and Keynote Session, and each award carries $100 in financial support. Recipients for the 2019 CURO Symposium are listed below, along with their research topics. Arts, Humanities and Media Leah Dudley Communicative Methods and Impact of Learning English in Refugee Communities Business Adam Kunis An Examination of the Impact of the Tourist Economy on Small Cities and Villages Life Sciences Landon Clark Elucidating Cis-Acting Sequences Required for DNA Uptake at Pyrococcus furiosus CRISPR Loci Physical and Environmental Sciences Elyssa Junio The Effect of Light on the Growth and Development of the Painted Lady Butterfly (Vanessa cardui) Public and International Affairs Madisen Ree Fuller Did Millennium Development Goals Reduce Inequality? Lessons for the Sustainable Development Goals Social Sciences Jeri Sasser A Longitudinal Investigation of Protective Factors for Bereaved Maltreated Youth 2019 CURO Symposium 3 Monday, April 8, 2019 Oral Session 1 Room A Madisen Ree Fuller Ascertaining Inequality in the Millennium Dr. Puneet Dwivedi Development Goals at the Global Level Monday, 11:15 a.m. to 12:05 p.m. Kaitlin Hocker Evaluating the Constitutionality of the Death Dr. Jonathan Peters Athena Breakout Rooms Penalty and Lethal Injection Sydney Kenna Mattox A Policy Analysis of the Nagoya Protocol Dr. J. Peter Brosius Room B Adam Kunis An Examination of the Impact of the Tourist Dr. Hua Chen Economy on Small Cities and Villages Lauren Boyd Behind the Scenes of Mexican Paradise: An Dr. Patricia Richards Exploration into Neoliberalism and Tourism in Mexico Using Qualitative Feminist Methods Elizabeth Cowen Making Water Work: A Public-Private Dr. Amanda Murdie Carter Partnership for Water Security in Karachi, Pakistan Room C Stephanie Cannon Cooperation Among and Between Religious Dr. Amanda Murdie and Non-Religious Non-Governmental Organizations Arden Farr An Analysis of the Symbolic Use of U.S. Dr. Andy Owsiak Sanctions: The Influence of Domestic Public Opinion Sam Daly Military Deterrence Decision Making Dr. Jeffrey Berejikian Room D Riya Gohil Elucidating the Role of Cas2 in CRISPR Dr. Michael Terns DNA Uptake of Streptococcus thermophilus Tristan Horton Molecular Steps Involved in Bacterial Dr. Maor Bar-Peled Colonization and Biofilm Formation on Maize Aerial Roots Felicia Williams The Roles of Induced Genes in Fusarium Dr. Scott Gold verticillioides Resistance to Streptomyces Bacteria Room G Ross Uhlar Butting Heads: Competition and Posturing in Dr. Nicola Sochacka a Paired Programming Team James H. Roach Implementing Fault Tolerance and Radiation Dr. David L. Cotten Hardening for an Accelerated Computing Platform in Low Earth Orbit Hamza S. Naqawe Fiber Optic Sensors for Soft Robotics Dr. Mable Fok 4 2019 CURO Symposium Monday, April 8, 2019 Room H Tj Venkata Pothuraju Effect of Hormone-Ligated Toxins and Dr. Ramesh Selvaraj Endosomal Disruptive Agents on Prostate and Pituitary Cancer Cells Kenna Frierson Native Wildlife Species as Hosts of the Dr. Michael Yabsley Exotic Invasive Asian Longhorned Tick, Haemaphysalis longicornis Caroline Finn Potato Resistant Starch Supplementation Dr. Claire de La Serre Improves Satiety Signaling and Neuroinflammation in High-Fat Fed Rats Room I Alexeia Garnett Psychophysiological Effects of Yoga Dr. Patrick O’Connor Fiachra Rottinghaus The Effect of In-Group/Out-Group Bias on Dr. Adam Goodie the Perception of Robots Parker Hinson Kinematics of the Canine Forelimb Dr. Tim Foutz Oral Session 2 Room A Katie Lech Private Performance: Passion Devotion and Dr. Cynthia Turner Accessory Prayers in Medieval Books of Camp Monday, 12:20 to Hours 1:10 p.m. Athena Breakout Rooms Johanna Hoover Playing God: Creature/Creator Relationships Dr. Richard Menke in Frankenstein and Paradise Lost Anthony Gagliardi A Language of Your Own: Developing Dr. Ed Pavlic Personal Iconography in Poetry Room B Johanna Mercurio Improving Health Care Experiences for Dr. Denise Clark Cambodian Refugees Through Bridging Lewis Western and Traditional Medicine Lauren Lewis Analysis of Bereavement Programs for Dr. Melissa Landers- Children in the United States Potts Leah Dudley Communicative Methods and Impact of Dr. Bill Kretzschmar Learning English in Refugee Communities Room C Lily Kathryn Houston Shakespeare's Storm: A Look at Renaissance Dr. Frances N. Meteorology Teague Katherine Haire Let’s Talk About Literacy: A Study of Dr. Cynthia Turner Margaret Mautby Paston and Medieval Camp Laywomen’s Literacy Lorena Limongi Maria Firmina Dos Reis' Ursula in 19th Dr. Robert Henry Century Brazilian
Recommended publications
  • FINALIST DIRECTORY VIRTUAL REGENERON ISEF 2020 Animal Sciences
    FINALIST DIRECTORY VIRTUAL REGENERON ISEF 2020 Animal Sciences ANIM001 Dispersal and Behavior Patterns between ANIM010 The Study of Anasa tristis Elimination Using Dispersing Wolves and Pack Wolves in Northern Household Products Minnesota Carter McGaha, 15, Freshman, Vici Public Schools, Marcy Ferriere, 18, Senior, Cloquet, Senior High Vici, OK School, Cloquet, MN ANIM011 The Ketogenic Diet Ameliorates the Effects of ANIM002 Antsel and Gretal Caffeine in Seizure Susceptible Drosophila Avneesh Saravanapavan, 14, Freshman, West Port melanogaster High School, Ocala, FL Katherine St George, 17, Senior, John F. Kennedy High School, Bellmore, NY ANIM003 Year Three: Evaluating the Effects of Bifidobacterium infantis Compared with ANIM012 Development and Application of Attractants and Fumagillin on the Honeybee Gut Parasite Controlled-release Microcapsules for the Nosema ceranae and Overall Gut Microbiota Control of an Important Economic Pest: Flower # Varun Madan, 15, Sophomore, Lake Highland Thrips, Frankliniella intonsa Preparatory School, Orlando, FL Chunyi Wei, 16, Sophomore, The Affiliated High School of Fujian Normal University, Fuzhou, ANIM004T Using Protease-activated Receptors (PARs) in Fujian, China Caenorhabditis elegans as a Potential Therapeutic Agent for Inflammatory Diseases ANIM013 The Impacts of Brandt's Voles (Lasiopodomys Swetha Velayutham, 15, Sophomore, brandtii) on the Growth of Plantations Vyshnavi Poruri, 15, Sophomore, Surrounding their Patched Burrow Units Plano East, Senior High School, Plano, TX Meiqi Sun, 18, Senior,
    [Show full text]
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Evolution of Photochemical Reaction Centres
    bioRxiv preprint doi: https://doi.org/10.1101/502450; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution of photochemical reaction 2 centres: more twists? 3 4 Tanai Cardona, A. William Rutherford 5 Department of Life Sciences, Imperial College London, London, UK 6 Correspondence to: [email protected] 7 8 Abstract 9 The earliest event recorded in the molecular evolution of photosynthesis is the structural and 10 functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction 11 centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+- 12 binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial 13 Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the 14 divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by 15 a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential 16 of the electron donor side and electron acceptor side at the same time and in the same redox direction. 17 18 Keywords 19 Photosynthesis, Photosystem, Water oxidation, Oxygenic, Anoxygenic, Reaction centre 20 21 Evolution of Photosystem II 22 There is no consensus on when and how oxygenic photosynthesis originated. Both the timing and the 23 evolutionary mechanism are disputed.
    [Show full text]
  • Single-Cell Transcriptome Analysis As a Promising Tool to Study Pluripotent Stem Cell Reprogramming
    International Journal of Molecular Sciences Review Single-Cell Transcriptome Analysis as a Promising Tool to Study Pluripotent Stem Cell Reprogramming Hyun Kyu Kim †, Tae Won Ha † and Man Ryul Lee * Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; [email protected] (H.K.K.); [email protected] (T.W.H.) * Correspondence: [email protected]; Tel.: +81-41-413-5013 † These authors equally contributed to this work. Abstract: Cells are the basic units of all organisms and are involved in all vital activities, such as proliferation, differentiation, senescence, and apoptosis. A human body consists of more than 30 trillion cells generated through repeated division and differentiation from a single-cell fertilized egg in a highly organized programmatic fashion. Since the recent formation of the Human Cell Atlas consortium, establishing the Human Cell Atlas at the single-cell level has been an ongoing activity with the goal of understanding the mechanisms underlying diseases and vital cellular activities at the level of the single cell. In particular, transcriptome analysis of embryonic stem cells at the single-cell level is of great importance, as these cells are responsible for determining cell fate. Here, we review single-cell analysis techniques that have been actively used in recent years, introduce the single-cell analysis studies currently in progress in pluripotent stem cells and reprogramming, and forecast future studies. Keywords: single-cell mRNA sequencing; pluripotent stem cell; somatic cell reprogramming; in- duced pluripotent stem cell; heterogeneity Citation: Kim, H.K.; Ha, T.W.; Lee, M.R. Single-Cell Transcriptome Analysis as a Promising Tool to Study Pluripotent Stem Cell Reprogramming.
    [Show full text]
  • Etude Des Sources De Carbone Et D'énergie Pour La Synthèse Des Lipides De Stockage Chez La Microalgue Verte Modèle Chlamydo
    Aix Marseille Université L'Ecole Doctorale 62 « Sciences de la Vie et de la Santé » Etude des sources de carbone et d’énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii Yuanxue LIANG Soutenue publiquement le 17 janvier 2019 pour obtenir le grade de « Docteur en biologie » Jury Professor Claire REMACLE, Université de Liège (Rapporteuse) Dr. David DAUVILLEE, CNRS Lille (Rapporteur) Professor Stefano CAFFARRI, Aix Marseille Université (Examinateur) Dr. Gilles PELTIER, CEA Cadarache (Invité) Dr. Yonghua LI-BEISSON, CEA Cadarache (Directeur de thèse) 1 ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor Dr. Yonghua Li-Beisson for the continuous support during my PhD study and also gave me much help in daily life, for her patience, motivation and immense knowledge. I could not have imagined having a better mentor. I’m also thankful for the opportunity she gave me to conduct my PhD research in an excellent laboratory and in the HelioBiotec platform. I would also like to thank another three important scientists: Dr. Gilles Peltier (co- supervisor), Dr. Fred Beisson and Dr. Pierre Richaud who helped me in various aspects of the project. I’m not only thankful for their insightful comments, suggestion, help and encouragement, but also for the hard question which incented me to widen my research from various perspectives. I would also like to thank collaboration from Fantao, Emmannuelle, Yariv, Saleh, and Alisdair. Fantao taught me how to cultivate and work with Chlamydomonas. Emmannuelle performed bioinformatic analyses. Yariv, Saleh and Alisdair from Potsdam for amino acid analysis.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Lecture Inhibition of Photosynthesis Inhibition at Photosystem I
    1 Lecture Inhibition of Photosynthesis Inhibition at Photosystem I 1. General Information The popular misconception is that susceptible plants treated with these herbicides “starve to death” because they can no longer photosynthesize. In actuality, the plants die long before the food reserves are depleted. The photosynthetic inhibitors can be divided into two distinct groups, the inhibitors of Photosystem I and inhibitors of Photosystem II. Both of these groups work in the energy production step of photosynthesis, or the light reactions. Light is required as well as photosynthesis for these herbicides to kill susceptible plants. Herbicides that inhibit Photosystem I are considered to be contact herbicides and are often referred to as membrane disruptors. The end result is that cell membranes are rapidly destroyed resulting in leakage of cell contents into the intercellular spaces. These herbicides act as “electron interceptors” or “electron thieves” within Photosystem I of the light reaction of photosynthesis. They divert electrons from the normal electron transport sequence necessary in Photosystem I. This in turn inhibits photosynthesis. The membrane disruption occurs as a result of secondary responses. Herbicides that inhibit Photosystem I are represented by only one family, the bipyridyliums. See chemical structure shown under herbicide families. These molecules are cationic (positively charged) and are therefore highly water soluble. Their cationic properties also make them highly adsorbed to soil colloids resulting in no soil activity. 2. Mode of Action See Figure 7.1 (The electron transport chain in photosynthesis and the sites of action of herbicides that interfere with electron transfer in this chain (Q = electron acceptor; PQ = plastoquinone).
    [Show full text]
  • PBMC Fixation and Processing for Chromium Single-Cell RNA Sequencing
    bioRxiv preprint doi: https://doi.org/10.1101/315267; this version posted May 5, 2018. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. PBMC Fixation and Processing for Chromium Single-Cell RNA Sequencing Jinguo Chen1, Foo Cheung1, Rongye Shi1,2, Huizhi Zhou1,2, Wenrui Lu1,3, CHI Consortium1 1Center for Human Immunology, Autoimmunity and Inflammation (CHI), National Institutes of Health 2Department of Transfusion Medicine, Clinical Center, National Institutes of Health 3Fujian Provincial Hospital, Fuzhou, China CHI Consortium (Julián Candia1, Yuri Kotliarov1, Katie R. Stagliano1 and John S. Tsang1,2) 1 CHI 2 Systems Genomics and Bioinformatics Unit, NIAID Abstract Background: Interest in single-cell transcriptomic analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. In almost all reported works, investigators have used live cells which introduces cell stress during preparation and hinders complex study designs. Recent studies have indicated that cells fixed by denaturing fixative can be used in single-cell sequencing. But they did not work with most primary cells including immune cells. Methods: The methanol-fixation and new processing method was introduced to preserve PBMCs for single-cell RNA sequencing (scRNA-Seq) analysis on 10X Chromium platform. Results: When methanol fixation protocol was broken up into three steps: fixation, storage and rehydration, we found that PBMC RNA was degraded during rehydration with PBS, not at cell fixation and up to three-month storage steps.
    [Show full text]
  • (CP) Gene of Papaya Ri
    Results and Discussion 4. RESULTS AND DISCUSSION 4.1 Genetic diversity analysis of coat protein (CP) gene of Papaya ringspot virus-P (PRSV-P) isolates from multiple locations of Western India Results – 4.1.1 Sequence analysis In this study, fourteen CP gene sequences of PRSV-P originating from multiple locations of Western Indian States, Gujarat and Maharashtra (Fig. 3.1), have been analyzed and compared with 46 other CP sequences from different geographic locations of America (8), Australia (1), Asia (13) and India (24) (Table 4.1; Fig. 4.1). The CP length of the present isolates varies from 855 to 861 nucleotides encoding 285 to 287 amino acids. Fig. 4.1: Amplification of PRSV-P coat protein (CP) gene from 14 isolates of Western India. From left to right lanes:1: Ladder (1Kb), 2: IN-GU-JN, 3: IN-GU-SU, 4: IN-GU-DS, 5: IN-GU-RM, 6: IN-GU-VL, 7: IN-MH-PN, 8: IN-MH-KO, 9: IN-MH-PL, 10: IN-MH-SN, 11: IN-MH-JL, 12: IN-MH-AM, 13: IN-MH-AM, 14: IN-MH-AK, 15: IN-MH-NS,16: Negative control. Red arrow indicates amplicon of Coat protein (CP) gene. Table 4.1: Sources of coat protein (CP) gene sequences of PRSV-P isolates from India and other countries used in this study. Country Name of Length GenBank Origin¥ Reference isolates* (nts) Acc No IN-GU-JN GU-Jamnagar 861 MG977140 This study IN-GU-SU GU-Surat 855 MG977142 This study IN-GU-DS GU-Desalpur 855 MG977139 This study India IN-GU-RM GU-Ratlam 858 MG977141 This study IN-GU-VL GU-Valsad 855 MG977143 This study IN-MH-PU MH-Pune 861 MH311882 This study Page | 36 Results and Discussion IN-MH-PN MH-Pune
    [Show full text]
  • Itraq-Based Proteome Profiling Revealed the Role of Phytochrome A
    www.nature.com/scientificreports OPEN iTRAQ‑based proteome profling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling Sherinmol Thomas1, Rakesh Kumar2,3, Kapil Sharma2, Abhilash Barpanda1, Yellamaraju Sreelakshmi2, Rameshwar Sharma2 & Sanjeeva Srivastava1* In plants, during growth and development, photoreceptors monitor fuctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR‑light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de‑etiolate in continuous FR. Here we used iTRAQ‑based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR‑mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identifed a decreased abundance of enzymes involved in photosynthesis and carbon fxation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profle associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant. Plant development is intimately bound to the external light environment. Light drives photosynthetic carbon fxa- tion and activates a set of signal-transducing photoreceptors that regulate plant growth and development.
    [Show full text]
  • Enhancing the Thermostability and Activity of Uronate Dehydrogenase from Agrobacterium Tumefaciens LBA4404 by Semi-Rational Engi
    Su et al. Bioresour. Bioprocess. (2019) 6:36 https://doi.org/10.1186/s40643-019-0267-3 RESEARCH Open Access Enhancing the thermostability and activity of uronate dehydrogenase from Agrobacterium tumefaciens LBA4404 by semi-rational engineering Hui‑Hui Su1†, Fei Peng1†, Pei Xu1, Xiao‑Ling Wu1, Min‑Hua Zong1, Ji‑Guo Yang2 and Wen‑Yong Lou1* Abstract Background: Glucaric acid, one of the aldaric acids, has been declared a “top value‑added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efcient and economical than chemical synthesis. Uronate dehydro‑ genases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi‑rational design, is a major research goal. Results: In the present work, three UDHs were obtained from diferent Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tume- 1 1 faciens (At) LBA4404 had a better catalytic efciency than the other two UDHs (800 vs 600 and 530 s− mM− ). To fur‑ ther boost the catalytic performance of the UDH from AtLBA4404, site‑directed mutagenesis based on semi‑rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400‑fold improvement in half‑life at 59 °C, a 10 5 °C improvement in T50 value and a 2.5‑fold improvement in specifc activity at 30 °C compared to wild‑type UDH.
    [Show full text]
  • Shapes TCR Usage in Celiac Disease Posttranslational Modification of Gluten
    Posttranslational Modification of Gluten Shapes TCR Usage in Celiac Disease Shuo-Wang Qiao, Melinda Ráki, Kristin S. Gunnarsen, Geir-Åge Løset, Knut E. A. Lundin, Inger Sandlie and This information is current as Ludvig M. Sollid of September 29, 2021. J Immunol 2011; 187:3064-3071; Prepublished online 17 August 2011; doi: 10.4049/jimmunol.1101526 http://www.jimmunol.org/content/187/6/3064 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/18/jimmunol.110152 Material 6.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/187/6/3064.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Posttranslational Modification of Gluten Shapes TCR Usage in Celiac Disease Shuo-Wang Qiao,* Melinda Ra´ki,†,1 Kristin S.
    [Show full text]