Add Ons for Simatic PCS 7

Total Page:16

File Type:pdf, Size:1020Kb

Add Ons for Simatic PCS 7 © Siemens AG 2015 Add-ons for the SIMATIC PCS 7 Process Control System SIMATIC PCS 7 Catalog Edition ST PCS 7 AO 2015 Answers for industry. Umschlag_STPCS7AO_2015_xx.indd 3 20.08.2015 10:51:57 © Siemens AG 2015 Related catalogs SIMATIC ST PCS 7 SITRAIN ITC SIMATIC PCS 7 Training for Industry Process Control System System components Only available in German E86060-K4678-A111-C1-7600 E86060-K6850-A101-C4 SIMATIC ST PCS 7 T Products for Automation and Drives CA 01 SIMATIC PCS 7 Interactive Catalog, DVD Process Control System Technology components E86060-K4678-A141-A2-7600 E86060-D4001-A510-D4-7600 SIMATIC ST 70 Industry Mall Products for Information and Ordering Platform Totally Integrated Automation in the Internet: E86060-K4670-A101-B5-7600 www.siemens.com/industrymall SIMATIC HMI / ST 80/ST PC PC-based Automation Human Machine Interface Systems PC-based Automation E86060-K4680-A101-C2-7600 Industrial Communication IK PI SIMATIC NET E86060-K6710-A101-B8-7600 Process Automation FI 01 Field Instruments for Process Automation PDF (E86060-K6201-A101-B9-7600) Process Automation AP 01 Process Analytical Instruments PDF (E86060-K3501-A101-B2-7600) Weighing Technology WT 10 Products for Weighing Technology E86060-K6410-A101-A4-7600 © Siemens AG 2015 Add-ons for the SIMATIC PCS 7 Process Control System SIMATIC PCS 7 Information and management systems 1 Advanced Process Control 2 Operator control and monitoring 3 Libraries/blocks/tools 4 Catalog ST PCS 7 AO · 2015 Supersedes: Distributed I/O on PROFIBUS 5 Catalog ST PCS 7 AO · 2013 Refer to the Industry Mall for current updates of this catalog: Diagnostics www.siemens.com/industrymall 6 and as PDF at the following address: www.siemens.com/stpcs7ao The products contained in this catalog can also be found in the Interactive Catalog CA 01. Telecontrol Article No.: E86060-D4001-A510-D4-7600 7 Please contact your local Siemens branch. © Siemens AG 2015 Switchgear/controlgear automation 8 Energy management 9 Architecture and configuration 10 Printed on paper from sustainably managed forests and controlled sources. www.pefc.org Appendix 11 The products and systems described in this catalog are manufactured/distributed under application of a certified quality management system in accordance with DIN EN ISO 9001 (Certified Registration No. 1323-QM). The certificate is recognized by all IQNet countries. © Siemens AG 2015 2 Siemens ST PCS 7 AO · 2015 © Siemens AG 2015 Answers for industry. Integrated technologies, vertical market expertise and services for greater productivity, energy efficiency, and flexibility. Siemens is the world's leading supplier We consistently rely on integrated tech- Market launch times can be reduced of innovative and environmentally nologies and, thanks to our bundled by up to 50% due to the combination friendly products and solutions for portfolio, we can respond more quickly of powerful automation technology industrial companies. End-to-end and flexibly to our customers' wishes. and industrial software. At the same automation technology and industrial With our globally unmatched range of time, the costs for energy or waste software, solid market expertise, and automation technology, industrial water for a manufacturing company technology-based services are the control and drive technology as well can be reduced significantly. In this levers we use to increase our customers’ as industrial software, we equip compa- way, we increase our customers’ productivity, efficiency and flexibility. nies with exactly what they need over competitive strength and make an their entire value chain – from product important contribution to environmen- design and development to production, tal protection with our energy-efficient sales and service. Our industrial custom- products and solutions. ers benefit from our comprehensive portfolio, which is tailored to their market and their needs. Siemens ST PCS 7 AO · 2015 3 © Siemens AG 2015 (53²(QWHUSULVH5HVRXUFH3ODQQLQJ 3/0²3URGXFW/LIHF\FOH0DQDJHPHQW 3URGXFW'HVLJQ 3URGXFWLRQ3ODQQLQJDQG6LPXODWLRQ 'DWD0DQDJHPHQW 0DQDJHPHQW 0(6²0DQXIDFWXULQJ([HFXWLRQ6\VWHPV 3ODQW(QJLQHHULQJ /HYHO 6,0$7,&,7 &2026 (WKHUQHW 2SHUDWLRQV 6,0$7,&3&6 0DLQWHQDQFH (QJLQHHULQJ (QHUJ\ 6,0$7,&:LQ&& /HYHO 2SHUDWRU6\VWHP $VVHW0DQDJHPHQW 6WDWLRQ 0DQDJHPHQW 6&$'$6\VWHP ,QGXVWULDO(WKHUQHW 7,$3RUWDO &RQWURO/HYHO 6,0$7,&3&6 6,180(5,. 6,027,21 6,0$7,&1(7 6,0$7,&&RQWUROOHU 6,0$7,&+0, 6,5,86,QGXVWULDO&RQWUROV $XWRPDWLRQ &RPSXWHU1XPHULF&RQWURO 0RWLRQ&RQWURO ,QGXVWULDO 0RGXODU3&%DVHG +XPDQ0DFKLQH,QWHUIDFH 6\VWHP &RPPXQLFDWLRQ )LHOG/HYHO 352),%863$ 3URFHVV,QVWUXPHQWDWLRQ 6,0$7,&,GHQW 6,0$7,&'LVWULEXWHG,2 6,1$0,&6'ULYH6\VWHPV 6,7233RZHU6XSSO\ ,QGXVWULDO,GHQWLILFDWLRQ 7RWDOO\ +$57 /RZ9ROWDJH'LVWULEXWLRQ ,QWHJUDWHG $XWRPDWLRQ ,2/LQN 6,027,&60RWRUV Efficient automation starts with efficient engineering. Totally Integrated Automation: Efficiency driving productivity. Efficient engineering is the first step toward better production that is faster, more flexible, and more intelligent. With all components interacting efficiently, Totally Integrated Automation (TIA) delivers enormous time savings right from the engineering phase. The result is lower costs, faster time-to-market, and greater flexibility. 4 Siemens ST PCS 7 AO · 2015 © Siemens AG 2015 A unique complete approach for all industries As one of the world's leading automation suppliers, Siemens provides an integrated, comprehensive portfolio for all requirements in process and manufacturing industries. All components are mutually compatible and system-tested. This ensures that they reliably perform their tasks in industrial use and interact efficiently, and that each automation solu- tion can be implemented with little time and effort based on standard products. The integration of many separate indi- vidual engineering tasks into a single engineering environ- Totally Integrated Automation Efficient interoperability of all automation components ment, for example, provides enormous time and cost savings. With its comprehensive technology and industry-specific expertise, Siemens is continuously driving progress in manu- facturing industries – and Totally Integrated Automation plays a key role. Totally Integrated Automation creates real value added in all automation tasks, especially for: • Integrated engineering Consistent, comprehensive engineering throughout the entire product development and production process • Industrial data management Access to all important data occurring in productive operation – along the entire value chain and across all levels 352),1(7 • Industrial communication ,QGXVWULDO(WKHUQHW Integrated communication based on international 352),%86 cross-vendor standards that are mutually compatible $6,QWHUIDFH • Industrial security .1;*$00$LQVWDEXV Systematic minimization of the risk of an internal or 7RWDOO\ external attack on plants and networks ,QWHJUDWHG 3RZHU • Safety Integrated Reliable protection of personnel, machinery, and the environment thanks to seamless integration of safety technologies into the standard automation Making things right with Totally Integrated Automation Totally Integrated Automation, industrial automation from Siemens, stands for the efficient interoperability of all auto- mation components. The open system architecture covers the entire production process and is based on end-to-end shared characteristics: consistent data management, global standards, and uniform hardware and software interfaces. Totally Integrated Automation lays the foundation for comprehensive optimization of the production process: • Time and cost savings due to efficient engineering • Minimized downtime due to integrated diagnostic functions • Simplified implementation of automation solutions due to global standards • Better performance due to interoperability of system- tested components Siemens ST PCS 7 AO · 2015 5 © Siemens AG 2015 Totally Integrated Power We bring power to the point – safely and reliably. Efficient, reliable, safe: These are the demands placed on electrification and especially power distribution. And our answer – for all application areas of the energy system – is Totally Integrated Power (TIP). It’s based on our comprehensive range of products, systems, and solutions for low and medium voltage, rounded out by our support throughout the entire lifecycle – from planning with our own software tools to installation, operation, and services. Smart interfaces allow linking to industrial or building automation, making it possible to fully exploit all the optimization potential of an integrated solution. This is how we provide our customers around the world with answers to their challenges. With highly efficient, reliable, and safe power distribution, we lay the foundation for sustainable infrastructure and cities, Comprehensive answers for power distribution in complex buildings, and industrial plants. We bring power to the point – wherever and whenever it is energy systems – from Siemens needed. More information: www.siemens.com/tip 6 Siemens ST PCS 7 AO · 2015 © Siemens AG 2015 Totally Integrated Power offers more: • Consistency: For simplified plant engineering and commissioning as well as smooth integration into automation solutions for building or production processes • One-stop-shop: A reliable partner with a complete portfolio for the entire process and lifecycle – from the initial idea to after-sales service • Safety: A comprehensive range of protection components for personnel safety and line and fire protection, safety by means of type testing • Reliability: A reliable partner who works with
Recommended publications
  • An Introduction to Integrated Process and Power Automation
    Power Up Your Plant An introduction to integrated process and power automation Jeffrey Vasel ABB, Inc. June 30, 2010 Rev 1 Abstract This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Often referred to as Electrical Integration, Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. Emphasis is placed on tying the IEC 61850 substation automation standard with the process control system. The energy efficiency gains from integration are discussed in a power generation use case. In this use case, energy efficiency is explored with integrated variable frequency drives, improved visibility into power consumption, and energy efficiency through faster plant startup times. Demonstrated capital expenditure (CAPEX) savings is discussed in a cost avoidance section where a real world example of wiring savings is described. Lastly, a power management success story from a major oil and gas company, Petrobras, is discussed. In this case, Petrobras utilized integrated process and power automation to lower CAPEX, operational expenditure (OPEX), and explore future energy saving opportunities. Executive Summary Document ID: 3BUS095060 Page 1 Date: 6/30/2010 © Copyright 2010 ABB. All rights reserved. Pictures, schematics and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. Executive Summary Document ID: 3BUS095060 Page 2 Date: 6/30/2010 © Copyright 2010 ABB.
    [Show full text]
  • International Standard IEC 60870-6-802 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications
    INTERNATIONAL IEC STANDARD 60870-6-802 Second edition 2002-04 Telecontrol equipment and systems – Part 6-802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations – TASE.2 Object models Matériels et systèmes de téléconduite – Partie 6-802: Protocoles de téléconduite compatibles avec les normes ISO et les recommandations de l'UIT-T – Modèles d'objets TASE.2 This is a free 10 page sample. Access the full version online. Reference number IEC 60870-6-802:2002(E) Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: • IEC Web Site (www.iec.ch) • Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication.
    [Show full text]
  • Smart Reconfiguration of Distribution Grids Using Agent-Based Technology
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Smart Reconfiguration of Distribution Grids using Agent-based Technology Matheus Macedo Lopes Dissertation conducted under the Master’s in Electrical and Computers Engineering Program - Major Energy Supervisor: Prof. Vladimiro Miranda , Ph.D. Co-Supervisor: Prof. Diego Issicaba , Ph.D. July 28, 2016 © Matheus Macedo Lopes, 2016 Resumo As manobras de isolamento para reconfiguração em redes de distribuição de média tensão são tradicionalmente manuais ou dependem de decisões tomadas pelos operadores de rede. A abor- dagem proposta assume uma arquitetura onde os agentes interagem em um ambiente de rede de distribuição simulado a partir do estabelecimento de metas projetadas seguindo o paradigma de orientação mulit-agente. A aplicação é implementada de tal forma que agentes AgentSpeak in- teragem entre eles através de uma comunicação baseada em ato de fala/comunicação, bem como com um ambiente desenvolvido em linguagem JAVA. Neste contexto, esta tese propõe a modelagem e verificação de soluções baseadas em agentes para apoiar as operações de reconfiguração em redes de distribuição em nível de média tensão. A metodologia foi utilizada para apoiar as actividades dos operadores de redes de distribuição por meio de planos de restabelecimento de energia para ajudar em casos de falhas permanentes. As abordagens empregadas para arquitetura de agentes para a reconfiguração foram baseadas em modelo hierárquico e uma abordagem totalmente descentralizada. A capabilidade dos agentes foram desenvolvidas prevendo as possiveis aplicações do sistema de distribuição com foco em procedimentos de gestão des interrupções de service. As abordagens foram testadas em um ali- mentador teste trifásico do IEEE de 123 nós.
    [Show full text]
  • Introduction to IEC 61850
    IEC 61850 - Communication Networks and Systems in Substations: An Overview of Computer Science Jianqing Zhang and Carl A. Gunter University of Illinois at Urbana-Champaign Agenda • Overview • Data modeling approach • Communication model • Communication service mapping • Sampled measured values • Configuration description language • Conclusion • Reference 2 Background I: Power Substation 3 Intelligent Electronic Device • Microprocessor-based controllers of power system equipment – e.g. circuit breaker, protective relay… • Receive digitalized data from sensors and power equipment • Issue control commands in case of anomalies to maintain the desired status of power grid – e.g. tripping circuit breakers 4 Why Standards Are Needed • Interoperability and Integration – No standard for data representation or how devices should look and behave to network applications • Intuitive device and data modeling and naming – Hierarchical and structured, rather than plain formatted • Fast and convenient communication • Lower cost for installation, configuration and maintenance – Wire connected legacy devices 5 History of IEC 61850 UCA: Utility Communication Architecture • Protocols • Data models • Abstract service definitions GOAL: One International Standard IEC 61850 IEC 60870-5 • A communication profile for sending basic telecontrol messages between two systems • Based on permanent directly connected data circuits 6 IEC 61850 Substation Architecture • IEC61850-enabled IEDs get digitalized power grid condition data via process bus and merge units • IEDs communicate with each other using substation buses • Legacy devices use IEC61850 wrapper 7 Core Components of IEC 61850 • An object model describing the information available from the different primary equipment and from the substation automation functions – Abstract definitions of services, data and Common Data Class, independent of underlying protocols • A specification of the communication between the IEDs of the substation automation system.
    [Show full text]
  • Common Industrial Protocol) Over Ethernet
    © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public BRKIOT-2112 Securing the Internet of Things Philippe Roggeband, Manager GSSO EMEAR Business Development Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public The IoT pillars While these pillars represent disparate technology, purposes, and challenges, what they all share are the vulnerabilities that IoT devices introduce. Information Technology Operations Technology Consumer Technology It’s not just about the “things” BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 Agenda • Challenges and Constraints • Specific threats and Protection mechanisms • Cisco best practices and solutions • Q&A • Conclusion Agenda • Challenges and Constraints • Specific threats and Protection mechanisms • Cisco best practices and solutions • Q&A • Conclusion Consumer IoT Characteristics Consumer objects Challenges and constraints • These devices are highly constrained in terms of • Physical size, Inexpensive • CPU power, Memory, Bandwidth • Autonomous operation in the field • Power consumption is critical • If it is battery powered then energy efficiency is paramount, batteries might have to last for years • Some level of remote management is required • Value often linked to a Cloud platform or Service BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved.
    [Show full text]
  • Author Information Only
    Cyber Security Practical considerations for implementing IEC 62351 Frank Hohlbaum, Markus Braendle, Fernando Alvarez ABB [email protected] Switzerland 1. Introduction Two trends are currently changing substation automation systems: IEC 61850 and the need for increased cyber security. IEC 61850 has gained global acceptance by both vendors as well as customers. Cyber security on the other hand has quickly become one of the most dominant topics for control systems in general and electrical utilities in particular. The combination of the two, securing IEC 61850 based communications, has been one of the goals of the recently published technical specification IEC 62351. In the authors‟ view IEC 62351 is overall a good starting point and will be the future standard to help secure IEC 61850 communication. However, there are some shortcomings of the current standard and some challenges that need to be addressed before IEC 62351 can be implemented and gain wide acceptance. This paper will highlight the challenge of addressing secure communication in the substation real-time environment, complying with the IEC 61850 real-time specifications. The major difficulties are to reach the performance defined in IEC 61850 for GOOSE and SV data with today‟s proposed technical specification defined for IEC 62351 part 6. In chapter 2, we will give a short overview about the structure of IEC 61850 as well as the detailed performance requirements for the various data types. Chapter 3 will present an introduction of the IEC 62351 standard including the used methods to secure the IEC 61850 communication. Chapter 4 will then show the major implementation issues of IEC 62351 part 6.
    [Show full text]
  • ASE 61850 Suite
    ASE 61850 Suite Applied Systems Engineering, Inc. now offers the ASE 61850 Suite to meet all your IEC 61850 compliance and management needs. The ASE 61850 Suite is powered by the ASE 61850 Communications TestSet, SCL Manager and IED Smart. ASE 61850 COMMUNICATIONS TESTSET The ASE 61850 Communications TestSet simplifies access to IEC 61850 environments and devices. It allows easy identification of equipment on the network by either scanning for connected devices or entering specific device network addresses. GOOSE messages and report data from the devices are displayed as received. Individual data nodes may be selected for monitoring, and information from GOOSE, reports, and scans are updated in a single view. The ASE-61850 TestSet provides a user interface familiar to our many ASE2000 V2 Communications TestSet product users. ASE 61850 SCL MANAGER (SUBSTATION CONFIGURATION ENGINEERING MANAGEMENT) ASE 61850 SCL Manager is a vendor agnostic, comprehensive graphical tool that allows the user to create, configure, view and edit all substation elements, and its data models specified in the IEC 61850 Substation Configuration Language specification. Capabilities and Functions • Helps create, import and export SCD/SSD/SED/ICD/IID SCL files with SLD Info • Creates architectures for substations, wind/hydro power plants and distributed energy resources (DER) and defines complete system specifications • Links different Intelligent Electronic Devices (IEDs) and their logical functions to substation specifications • Supports IEC 61850 Ed. 1.0 and Ed.
    [Show full text]
  • ABB Review Special Report: IEC 61850
    The corporate ABB technical journal review IEC 61850: The new approach 7 Products for the standard 16 Verification and validation 23 Case studies of IEC 61850 38 Special Report IEC 61850 Communication is more than ex- changing data; it means globally understandable information based on syntax and semantic. This is behind IEC 61850, the topic of this issue of ABB Review Special Report. Electric energy is the backbone of our global society. Its reliable sup- ply from conventional and renew- able sources via complex networks requires seamless control that is only possible with the help of a standard providing a high-level and compre- hensive description of the information exchanged. ABB serves the power system with substations as well as utility automation solutions. Learn more about IEC 61850 and ABB’s commitment from the onset both to developing the standard and imple- menting it in products and system solutions. 2 ABB review special report Contents 7 The concept of IEC 61850 Background A new approach for communication in substation automation and beyond 13 Common denominator Innovation and Common components have helped ABB adopt the IEC 61850 substation communication standard in record time development 16 Pushing the limits ABB product development based on the IEC 61850 standard 23 Verified and validated ABB has its own system verification and validation center 29 A testing environment ABB’s comprehensive suite of software testing and commissioning tools for substation automation systems 33 Next generation substations Smarter Impact of
    [Show full text]
  • PM180 IEC 60870-5-104 Port: 1
    expertmeter™ High Performance Analyzer PM180 IEC60870-5-101/104 Communications Protocol Reference Guide BG0593 Rev. A1 Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor. REVISION HISTORY A1 March 2015 Release 2 Table of Contents 1 General .................................................................................................................. 7 2 Protocol Implementation ..................................................................................... 8 2.1 Configuring IEC 60870-5 .......................................................................................... 8 2.2 Communicating via IEC 60870-5 Ports .................................................................... 8 2.3 Device Addressing .................................................................................................... 8 2.4 Information Object Addressing and Mapping .......................................................... 9 2.5 Interrogation ............................................................................................................ 9 2.6 Cyclic Data Transmission .........................................................................................
    [Show full text]
  • Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid
    sensors Article Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid Haftu Tasew Reda 1 , Biplob Ray 2 , Pejman Peidaee 3 , Adnan Anwar 4 , Abdun Mahmood 1 , Akhtar Kalam 3 and Nahina Islam 2,* 1 Department of Computer Science and IT, La Trobe University, Plenty Rd., Bundoora 3086, Australia; [email protected] (H.T.R.); [email protected] (A.M.) 2 Centre for Intelligent Systems (CIS), School of Engineering and Technology, CQUniversity, Rockhampton 4700, Australia; [email protected] 3 Department of Electrical and Electronics Engineering, Victoria University, Ballarat Rd., Footscray 3011, Australia; [email protected] (P.P.); [email protected] (A.K.) 4 School of IT, Deakin University, 75 Pigdons Rd, Waurn Ponds 3216, Australia; [email protected] * Correspondence: [email protected] Abstract: IEC 61850 is one of the most prominent communication standards adopted by the smart grid community due to its high scalability, multi-vendor interoperability, and support for several input/output devices. Generic Object-Oriented Substation Events (GOOSE), which is a widely used communication protocol defined in IEC 61850, provides reliable and fast transmission of events for the electrical substation system. This paper investigates the security vulnerabilities of this protocol and analyzes the potential impact on the smart grid by rigorously analyzing the security of the GOOSE protocol using an automated process and identifying vulnerabilities in the context of smart grid communication. The vulnerabilities are tested using a real-time simulation and industry standard Citation: Reda, H.T.; Ray, B.; Peidaee, hardware-in-the-loop emulation.
    [Show full text]
  • SG-Gateway™ with I/O Interface
    SG-gateway™ with I/O interface Anybus SG-gateways make the Smart Grid possible. They have two main application areas. Firstly, to enable remote control and management of electrical equipment in power grids. Secondly, to enable communication between I/O devices and energy protocols (IEC61850 and IEC60870-5-104). In-short Smart Grid gateways for remote control EXAMPLE: MODBUS TO IEC60870-5-104 EXAMPLE: MODBUS TO IEC61850 and management of electrical systems. Scada Scada Protocols IEC61850 client/server, IEC60870-5-104 IEC60870-5-104 IEC61850 client/server, Modbus RTU master/slave and Modbus TCP client/server. SG-gateway SG-gateway Interfaces Int 1. IEC 104 server Int 1. IEC 61850 server Int 2. Modbus master 3G modem, Ethernet, serial (RS232/ Int 2. Modbus master RS485/RS422), 4 digital inputs, 4 digital outputs. Modbus Modbus Web editor Embedded webserver supporting the following functions among others: • Binary – AND, OR, XOR • Bits & Bytes – Extract, Pack, Put, Pit, Unpack Features and Benefits Device description • Messages – Send, Receive • Easy way to transport I/O data from the field to SCADA The SG-gateway is a remote terminal • Numerical – Counter, Compare systems unit for the energy market with four • Special – Enable/disable, OpenVPN • Several communication protocols are supported (IEC61850 digital inputs and four digital outputs • Storage and edge detection – RS client/server, IEC60870-5-104 client/server, Modbus TCP for monitoring and controlling the Flipflop, Trigger client/server, Modbus RTU master/slave) connected devices. • Timing – TON, TOFF, TP, Timer • Transmission over 3G or Ethernet Additionally the SG-gateway includes • Connecting serial devices over RS232/RS485/RS422 an optional 3G modem, an Ethernet • 4 digital inputs interface and a serial port.
    [Show full text]
  • Light-Weight IEC 61850 Ieds Reducing Complexity
    Light-Weight IEC 61850 IEDs Reducing complexity SESP PROJECT REPORT Mike Mekkanen 29.04.2019 Contents 1 THE NEW SUBSTATION STANDARD IEC 61850 ..................................... 1 1.1 IEC61850standard Overview and Basic Concepts ............................... 2 1.2 IEC 61850 Impact and Benefits ............................................................ 4 1.3 IEC 61850 Information Model ............................................................. 4 1.4 Virtualization of the Physical Devices and LN, LD Concept ... 6 1.5 Communication and Logical Interfaces within SAS ............................ 8 1.6 IEC 61850 Communication Protocols .................................................. 9 1.7 Abstract Communication Service Interface (ACSI) ........................... 10 1.8 GSSE, GOOSE and SV ...................................................................... 12 1.9 Manufacturing Messaging Specification (MMS) ............................... 13 1.10 Substation Configuration description Language (SCL) ........... 14 1.11 IEC 61850 Technical Challenges Implementation Issues ................. 15 1.11.1 System Configuration Challenging .................................... 16 2 LIGHT-WEIGHT IEC 61850 ........................................................................ 18 2.1 Light- Weight IEC 61850 reducing complexity ................................. 19 2.2 Light-Weight IEC 61850 implementation process ............................. 20 2.2.1 Setting up the device .......................................................... 20 2.3 libiec61850
    [Show full text]