Synthesis Gas Treating with Physical Solvent Process Using Selexol Process Technology

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis Gas Treating with Physical Solvent Process Using Selexol Process Technology Synthesis Gas Treating with Physical Solvent Process Using Selexol Process Technology The Selexol process has proven to offer economic advantage, energy savings, and operating reliability for gas treating. The use of Selexol- II solvent lowers the ammonia production cost even further. Vinod A. Shah Norton Company, Akron, OH 44309 T.L. Huurdeman DSM Fertilizers, 6160 McGleen, The Netherlands The selection of a gas treating process SELEXOL SOLVENT PROCESS - This section today is more complex than in the past. describes the SELEXOL solvent, its The high cost of energy which has applications for synthesis gas treating prevailed since the 70's has brought many and an illustration of a plant and energy saving processes to the field of its performance and operating history; gas treating industry. Because ammonia and production is a high energy intensive process and because future energy cost NEW SOLVENT - This section presents a is uncertain and expected to be higher, new solvent which is specially formu- ammonia producers and process licensors lated for synthesis gas treatment. were forced to seek more energy- The solvent is named SELEXOL II efficient production methods. This solvent. The solvent and its economic brought many new synthesis gas treating benefits are discussed and compared with processes to the ammonia industry. the present SELEXOL solvent. Some of these processes may be more energy intensive, some have more SELEXOL SOLVENT PROCESS; maintenance, some have economics for removing carbon dioxide while some have General economics for removing hydrogen sulfide from coal and partial oxidation (POX) The solvent is a homologue of dimethyl gasified gas streams. ether of polyethylene glycol, and has been commercially proven in over 40 This paper describes the process that licensed facilities throughout the covers efficient treatment of all world. The process is owned and licensed varieties of synthesis gases. This by Norton Company Chemical Process process is a physical solvent process Products. The process and solvent called the SELEXOL(R) Solvent Process. characteristics of the solvent are The paper is presented into two sections : highlighted in Table 1. 216 TABLE 1 Table 2 summarizes the relative sol- ubilities of various gases in the SELEXOL solvent, process solvent. The actual solubility data is Characteristics proprietary, however the relative sol- ubilities can be compared for the * Non-toxic, non-polluting, non application (Basis: Ü2 = 1.0). reactive * Non-corrosive - biodegradable TABLE 2 * 151° C (304° F) flash point Relative Solubility of Gases in * 0.0007 mm Hg vapor pressure at 25° SELEXOL Solvent C (77° F) - low solvent losses * Selectively absorbs H2S, COS, RSH, Solubility CS2 in preference to C(>2 Component Ratio * Little or no heat required for solvent regeneration H2 (low solubility) 1.0 * Selectively removes heavy paraf- N2 1.5 fins, olefins, naphthenes and CO 2.2 aromatic byproducts of CH4 5 gasification C02 76 * no change of solvent is necessary COS 175 H2S 670 Its application and experience in the SO2 7000 synthesis gas treating area includes: 19,000 H20 55,000 C H 70,000 * Selective sulfur compound and car- 8 10 (high solubility) bon dioxide removal from gases originated from: As shown in Table 2, the H2S is much * natural gas more soluble than H2, N2, and CO2- If * partial oxidation H2S is present, the solubility differ- * coal gasification ences allows the selective removal of * coak gasification hydrogen sulfide from the gas stream * Removal of coal gas heavy hydro- leaving most of the carbon dioxide carbon byproduct unabsorbed. The SELEXOL Process was first In the case of carbon dioxide removal, applied to the treatment of ammonia because it is more soluble than hydrogen, synthesis gas in 1965. Since that time it allows selective removal of carbon the process has proven its applicability dioxide while leaving hydrogen and for synthesis gas treatment in 16 nitrogen essentially unabsorbed. installations, including a total of 10 ammonia plants. These facilities range In the case of physical solvents, in size from demonstration scale to the because the solubilities are enhanced at world-scale 1,360 t/d DSM ammonia higher pressures and lower tempera- facility. Several of these installa- tures, in order to keep the solvent tions are integral parts of "low energy" circulation rates low, the absorbers are ammonia plants. operated at feed pressures and cold -12 ° C (10°F) to ambient temperatures. Since Synthesis Gas Treating Operating the solubility decreases at lower Philosophy pressure, the desorption of the carbon dioxide from the solvent is achieved by SELEXOL Solvent is a physical solvent simply reducing the pressure of the which means that its capacity to absorb solvent. This characteristic eliminates gases is based on the physical solubi- the need of heat for solvent regenera- lities of gases in the solvent and not tion, and that is he primary reason why on any chemical reactions with the the process is an "Energy Saving solvent. Process". 217 Energy Saving Process - Highlights In the case of the SELEXOL Process, the temperature could be any temperature * Application: Steam reforming of in the range of refrigerated at -12" C natural gas or naphtha: (10° F) to water cooled at 49° C (120° F) . If the refrigeration route is - The heat requirement for solvent selected, the requirements are small and regeneration is essentially zero. usually supplied by the ammonia plant - Reformer steam-to-carbon ratio is refrigeration compression system. No independent of treating require- separate refrigeration unit is required. ment; allows minimum steam-to- carbon ratio to the primary Normally the height of the absorber reformer. is moderate in the range of +/- 36 m - Allows substantial heat recovery to 46 m (120 feet to 150 feet) . downstream of low temperature shift. Heat can be used for purposes Process other than solvent regeneration. H2S removal from POX and coal based - Product carbon dioxide is available synthesis gas. The process schematic at high pressures and at low water diagram is shown in Figure 1. content. - Moderate operating temperatures 10° F to ambient. * Application: POX or coal based HjS REMOVAL synthesis gas: MODUCI H2S removal section ACID GAS - highly selective for H2S over carbon dioxide which results in sub- stantial capital and energy cost savings for sulfur production - lower heat of regeneration FEED - low solvent circulation HEAT - ambient temperatures operation - no solvent degradation CO2 removal section - The heat requirement for solvent Figure 1. regeneration is essentially zero. - Product carbon dioxide is available at higher pressures and at low water content. The process unit is a simple operating - Operating temperatures -12° C unit which consists of a conventional (10°F) to ambient. absorber, a recycle flash drum system High carbon dioxide product and a reboiled stripper column. recovery. - No solvent degradation. The higher solubility of hydrogen sulfide and other sulfur compounds in solvent allows selective removal of Process Variables these compounds from the synthesis gas stream. The resultant acid gas For process optimization, the main stream is sufficiently concentrated in process variable is solvent circulation. hydrogen sulfide for Claus processing. The solvent circulation, however is dependent upon CO2 Removal From Synthesis Gas. The process flow diagram and process - the temperature of the solvent, and description for CÛ2 removal unit is discussed in greater detail in the next - absorber height section. 218 Synthesis Sas Treating - A Case packed absorber column with the lean History solvent entering at the top of the absorber. The carbon dioxide is In order to best evaluate the process absorbed by the solvent and collected in application, reliability, and solvent the bottom. capabilities, it is best to evaluate a specific plant performance and its several years of operating history. Carbon dioxide-rich solvent from the The SELEXOL unit at DSM - Ammonia plant bottom of the absorber then flows (formerly UCAM plant) is selected for through a power recovery hydraulic this purpose. turbine, which converts the pressure energy of the solvent to mechanical The DSM Ammonia plant, a part of DSM energy through reduction of pressure. Fertilizers division, is a 1,360 tons This energy is utilized by the main per day ammonia plant located at Geleen, circulating pump and reduces its energy the Netherlands. As of July 1989, the requirement by approximately 50%. plant has completed five years of successful operation. Rich solvent from turbine flows into the recycle flash drum where The plant was designed and constructed by Kellogg Continental, b.v., based on essentially all of the co-absorbed M. W. Kellogg's reduced-energy ammonia hydrogen and nitrogen is flashed. technology for steam reforming of The flashed gas is separated, compressed natural gas. The plant has achieved an and recycled back to the absorber. actual energy consumption of 7.0 million kcal per metric ton of ammonia (25.2 The rich solvent from the recycle flash million Btu/s.ton) without purge gas drum V-l flows into the low pressure recovery. The plant was commissioned flash drum V-2 where more than 70% of in July 1984 and was producing ammonia the carbon dioxide is flashed and only 3 1/2 weeks after initial start-up. recovered. Process Description. The SELEXOL unit In order to achieve the additional schematic process flow diagram is shown carbon dioxide recovery required at DSM in Figure 2. Ammonia Plant (DSM), the solvent from the low pressure drum is further flashed HIGH CO2 RECOVERY in a vacuum flash drum V-3. Vacuum is FLOW DIAGRAM generated by the vacuum compressor which simultaneously compresses the vacuum PRODUCT VENT flash gases up to the desired carbon dioxide product pressure. Should higher carbon dioxied product recovery (up to 97%) be desired, the solvent could be flashed to lower FEED pressures. The actual operating pressure of the vacuum flash drum depends upon the desired carbon dioxide AIR recovery, i.e.
Recommended publications
  • Process Simulation of a Dual-Stage Selexol Unit for Pre-Combustion Carbon Capture at an IGCC Power Plant', Energy Procedia, Vol
    Edinburgh Research Explorer Process simulation of a dual-stage Selexol unit for pre- combustion carbon capture at an IGCC power plant Citation for published version: Ahn, H, Kapetaki, Z, Brandani, P & Brandani, S 2014, 'Process simulation of a dual-stage Selexol unit for pre-combustion carbon capture at an IGCC power plant', Energy Procedia, vol. 63, pp. 1751–1755. https://doi.org/10.1016/j.egypro.2014.11.182 Digital Object Identifier (DOI): 10.1016/j.egypro.2014.11.182 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Energy Procedia General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 ( 2014 ) 1751 – 1755 GHGT-12 Process simulation of a dual-stage Selexol unit for pre-combustion carbon capture at an IGCC power plant Hyungwoong Ahn*, Zoe Kapetaki, Pietro Brandani, Stefano Brandani Scottish Carbon Capture and Storage Centre, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK Abstract It is aimed to simulate a dual-stage Selexol process for removing CO2 as well as H2S from the syngas typically found in the IGCC power plant with a dry-coal fed gasifier.
    [Show full text]
  • Hydrogen Sulfide Capture: from Absorption in Polar Liquids to Oxide
    Review pubs.acs.org/CR Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal−Organic Framework Adsorbents and Membranes Mansi S. Shah,† Michael Tsapatsis,† and J. Ilja Siepmann*,†,‡ † Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States ‡ Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States ABSTRACT: Hydrogen sulfide removal is a long-standing economic and environ- mental challenge faced by the oil and gas industries. H2S separation processes using reactive and non-reactive absorption and adsorption, membranes, and cryogenic distillation are reviewed. A detailed discussion is presented on new developments in adsorbents, such as ionic liquids, metal oxides, metals, metal−organic frameworks, zeolites, carbon-based materials, and composite materials; and membrane technologies for H2S removal. This Review attempts to exhaustively compile the existing literature on sour gas sweetening and to identify promising areas for future developments in the field. CONTENTS 4.1. Polymeric Membranes 9785 4.2. Membranes for Gas−Liquid Contact 9786 1. Introduction 9755 4.3. Ceramic Membranes 9789 2. Absorption 9758 4.4. Carbon-Based Membranes 9789 2.1. Alkanolamines 9758 4.5. Composite Membranes 9790 2.2. Methanol 9758 N 5. Cryogenic Distillation 9790 2.3. -Methyl-2-pyrrolidone 9758 6. Outlook and Perspectives 9791 2.4. Poly(ethylene glycol) Dimethyl Ether 9759 Author Information 9792 2.5. Sulfolane and Diisopropanolamine 9759 Corresponding Author 9792 2.6. Ionic Liquids 9759 ORCID 9792 3. Adsorption 9762 Notes 9792 3.1.
    [Show full text]
  • Selexol Process
    PROSIMPLUS APPLICATION EXAMPLE NATURAL GAS DEACIDIFICATION WITH SELEXOL PROCESS EXAMPLE PURPOSE This example illustrates a natural gas deacidification with the Selexol process. Selexol, mixture of polyethylene glycol dimethyl ether, is used as the solvent. The deacidification is done through a contactor and the solvent regeneration needs three successive flashes. The process objective is to highly decrease the CO2 composition of the input gas. Selexol make-up is automatically calculated with simple modules. This example is taken from [RAN76] publication which describes main features of this process. ACCESS Free Internet Restricted to ProSim clients Restricted Confidential CORRESPONDING PROSIMPLUS FILES PSPS_EX_EN-Selexol-Process.pmp3 Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example. Copyright © 2015 ProSim, Labège, France - All rights reserved www.prosim.net Natural Gas Deacidification with Selexol Process Version: February 2015 Page: 2 / 16 TABLE OF CONTENTS 1. PROCESS MODELING ..................................................................................................... 3 1.1. Process description ............................................................................................................................
    [Show full text]
  • Hydrogen Pathways: Updated Cost, Well-To-Wheels Energy Use
    Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A10-60528 March 2013 Contract No. DE-AC36-08GO28308 Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of 10 Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. Prepared under Task No. HS07.1002 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-6A10-60528 Golden, CO 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Cost and Performance of Some Carbon Capture Technology Options for Producing Different Quality CO2 Product Streams
    Cost and performance of some carbon capture technology options for producing different quality CO2 product streams Richard T.J. Portera,†,*, Michael Fairweatherb, Clea Kolsterc,d, Niall Mac Dowellc,d, Nilay Shahd and Robert M. Woolleyb aEnergy Research Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK. bInstitute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK. cCentre for Environmental Policy, Imperial College London, London SW7 1NA, UK. dCentre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK. †Current address: Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. * Corresponding author: Tel: +44(0)207 679 3809 Email address: [email protected] (Richard T.J. Porter). Submission of a full-length article to the International Journal of Greenhouse Gas Control, of unpublished material not submitted for publication elsewhere 1 ABSTRACT A techno-economic assessment of power plants with CO2 capture technologies with a focus on process scenarios that deliver different grades of CO2 product purity is presented. The three leading CO2 capture technologies are considered, namely; oxyfuel combustion, pre-combustion and post-combustion capture. The study uses a combination of process simulation of flue gas cleaning processes, modelling with a power plant cost and performance calculator and literature values of key performance criteria in order to evaluate the performance, cost and CO2 product purity of the considered CO2 capture options. For oxyfuel combustion capture plants, three raw CO2 flue gas processing strategies of compression and dehydration only, double flash system purification and distillation purification are considered.
    [Show full text]
  • CO2 Management at Exxonmobil’S Labarge Field, Wyoming
    Available online at www.sciencedirect.com Energy Energy Procedia 4 (2011) 5455–5470 Procedia Energy Procedia 00 (2010) 000–000 www.elsevier.com/locate/procedia www.elsevier.com/locate/XXX GHGT-10 CO2 Management at ExxonMobil’s LaBarge Field, Wyoming, USA Michael E. Parker, P.E., ExxonMobil Production Company, Scott Northrop, ExxonMobil Upstream Research Company, Jaime A. Valencia, ExxonMobil Upstream Research Company, Robert E. Foglesong, ExxonMobil Production Company, William T. Duncan, ExxonMobil Production Company Elsevier use only: Received date here; revised date here; accepted date here Abstract Production of natural gas from the LaBarge field in southwest Wyoming began in 1986. This gas contains high concentrations of carbon dioxide (CO2), and from the very beginning, ExxonMobil has successfully implemented several technologies and approaches to effectively manage the substantial volumes of CO2 associated with its production. Many of the technologies and approaches used for managing CO2 at LaBarge are examples of technologies and approaches being proposed for use in carbon capture and storage (CCS) by other industries. The Shute Creek Treating Facility (SCTF) processes the gas produced from the LaBarge field. The SCTF handles the lowest hydrocarbon content natural gas commercially produced in the world. The gas composition entering Shute Creek is 65% CO2, 21% methane, 7% nitrogen, 5% hydrogen sulfide (H2S) and 0.6% helium. The SCTF separates CO2, methane, and helium for sale and removes hydrogen sulfide for disposal. Most of the CO2 captured at Shute Creek is used for enhanced oil recovery (EOR). EOR is consistently cited as one of the most viable early opportunities for large scale implementation of CCS.
    [Show full text]
  • Steady State and Dynamic Modeling of the Modified Claus Process As Part of an IGCC Power Plant
    Graduate Theses, Dissertations, and Problem Reports 2011 Steady State and Dynamic Modeling of the Modified Claus Process as part of an IGCC Power Plant Dustin Douglas Jones West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Jones, Dustin Douglas, "Steady State and Dynamic Modeling of the Modified Claus Process as part of an IGCC Power Plant" (2011). Graduate Theses, Dissertations, and Problem Reports. 4736. https://researchrepository.wvu.edu/etd/4736 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Steady State and Dynamic Modeling of the Modified Claus Process as part of an IGCC Power Plant Dustin Douglas Jones Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science In Chemical Engineering Dr. Richard Turton, Chair Dr. Joseph Shaeiwitz Dr. John Zondlo Dr. Debangsu Bhattacharyya Department of Chemical Engineering Morgantown, West Virginia 2011 Keywords: Modified Claus Process, IGCC, Optimization, Control ABSTRACT Steady State and Dynamic Modeling of the Modified Claus Process as part of an IGCC Power Plant Dustin Douglas Jones The Modified Claus Process is one of the most common methods for sulfur recovery from acid gas streams.
    [Show full text]
  • Production of Specialty Chemicals from a Coal Gasification Acid Gas Waste Stream
    Production of Specialty Chemicals from a Coal Gasification Acid Gas Waste Stream Background A feasibility study is to be performed to investigate the possibility of producing high- value, specialty sulfur chemicals from a sulfur-rich, acid gas waste stream produced by a coal gasification facility. In this facility, a Shell gasifier is used to process approximately 16,000 tons of coal per day into a synthesis gas used primarily to produce higher alcohol oxygenates and fuel additives. The process produces a waste gas stream of 50,000 kg / hr with the following composition: Carbon Dioxide 62.07 mol % Hydrogen Sulfide 33.18 mol % Carbonyl Sulfide 3.34 mol % Ammonia 0.81 mol % Methanol 0.56 mol % The traditional method for the treatment of a waste gas of this type is a sequential application of the Claus and Beavon processes, resulting in elemental sulfur suitable for landfill [1,2]. The goal is to explore the possibility of producing sulfur chemicals from the stream. Bulk chemicals such as sulfuric acid are to be avoided. The results of the feasibility study show that a reaction method, which is preferred over the Claus and Beavon method, is most profitable. This requires the production of sulfur dioxide via the combustion hydrogen sulfide. The SO2 is then processed into carbon disulfide, ammonium sulfate, sodium sulfite, and sodium bisulfite. Carbon 2 disulfide is used in the manufacture of rayon, carbon tetrachloride, soil disinfectants, and as a solvent for phosphorus, sulfur, selenium, bromide, iodine, fats, resins, and rubbers. Ammonium sulfate is used in fertilizers, flame proofing, and galvanization.
    [Show full text]
  • Production and Processing of Sour Crude and Natural Gas - Challenges Due to Increasing Stringent Regulations
    Production and processing of sour crude and natural gas - challenges due to increasing stringent regulations Darkhan Duissenov Petroleum Engineering Submission date: June 2013 Supervisor: Jon Steinar Gudmundsson, IPT Norwegian University of Science and Technology Department of Petroleum Engineering and Applied Geophysics Production and processing of sour crude and natural gas – challenges due to increasing stringent regulations Darkhan Duissenov Petroleum engineering Submission date: June 2013 Supervisor: Jon Steinar Gudmundsson Norwegian University of Science and Technology Faculty of Engineering Science and Technology Department of Petroleum Engineering and Applied Geophysics Trondheim, Norway Abstract The worldwide demand for petroleum is growing tremendously. It is expected that the demand will have incremental capacity of 20 mb/d for crude oil, reaching 107.3 mb/d, and demand for natural gas will rise nearly 50% to 190 tcf in 2035, compared to 130 tcf now. According to the International Energy Agency 70% of crude oil reserves and 40% of natural gas reserves are defined as having high content of organosulfur compounds. Obviously, for decades to come, to satisfy the growing global needs for fossil fuels, reservoirs with sour contaminants will be developed intensively. The sulfur compounds in crude oils and natural gas generally exist in the form of free sulfur, hydrogen sulfide, thiols, sulfides, disulfides, and thiophenes. These compounds can cause considerable technical, environmental, economic, and safety challenges in all segments of petroleum industry, from upstream, through midstream to downstream. Currently, the sulfur level in on-road and off-road gasoline and diesel is limited to 10 and 15 ppm respectively by weight in developed countries of EU and USA, but this trend is now increasingly being adopted in the developing world too.
    [Show full text]
  • Fundamentals of Gas Treating
    PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76-002 ODESSA, TEXAS APRIL 1, 1977)<. REVISED FEBRUARY 15, 1982 FUNDAMENTALS OF GAS TREATING MANUAL FOR DESIGN OF GAS TREATERS Robert S. Purgason Perry Gas Processor~ Inc. Odessa, Texas Presented To The Gas Conditioning Conference, , 1976, 1978, 1979, 1980, 1981, 1982 Norman, Oklahoma i Page i to 45 FUNDAMENTALS OF GAS TREATING Introduction .••••.••.••...••.• Section 1: Monoethanol/Diethanol Amine Process 2 A. Description of the Process . 2 B. Design Calculations 3 1. Input Data. • ••• 4 2. Circulation .•.••. 4 3. Contactor ••••••••• 5 4. Regeneration Vessels • • ••• 5 5. Heat Loads • • • • . • •••• 5 a. Re boiler . 5 b. Solution Exchangers .•••• 5 c. Solution Coolers •••• 5 d. Reflux Condenser •••••••••••. 5 c. Cost •••••..••• 6 1. Capital Investment • 6 2. Operating Expenses • 6 D. Graphs and Tables Table 1-1: Amine Unit Operating Costs 7 Table 1-2: Regeneration Vessel Sizes • 8 Figure 1-2: Typical Flow Sheet 9 Figure 1-3: Contactor Capacities 10 Figure 1-4: Cost Curve •••• 12 Sectoin 2: Iron Sponge Process 13 A. Description of Process 13 B. Design Calculations •• . ••••• 14 1. Linear Velocity ••• 14 2. Space Velocity •••••••••••• 14 3. Bed Life •••.• 15 4. Air Regeneration ••••• 16 c. Cost •••••.••• 16 1. Capital Investment • 16 2. Operating Expenses . 16 D. Graphs and Tables Table 2-1: Bed Capacity for Various Vessels 17 Figure 2-1: Typical Flow Sheet . • • . • • . 18 Figure 2-2: Bed Life • • • • • • • • • • 19 Figure 2-3: Bed Capacities . • • . • • 20 ii FUNDAMENTIALS OF GAS TREATING - Continued Section 3: Proprietary Liquid Processes . 2 1 A. Diglycolamine (Econamine) (Description, Advantages and Applications) . 21 B. Sulfinol (Description, Advantages and Applications) .
    [Show full text]
  • Acid Gas Cleaning Using DEPG Physical Solvents: Validation with Experimental and Plant Data
    WHITE PAPER Acid Gas Cleaning using DEPG Physical Solvents: Validation with Experimental and Plant Data Jennifer Dyment, Product Marketing, Aspen Technology, Inc. Suphat Watanasiri, Senior Director R&D, Aspen Technology, Inc. Introduction Acid gas removal is an important process in various branches of the hydrocarbon processing industry, primarily in natural gas processing and refining. Acid gas removal is also an essential part of other processes, such as coal gasification where carbon dioxide, hydrogen sulfide, carbonyl sulfides, mercaptans, and other contaminants need to be removed. Acid gas is defined as gas containing significant amounts of contaminants, such as hydrogen sulfide (H2S), carbon dioxide (CO2), and other acidic gases. Sour gas is gas contaminated with H2S. This term comes from the rotten smell due to sulfur content (1). Thus, “gas sweetening” refers to H 2S removal, because it improves the odor of the gas being processed, while “acid gas removal” refers to the removal of both, CO2 and H2S. Acid gases need to be removed in order to comply with sales gas quality regulations. These regulations are in place to minimize environmental impact and ensure gas transport pipeline integrity, avoiding undesired occurrences, such as corrosion caused by H2S and CO2 in the presence of water. Acid gases also need to be removed due to the toxicity of compounds, such as H 2S, and the lack of the heating value of CO2. Typically, “pipeline quality” or sales gas is required to be sweetened to contain concentrations of H2S that’s no more than 4 parts per million (ppm), and a heating value of no less than 920 to 1150 Btu/SCF, depending on the final consumer requirements (2).
    [Show full text]
  • Industrial Implementation of Carbon Capture in Nordic Industry Sectors
    IndustrialimplementationofCarbon CaptureinNordicindustrysectors KristinOnarheim,StefanìaÒ.Garðarsdòttir, AnetteMathisen,LarsO.Nord,DavidBerstad(eds.) NORDICCSTechnicalReportD4.2.1501/D18 November2015 Summary This report investigates the feasibility of separating CO2 from industrial gas streams for carbon capture and storage (CCS) in the Nordic countries. Detailed case studies were developed for iron and steel production, cement production, pulp and paper production, oil and gas refineries, and geothermal power production. Available technologies for separating CO2 have been reviewed and detailed process simulations on the technologies feasible for implementation for the specific cases have been performed. The work shows it is feasible to apply carbon capture technologies to a broad set of process conditions. However, it is crucial to consider the specific conditions of each case as they strongly affect the performance of the technologies and the choice of technology. Considering process and site specific conditions as well as possible developments of the industrial process simplifies the implementation and increases the efficiency of carbon capture considerably. The specific findings for each case study are summarized below. Iron and steel production The steel mill case study showed that replacing the conventional gas powered steam cycle in the power plant with a low-BTU gas turbine improves process performance. Adding a water-gas shift reactor and a CO2 capture process further increases the top gas fuel value. An additional 70 MW electric output can be achieved from this process configuration with a CO2 reduction of about 80% - 85%. Furthermore, the design allows for a staged deployment of the concept, which minimizes the investment risk and burden of implementation. Cement production The case study on cement production favored a retrofit of the existing process by implementing an amine-based CO2 capture plant.
    [Show full text]