Tracking Workflow Execution with Tavernaprov Data Bundle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Communicate the Future PROCEEDINGS HYATT REGENCY ORLANDO 20–23 MAY | ORLANDO, FL and Summit.Stc.Org #STC18
Communicate the Future PROCEEDINGS HYATT REGENCY ORLANDO 20–23 MAY | ORLANDO, FL www.stc.org and summit.stc.org #STC18 SOCIETY FOR TECHNICAL COMMUNICATION 1 Efficiency exemplified Organizations globally use Adobe FrameMaker (2017 release) Request demo to transform the way they create and deliver content Accelerated turnaround time for 70% reduction in printing and paper customized publications material cost Faster creation and delivery of content 50% faster production of PDF for new products across devices documentation 20% faster development of Accelerated publishing across formats course content Increased efficiency and reduced 20% improvement in process translation costs while producing multilingual manuals efficiency For a personalized demo or questions, write to us at [email protected] © 2018 Adobe Systems Incorporated. All rights reserved. The papers published in these proceedings were reproduced from originals furnished by the authors. The authors, not the Society for Technical Communication (STC), are solely responsible for the opinions expressed, the integrity of the information presented, and the attribution of sources. The papers presented in this publication are the works of their respective authors. Minor copyediting changes were made to ensure consistency. STC grants permission to educators and academic libraries to distribute articles from these proceedings for classroom purposes. There is no charge to these institutions, provided they give credit to the author, the proceedings, and STC. All others must request permission. All product and company names herein are the property of their respective owners. © 2018 Society for Technical Communication 9401 Lee Highway, Suite 300 Fairfax, VA 22031 USA +1.703.522.4114 www.stc.org Design and layout by Avon J. -
Efficient Support for Data-Intensive Scientific Workflows on Geo
Efficient support for data-intensive scientific workflows on geo-distributed clouds Luis Eduardo Pineda Morales To cite this version: Luis Eduardo Pineda Morales. Efficient support for data-intensive scientific workflows ongeo- distributed clouds. Computation and Language [cs.CL]. INSA de Rennes, 2017. English. NNT : 2017ISAR0012. tel-01645434v2 HAL Id: tel-01645434 https://tel.archives-ouvertes.fr/tel-01645434v2 Submitted on 13 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Lucía, que no dejó que me rindiera. Acknowledgements One page is not enough to thank all the people who, in one way or another, have helped, taught, and motivated me along this journey. My deepest gratitude to them all. To my amazing supervisors Gabriel Antoniu and Alexandru Costan, words fall short to thank you for your guidance, support and patience during these 3+ years. Gabriel: ¡Gracias! For your trust and support went often beyond the academic. Alex: it has been my honor to be your first PhD student, I hope I met the expectations. To my family, Lucía, for standing by my side every time, everywhere; you are the driving force in my life, I love you. -
Apache Taverna
Apache Taverna hp://taverna.incubator.apache.org/ Donal Fellows San Soiland-Reyes @donalfellows @soilandreyes [email protected] [email protected] hp://orcid.org/0000-0002-9091-5938 hp://orcid.org/0000-0001-9842-9718 Alan R Williams @alanrw [email protected] hp://orcid.org/0000-0003-3156-2105 This work is licensed under a Creave Commons Collaboraons Workshop 2015-03-26 A,ribuIon 3.0 Unported License. Taverna Workflow Ecosystem • Workflow Language — SCUFL2 (and t2flow) • Workflow Engine — Taverna • Used in… – Taverna Command Line Tool – Taverna Server – Taverna WorkBench • Allied services – myExperiment, workflow repository – Service Catalographer, service catalog software • Instantiated as BioCatalogue, BiodiversityCatalogue, … NERSC Workflow Day 2 Map of the Taverna Ecosystem Taverna Ruby client Taverna Online Applicaon-Specific Portals Player UI UI Plugins UI Plugins Plugins Taverna UI Plugins Lite Taverna Taverna Workbench UI Plugins Command UI Plugins Line Tool REST API Components Taverna Other TavernaUI Plugins APIs Server Servers Taverna SOAP API Taverna Core AcIvity Engine UI Ps UI Plugins Plugins Workflow Service many Repository Catalogs services… 3 Users, Scientific Areas, Projects Taverna In Use NERSC Workflow Day 4 Taverna Users Worldwide NERSC Workflow Day 5 Taverna Uses — Scientific Areas • Biodiversity — BioVeL project • Digital Preservation — SCAPE project • Astronomy — AstroTaverna product • Solar Wind Physics — HELIO project • In silico Medicine — VPH-Share project NERSC Workflow Day 6 Biodiversity: BioVeL • Virtual e-LaBoratory for -
The Design and Realisation of the Myexperiment Virtual Research Environment for Social Sharing of Workflows
The Design and Realisation of the myExperiment Virtual Research Environment for Social Sharing of Workflows David De Roure a Carole Goble b Robert Stevens b aUniversity of Southampton, UK bThe University of Manchester, UK Abstract In this paper we suggest that the full scientific potential of workflows will be achieved through mechanisms for sharing and collaboration, empowering scientists to spread their experimental protocols and to benefit from those of others. To facilitate this process we have designed and built the myExperiment Virtual Research Environ- ment for collaboration and sharing of workflows and experiments. In contrast to systems which simply make workflows available, myExperiment provides mecha- nisms to support the sharing of workflows within and across multiple communities. It achieves this by adopting a social web approach which is tailored to the par- ticular needs of the scientist. We present the motivation, design and realisation of myExperiment. Key words: Scientific Workflow, Workflow Management, Virtual Research Environment, Collaborative Computing, Taverna Workflow Workbench 1 Introduction Scientific workflows are attracting considerable attention in the community. Increasingly they support scientists in advancing research through in silico ex- perimentation, while the workflow systems themselves are the subject of ongo- ing research and development (1). The National Science Foundation Workshop on the Challenges of Scientific Workflows identified the potential for scientific advance as workflow systems address more sophisticated requirements and as workflows are created through collaborative design processes involving many scientists across disciplines (2). Rather than looking at the application or ma- chinery of workflow systems, it is this dimension of collaboration and sharing that is the focus of this paper. -
Data Curation+Process Curation^Data Integration+Science
BRIEFINGS IN BIOINFORMATICS. VOL 9. NO 6. 506^517 doi:10.1093/bib/bbn034 Advance Access publication December 6, 2008 Data curation 1 process curation^data integration 1 science Carole Goble, Robert Stevens, Duncan Hull, Katy Wolstencroft and Rodrigo Lopez Submitted: 16th May 2008; Received (in revised form): 25th July 2008 Abstract In bioinformatics, we are familiar with the idea of curated data as a prerequisite for data integration. We neglect, often to our cost, the curation and cataloguing of the processes that we use to integrate and analyse our data. Downloaded from https://academic.oup.com/bib/article/9/6/506/223646 by guest on 27 September 2021 Programmatic access to services, for data and processes, means that compositions of services can be made that represent the in silico experiments or processes that bioinformaticians perform. Data integration through workflows depends on being able to know what services exist and where to find those services. The large number of services and the operations they perform, their arbitrary naming and lack of documentation, however, mean that they can be difficult to use. The workflows themselves are composite processes that could be pooled and reused but only if they too can be found and understood. Thus appropriate curation, including semantic mark-up, would enable processes to be found, maintained and consequently used more easily.This broader view on semantic annotation is vital for full data integration that is necessary for the modern scientific analyses in biology.This article will brief the community on the current state of the art and the current challenges for process curation, both within and without the Life Sciences. -
A Review of Scalable Bioinformatics Pipelines
Data Sci. Eng. (2017) 2:245–251 https://doi.org/10.1007/s41019-017-0047-z A Review of Scalable Bioinformatics Pipelines 1 1 Bjørn Fjukstad • Lars Ailo Bongo Received: 28 May 2017 / Revised: 29 September 2017 / Accepted: 2 October 2017 / Published online: 23 October 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Scalability is increasingly important for bioin- Scalability is increasingly important for these analysis formatics analysis services, since these must handle larger services, since the cost of instruments such as next-gener- datasets, more jobs, and more users. The pipelines used to ation sequencing machines is rapidly decreasing [1]. The implement analyses must therefore scale with respect to the reduced costs have made the machines more available resources on a single compute node, the number of nodes which has caused an increase in dataset size, the number of on a cluster, and also to cost-performance. Here, we survey datasets, and hence the number of users [2]. The backend several scalable bioinformatics pipelines and compare their executing the analyses must therefore scale up (vertically) design and their use of underlying frameworks and with respect to the resources on a single compute node, infrastructures. We also discuss current trends for bioin- since the resource usage of some analyses increases with formatics pipeline development. dataset size. For example, short sequence read assemblers [3] may require TBs of memory for big datasets and tens of Keywords Pipeline Á Bioinformatics Á Scalable Á CPU cores [4]. The analysis must also scale out (horizon- Infrastructure Á Analysis services tally) to take advantage of compute clusters and clouds. -
Programming Models to Support Data Science Workflows
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) BARCELONATECH COMPUTER ARCHITECTURE DEPARTMENT (DAC) Programming models to support Data Science workflows PH.D. THESIS 2020 | SPRING SEMESTER Author: Advisors: Cristián RAMÓN-CORTÉS Dra. Rosa M. BADIA SALA VILARRODONA [email protected] [email protected] Dr. Jorge EJARQUE ARTIGAS [email protected] iii ”Apenas él le amalaba el noema, a ella se le agolpaba el clémiso y caían en hidromurias, en salvajes ambonios, en sustalos exas- perantes. Cada vez que él procuraba relamar las incopelusas, se enredaba en un grimado quejumbroso y tenía que envul- sionarse de cara al nóvalo, sintiendo cómo poco a poco las arnillas se espejunaban, se iban apeltronando, reduplimiendo, hasta quedar tendido como el trimalciato de ergomanina al que se le han dejado caer unas fílulas de cariaconcia. Y sin em- bargo era apenas el principio, porque en un momento dado ella se tordulaba los hurgalios, consintiendo en que él aprox- imara suavemente sus orfelunios. Apenas se entreplumaban, algo como un ulucordio los encrestoriaba, los extrayuxtaba y paramovía, de pronto era el clinón, la esterfurosa convulcante de las mátricas, la jadehollante embocapluvia del orgumio, los esproemios del merpasmo en una sobrehumítica agopausa. ¡Evohé! ¡Evohé! Volposados en la cresta del murelio, se sen- tían balpamar, perlinos y márulos. Temblaba el troc, se vencían las marioplumas, y todo se resolviraba en un profundo pínice, en niolamas de argutendidas gasas, en carinias casi crueles que los ordopenaban hasta el límite de las gunfias.” Julio Cortázar, Rayuela v Dedication This work would not have been possible without the effort and patience of the people around me. -
Data Management in Systems Biology I
Data management in systems biology I – Overview and bibliography Gerhard Mayer, University of Stuttgart, Institute of Biochemical Engineering (IBVT), Allmandring 31, D-70569 Stuttgart Abstract Large systems biology projects can encompass several workgroups often located in different countries. An overview about existing data standards in systems biology and the management, storage, exchange and integration of the generated data in large distributed research projects is given, the pros and cons of the different approaches are illustrated from a practical point of view, the existing software – open source as well as commercial - and the relevant literature is extensively overviewed, so that the reader should be enabled to decide which data management approach is the best suited for his special needs. An emphasis is laid on the use of workflow systems and of TAB-based formats. The data in this format can be viewed and edited easily using spreadsheet programs which are familiar to the working experimental biologists. The use of workflows for the standardized access to data in either own or publicly available databanks and the standardization of operation procedures is presented. The use of ontologies and semantic web technologies for data management will be discussed in a further paper. Keywords: MIBBI; data standards; data management; data integration; databases; TAB-based formats; workflows; Open Data INTRODUCTION the foundation of a new journal about biological The large amount of data produced by biological databases [24], the foundation of the ISB research projects grows at a fast rate. The 2009 (International Society for Biocuration) and special edition of the annual Nucleic Acids Research conferences like DILS (Data Integration in the Life database issue mentions 1170 databases [1]; alone Sciences) [25]. -
ADMI Cloud Computing Presentation
ECSU/IU NSF EAGER: Remote Sensing Curriculum ADMI Cloud Workshop th th Enhancement using Cloud Computing June 10 – 12 2016 Day 1 Introduction to Cloud Computing with Amazon EC2 and Apache Hadoop Prof. Judy Qiu, Saliya Ekanayake, and Andrew Younge Presented By Saliya Ekanayake 6/10/2016 1 Cloud Computing • What’s Cloud? Defining this is not worth the time Ever heard of The Blind Men and The Elephant? If you still need one, see NIST definition next slide The idea is to consume X as-a-service, where X can be Computing, storage, analytics, etc. X can come from 3 categories Infrastructure-as-a-S, Platform-as-a-Service, Software-as-a-Service Classic Cloud Computing Computing IaaS PaaS SaaS My washer Rent a washer or two or three I tell, Put my clothes in and My bleach My bleach comforter dry clean they magically appear I wash I wash shirts regular clean clean the next day 6/10/2016 2 The Three Categories • Software-as-a-Service Provides web-enabled software Ex: Google Gmail, Docs, etc • Platform-as-a-Service Provides scalable computing environments and runtimes for users to develop large computational and big data applications Ex: Hadoop MapReduce • Infrastructure-as-a-Service Provide virtualized computing and storage resources in a dynamic, on-demand fashion. Ex: Amazon Elastic Compute Cloud 6/10/2016 3 The NIST Definition of Cloud Computing? • “Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” On-demand self-service, broad network access, resource pooling, rapid elasticity, measured service, http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf • However, formal definitions may not be very useful. -
Distributed Computing Environments and Workflows for Systems
Going with the Flow Distributed Computing for Systems Biology Using Taverna Prof Carole Goble The University of Manchester, UK http://www.mygrid.org.uk http://www.omii.ac.uk Data pipelines in bioinformatics Genscan Resources /Services EMBL BLAST Clustal-W Multiple Query Protein sequences Clustal-W sequence alignment 2 Example in silico experiment: Investigate© the evolutionary relationships between proteins [Peter Li] z Manual creation z Semi-automation using bespoke software 12181 acatttctac caacagtgga tgaggttgtt ggtctatgtt ctcaccaaat ttggtgttgt 12241 cagtctttta aattttaacc tttagagaag agtcatacag tcaatagcct tttttagctt z Issues: 12301 gaccatccta atagatacac agtggtgtct cactgtgatt ttaatttgca ttttcctgct 12361 gactaattat gttgagcttg ttaccattta gacaacttca ttagagaagt gtctaatatt 12421 taggtgactt gcctgttttt ttttaattgg gatcttaatt tttttaaatt attgatttgt 12481 aggagctatt tatatattct ggatacaagt tctttatcag atacacagtt tgtgactatt z Volatility of data12541 ttcttataag in tctgtggtttlife ttatattaatsciences gtttttattg atgactgttt tttacaattg 12601 tggttaagta tacatgacat aaaacggatt atcttaacca ttttaaaatg taaaattcga 12661 tggcattaag tacatccaca atattgtgca actatcacca ctatcatact ccaaaagggc 12721 atccaatacc cattaagctg tcactcccca atctcccatt ttcccacccc tgacaatcaa z Data and metadata12781 taacccattt tctgtctcta storage tggatttgcc tgttctggat attcatatta atagaatcaa z Integration of heterogeneous biological data z Visualisation of models z Brittleness 3 © 12181 acatttctac caacagtgga tgaggttgtt ggtctatgtt ctcaccaaat ttggtgttgt 12241 cagtctttta aattttaacc tttagagaag agtcatacag tcaatagcct -
Mygrid: a Collection of Web Pages
Home The myGrid team produce and use a suite of tools designed to “help e-Scientists get on with science and get on with scientists”. The tools support the creation of e-laboratories and have been used in domains as diverse as systems biology, social science, music, astronomy, multimedia and chemistry. The tools have been adopted by a large number of projects and institutions. The team has developed tools and infrastructure to allow: • the design, editing and execution of workflows in Taverna • the sharing of workflows and related data by myExperiment • the cataloguing and annotation of services in BioCatalogue and Feta • the creation of user-friendly rich clients such as UTOPIA These tools help to form the basis for the team’s work on e-Labs. Taverna Workbench 2.1.2 available for download The myGrid team have released Taverna Workbench 2.1.2. It supports secure access to data on the web, secure web services and secured private workflows. Taverna 2.1.2 includes • Copy/paste, shortcuts, undo/redo, drag and drop • Animated workflow diagram • Remembers added/removed services • Secure Web services support • Secure access to resources on the web • Up-to-date R support • Intermediate values during workflow runs • myExperiment integration • Excel and csv spreadsheet support Hosted at the School of Computer Science, University of Manchester, UK. Copyright 2008 - All Rights Reserved Sponsored by Microsoft, EPSRC, BBSRC, ESRC and JISC From www.mygrid.org.uk/ 1 27 May 2010 Outreach >Outreach The myGrid consortium put a lot of effort into reaching out to users. The team do not just “preach to the converted” but seek new users by offering Tutorials and giving talks, papers and posters in a very wide variety of places. -
Workspace - a Scientific Workflow System for Enabling Research Impact
22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Workspace - a Scientific Workflow System for enabling Research Impact D. Watkinsa, D. Thomasa, L. Hethertona, M. Bolgera, P.W. Clearya a CSIRO Data61, Australia Email: [email protected] Abstract: Scientific Workflow Systems (SWSs) have become an essential platform in many areas of research. Compared to writing research software from scratch, they provide a more accessible way to acquire data, customise inputs and combine algorithms in order to produce research outputs that are reproducible. Today there are a number of SWSs such as Apache Taverna, Galaxy, Kepler, KNIME, Pegasus and CSIRO’s Workspace. Depending on your definition you may also consider environments such as MATLAB or programming languages with dedicated scientific support, such as Python with its SciPy and NumPy libraries, to be SWSs. All address different subsets of requirements, but generally attempt to address at least the following four to varying degrees: 1) improving researcher productivity, 2) providing the ability to create reproducible workflows, 3) enabling collaboration between different research teams, and 4) providing some aspect of portability and interoperability - either between different sciences or computing environments, or both. Most SWSs provide a generic set of capabilities such as a graphical tool to construct, save, load, and edit workflows, and a set of well proven functions, such as file I/O, and an execution environment. Workspace is an SWS that has been under continuous development at CSIRO since 2005. Its development is guided by four core themes; Analyse, Collaborate, Commercialise and Everywhere.