Roman Numerals.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Roman Numerals.Pdf Roman Numerals You can guess from their name that Roman Numerals originated in ancient Rome. They were created as a simple means of counting in which certain letters are given values as numerals (a numeral is a written symbol referring to a number). The original system of Roman Numerals was modified during the Middle Ages and is the system we still use today. Seven letters form the basis of Roman Numerals. Each letter stands for a number as shown here. ROMAN NUMERALS I = 1 V = 5 X = 10 L = 50 C = 100 D = 500 M = 1,000 Reading and Writing Roman Numerals Numbers are represented by combining the letters shown above. There are several rules to follow. 1. If one or more letters are placed after another letter of greater value, add that amount. VI = 6 (5 + 1 = 6) XXVII = 27 (10 + 10 + 5 + 1 + 1 = 27) MDC = 1,600 (1,000 + 500 + 100 = 1,600) 2. A letter cannot be repeated more than three times. 30 = XXX (10 + 10 + 10 = 30) 40 = XL (50 - 10 = 40) You cannot write 40 as XXXX. 3. If a letter is placed before another letter of greater value, subtract that amount. IX = 9 (10 - 1 = 9) XL = 40 (50 - 10 = 40) CML = 950 (900 + 50 = 950) 4. You can only subtract powers of 10 (I, X, C). 95 = XCV (100 - 10 + 5 = 95) You cannot write 95 as VC because V is not a power of 10. 5. You cannot subtract more than one number from another number. 18 = XVIII (10 + 5 + 1 + 1 + 1 = 18) You cannot write 18 as IIXX. By the way, there is no zero in the system of Roman Numerals. This is all pretty complicated. Why should you even bother learning about Roman Numerals? You will find that Roman Numerals are used all around you. Here are just some of the ways they are used today: They are used in outlines. They are used on the faces of clocks and watches. They are used to number pages that come before the main pages of a book. They are used to identify kings and queens (Henry VIII of England). They are used to identify sporting events (The New York Giants won Super Bowl XLII). Roman Numerals were created long ago. They are still with us today. .
Recommended publications
  • 13054-Duodecimal.Pdf
    Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers).
    [Show full text]
  • Vigesimal Numerals on Ifẹ̀ (Togo) and Ifẹ̀ (Nigeria) Dialects of Yorùbá
    Vigesimal Numerals on Ifẹ̀ (Togo) and Ifẹ̀ (Nigeria) Dialects of Yorùbá Felix Abídèmí Fábùnmi (Ilé-Ifẹ̀) Abstract This study intends to bring Ifẹ̀ (Togo) into a linguistic limelight using the numeral systems. Numerals are a very important aspect of the day to day socio-economic and linguistic life of Ifẹ̀ (Togo) people. The traditional Ifẹ̀ (Togo) number system is vigesimal. In this study, forty- two different number words are listed for Yorùbá Ifẹ̀ (Nigeria) and Yorùbá Ifẹ̀ (Togo) and compared with Standard Yorùbá. We compared the Ifẹ̀ (Togo) number words and counting patterns with that of the Standard Yorùbá and Ifẹ̀ (Nigeria) and discovered that, by the nature of the components of these numbers, majority of the basic number words are either bisyllabic or trisyllabic, each syllable having the form VCV for the cardinals, and CVCV for the ordinals. There are irregularities in tonality; there are also alternations in the sequences of the vowel (oral and nasalized) and consonant sounds. This work finds out that Ifẹ̀ (Togo) has two counting patterns. In the first pattern, it uses addition solely to derive the number words but with a counting pattern where 'ten', 'twenty' and the added number units are taken as a whole. In the second counting pattern, subtraction is used to derive number words but this is applicable only to three numbers i. e. seventeen – /mɛ́ɛtadínóɡú/, eighteen – /méèʤìdínóɡu/ and nineteen – /mɔ̀kɔ̃dínoɡ́ u/. The Ifẹ̀ (Togo) dialect of Yorùbá mostly uses additive number positions. The dialect favours additive number positions more than the subtractive and the multiplicative positions. In other words, higher numbers are frequently used as bases for addition not as bases for multiplication in Ifẹ̀ (Togo).
    [Show full text]
  • College Summit, Inc. D/B/A Peerforward Financial Statements
    College Summit, Inc. d/b/a PeerForward Financial Statements For the Years Ended April 30, 2020 and 2019 and Report Thereon COLLEGE SUMMIT, INC. d/b/a PeerForward TABLE OF CONTENTS For the Years Ended April 30, 2020 and 2019 _______________ Page Independent Auditors’ Report ............................................................................................................. 1-2 Financial Statements Statements of Financial Position ........................................................................................................ 3 Statements of Activities ...................................................................................................................... 4 Statements of Functional Expenses ................................................................................................ 5-6 Statements of Cash Flows .................................................................................................................. 7 Notes to Financial Statements ....................................................................................................... 8-17 INDEPENDENT AUDITORS’ REPORT To the Board of Directors of College Summit, Inc. d/b/a PeerForward Report on the Financial Statements We have audited the accompanying financial statements of College Summit, Inc. d/b/a PeerForward (PeerForward), which comprise the statements of financial position as of April 30, 2020 and 2019, and the related statements of activities, functional expenses and cash flows for the years then ended, and the related notes
    [Show full text]
  • Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
    Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system.
    [Show full text]
  • How Can We Create Environments Where Hate Cannot Flourish?
    How can we create environments where hate cannot flourish? Saturday, February 1 9:30 a.m. – 10:00 a.m. Check-In and Registration Location: Field Museum West Entrance 10:00 a.m. – 10:30 a.m. Introductions and Program Kick-Off JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1 10:30 a.m. – 11:30 a.m. Watch “The Path to Nazi Genocide” and Reflections JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1 11:30 a.m. – 11:45 a.m. Break and walk to State of Deception 11:45 a.m. – 12:30 p.m. Visit State of Deception Interpretation by Holocaust Survivor Volunteers from the Illinois Holocaust Museum Location: Upper level 12:30 p.m. – 1:00 p.m. Breakout Session: Reflections on Exhibit Tim Kaiser, USHMM Director, Education Initiatives David Klevan, USHMM Digital Learning Strategist JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1, Classrooms A and B Saturday, February 2 (continued) 1:00 p.m. – 1:45 p.m. Lunch 1:45 p.m. – 2:45 p.m. A Survivor’s Personal Story Bob Behr, USHMM Survivor Volunteer Interviewed by: Ann Weber, USHMM Program Coordinator Location: Lecture Hall 1 2:45 p.m. – 3:00 p.m. Break 3:00 p.m. – 3:45 p.m. Student Panel: Beyond Indifference Location: Lecture Hall 1 Moderator: Emma Pettit, Sustained Dialogue Campus Network Student/Alumni Panelists: Jazzy Johnson, Northwestern University Mary Giardina, The Ohio State University Nory Kaplan-Kelly, University of Chicago 3:45 p.m. – 4:30 p.m. Breakout Session: Sharing Personal Reflections Tim Kaiser, USHMM Director, Education Initiatives David Klevan, USHMM Digital Learning Strategist JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1, Classrooms A and B 4:30 p.m.
    [Show full text]
  • Roman Numerals
    History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one).
    [Show full text]
  • The Utility of Genetic Risk Scores in Predicting the Onset of Stroke March 2021 6
    DOT/FAA/AM-21/24 Office of Aerospace Medicine Washington, DC 20591 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke Diana Judith Monroy Rios, M.D1 and Scott J. Nicholson, Ph.D.2 1. KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510 Bogotá D.C. Colombia 2. FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 March 2021 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. _________________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: (www.faa.gov/go/oamtechreports) Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-21/24 4. Title and Subtitle 5. Report Date March 2021 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Diana Judith Monroy Rios M.D1, and Scott J. Nicholson, Ph.D.2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 1 KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510, Bogotá D.C. Colombia 11. Contract or Grant No. 2 FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W.
    [Show full text]
  • Stroke Training for EMS Professionals (PDF)
    STROKE TRAINING FOR EMS PROFESSIONALS 1 COURSE OBJECTIVES About Stroke Stroke Policy Recommendations Stroke Protocols and Stroke Hospital Care Stroke Assessment Tools Pre-Notification Stroke Treatment ABOUT STROKE STROKE FACTS • A stroke is a medical emergency! Stroke occurs when blood flow is either cut off or is reduced, depriving the brain of blood and oxygen • Approximately 795,000 strokes occur in the US each year • Stroke is the fifth leading cause of death in the US • Stroke is a leading cause of adult disability • On average, every 40 seconds, someone in the United States has a stroke • Over 4 million stroke survivors are in the US • The indirect and direct cost of stroke: $38.6 billion annually (2009) • Crosses all ethnic, racial and socioeconomic groups Berry, Jarett D., et al. Heart Disease and Stroke Statistics --2013 Update: A Report from the American Heart Association. Circulation. 127, 2013. DIFFERENT TYPES OF STROKE Ischemic Stroke • Caused by a blockage in an artery stopping normal blood and oxygen flow to the brain • 87% of strokes are ischemic • There are two types of ischemic strokes: Embolism: Blood clot or plaque fragment from elsewhere in the body gets lodged in the brain Thrombosis: Blood clot formed in an artery that provides blood to the brain Berry, Jarett D., et al. Heart Disease and Stroke Statistics --2013 Update: A Report from the American Heart Association. Circulation. 127, 2013. http://www.strokeassociation.org/STROKEORG/AboutStroke/TypesofStroke/IschemicClots/Ischemic-Strokes- Clots_UCM_310939_Article.jsp
    [Show full text]
  • The Hexadecimal Number System and Memory Addressing
    C5537_App C_1107_03/16/2005 APPENDIX C The Hexadecimal Number System and Memory Addressing nderstanding the number system and the coding system that computers use to U store data and communicate with each other is fundamental to understanding how computers work. Early attempts to invent an electronic computing device met with disappointing results as long as inventors tried to use the decimal number sys- tem, with the digits 0–9. Then John Atanasoff proposed using a coding system that expressed everything in terms of different sequences of only two numerals: one repre- sented by the presence of a charge and one represented by the absence of a charge. The numbering system that can be supported by the expression of only two numerals is called base 2, or binary; it was invented by Ada Lovelace many years before, using the numerals 0 and 1. Under Atanasoff’s design, all numbers and other characters would be converted to this binary number system, and all storage, comparisons, and arithmetic would be done using it. Even today, this is one of the basic principles of computers. Every character or number entered into a computer is first converted into a series of 0s and 1s. Many coding schemes and techniques have been invented to manipulate these 0s and 1s, called bits for binary digits. The most widespread binary coding scheme for microcomputers, which is recog- nized as the microcomputer standard, is called ASCII (American Standard Code for Information Interchange). (Appendix B lists the binary code for the basic 127- character set.) In ASCII, each character is assigned an 8-bit code called a byte.
    [Show full text]
  • M.'S Story Jay and Tava Musial, Who Were Living in Michigan at the Time
    M.’s Story Jay and Tava Musial, who were living in Michigan at the time, had planned a family trip for Memorial Day weekend, but not before stopping by their daughter’s pediatrician’s office. Tava had noticed her daughter M. Rhapsody frequently had to go to the bathroom. Assuming she had a urinary tract infection, they hoped to get antibiotics and be on their way. M.’s lab work revealed no signs of bacteria but indicated her blood sugar was extremely high. Five days after her eighth birthday, M. was diagnosed with Type 1 diabetes. The Musials’ weekend getaway quickly rerouted to St. John’s Hospital in Detroit where M. spent a full week learning how to manage diabetes. Shortly after M’s diagnosis, the Musial family relocated to Sheppard Air Force Base in Wichita Falls, Texas. Relocating also meant finding a new endocrinologist for M. It was at that first appointment that Dr. John Caras recommended Diabetes Education at United Regional. Diabetes is a disease that affects the whole family, especially when a child is diagnosed. Diabetes Education also provides a support group for kids and their families. “M. comes to every appointment with a smile on her face and has never let her diabetes hold her back on anything,” said Nicole Benz, Diabetes Nurse Educator at United Regional. Children’s Miracle Network at United Regional provides scholarships for kids with Type 1 Diabetes to go to Camp Sweeney. This three-week camp’s goal is that every child who attends camp will not only learn about his or her condition but will find the inner strength each day to do what it takes to live a healthy lifestyle.
    [Show full text]
  • R-Codox-M / R-Ivac Indication
    Lymphoma group R-CODOX-M / R-IVAC INDICATION Burkitt lymphoma, ‘double hit’ lymphoma or high IPI diffuse large B-cell lymphoma. TREATMENT INTENT Curative. PRE-ASSESSMENT 1. Ensure histology is confirmed prior to administration of chemotherapy and document in notes. 2. Record stage of disease - MRI scan of brain (+/- spinal cord) with Gadolinium enhancement, CT scan (neck, chest, abdomen and pelvis) +/- PET, presence or absence of B symptoms, clinical extent of disease, consider bone marrow aspirate and trephine (with cytogenetics/FISH as indicated). 3. Blood tests - FBC, DAT, U&Es, LDH, ESR, urate, calcium, magnesium, creatinine, LFTs, glucose, Igs, β2 microglobulin, hepatitis B core antibody and hepatitis BsAg, hepatitis C antibody, EBV, CMV, VZV, HIV 1+2 after consent, group and save. 4. A number of drugs can interfere with tubular secretion of methotrexate. These include penicillins, aspirin and NSAIDs. Tazocin should NOT be used during high dose methotrexate administration or rescue. Consider using meropenem or other alternative. Review indications for aspirin and NSAIDs and consider stopping during methotrexate treatment. 5. Patients MUST NOT receive co-trimoxazole, starting from the week before the first methotrexate infusion. Consider pentamidine treatment if considered at risk from Pneumocystis infection. 6. CSF examination • cell count +/- immunophenotype, protein and glucose: can be done as part of 1st intrathecal. 7. Ophthalmic examination - if clinically indicated. 8. Urine pregnancy test • before cycle 1 of each new chemotherapy for women of child-bearing age unless they are post-menopausal, have been sterilised or undergone a hysterectomy. 9. ECG +/- Echo - if clinically indicated. 10. Record performance status (WHO/ECOG), height and weight.
    [Show full text]
  • The Chinese Rod Numeral Legacy and Its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore
    The Chinese Rod Numeral Legacy and its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore First, let me explain the Chinese rod numeral system. Since the Warring States period {480 B.C. to 221 B.C.) to the 17th century A.D. the Chinese used a bundle of straight rods for computation. These rods, usually made from bamboo though they could be made from other materials such as bone, wood, iron, ivory and jade, were used to form the numerals 1 to 9 as follows: 1 2 3 4 5 6 7 8 9 II Ill Ill I IIIII T II Note that for numerals 6 to 9, a horizontal rod represents the quantity five. A numeral system which uses place values with ten as base requires only nine signs. Any numeral of such a system is formed from among these nine signs which are placed in specific place positions relative to each other. Our present numeral system, commonly known as the Hindu-Arabic numeral system, is based on this concept; the value of each numeral determines the choice of digits from the nine signs 1, 2, ... , 9 anq their place positions. The place positions are called units, tens, hundreds, thousands, and so on, and each is occupied by at most one digit. The Chinese rod system employs the same concept. However, since its nine signs are formed from rod tallies, if a number such as 34 were repre­ sented as Jll\IU , this would inevitably lead to ambiguity and confusion. To * Text of Presidential Address delivered at the Society's Annual General Meeting on 20 March 1987.
    [Show full text]