An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria Oregana Author(S): Marie E

Total Page:16

File Type:pdf, Size:1020Kb

An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria Oregana Author(S): Marie E An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria oregana Author(s): Marie E. Antoine Source: The Bryologist, 107(1):82-87. 2004. Published By: The American Bryological and Lichenological Society, Inc. DOI: http://dx.doi.org/10.1639/0007-2745(2004)107[82:AEATQN]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1639/0007-2745%282004%29107%5B82%3AAEATQN %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. The Bryologist 107(1), pp. 82 87 Copyright q 2004 by the American Bryological and Lichenological Society, Inc. An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria oregana MARIE E. ANTOINE Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A. e-mail: [email protected] Current address: Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, U.S.A. Abstract. Lobaria oregana is an epiphytic macrolichen associated with old-growth Douglas- ®r forests in the Paci®c Northwest. Nitrogen ®xation by this often-abundant cyanolichen provides an ecologically signi®cant input of new N to the forest ecosystem. This study estimates annual N2 ®xation by L. oregana using a model based on physiological ®eld measurements and laboratory experiments. Meteorological data from the Wind River Canopy Crane site and the H. J. Andrews Experimental Forest are used to calculate annual N2 ®xation rates, assuming that hydration and temperature are the two parameters controlling nitrogenase activity. At the crane site, estimated 21 annual N2 ®xation is 1.5 kg ha . In the H. J. Andrews Experimental Forest, L. oregana may ®x 21 21 2.6±16.5 kg N2 ha yr depending on its stand-level canopy biomass. The model's predictions are checked by using published growth rates and standing L. oregana biomass estimates to cal- culate independent values for annual N2 ®xation at each site. Keywords. Cyanolichens, Lobaria oregana, nitrogen ®xation, old-growth lichens. Cyanolichens dominate epiphyte assemblages in with meteorological data to model N2 ®xation. This wet old-growth, mid-elevation Douglas-®r forests approach was used to estimate annual N2 ®xation of Oregon and Washington (Neitlich 1993; Pike et by L. oregana at the canopy crane site in the Wind al. 1975; Sillett 1995). They are important ecosys- River Experimental Forest and at the HJA. The tem components because of their ability to ®x at- model's predicted values were compared to esti- mospheric N2 into forms of N available for plant mates of annual N2 ®xation that were calculated uptake (Denison 1979). Nitrogen is tightly con- independently from data on growth rates and stand- served in old-growth forests (Sollins et al. 1980), level biomass. and biological N2 ®xation brings new N into the ecosystem. Nitrogenous leachates (Millbank 1982) METHODS and in situ decomposition of cyanolichens (Rhoad- Study organism. Lobaria oregana is a foliose cyanoli- es 1983) supports canopy food webs (Carroll 1979). chen whose yellow-green thalli drape over branches or Decomposition of litterfall releases N to plants on grow loosely appressed to bark. It is one of only 3±4% the forest ¯oor (Pike 1978). of lichens representing a tripartite symbiosis among a my- Lobaria oregana (Tuck.) MuÈll. Arg. is the most cobiont (Ascomycota), a green algal photobiont (Chloro- phyta, Myrmecia), and a cyanobacterial photobiont (Nos- abundant N2-®xing lichen in these forests, often ac- toc) (Honegger 1991). Lobaria oregana is most accurately counting for 60±80% of the total epiphytic lichen referred to as a cephalodiate chlorolichen because the cy- biomass (McCune 1994; Pike et al. 1977; Sillett anobacterium is restricted to cephalodia, and the green 1995). Studies undertaken in the H. J. Andrews Ex- alga does the bulk of CO2 ®xation. perimental Forest (HJA) during the 1970's estimate Study site. Lobaria oregana was collected and ®eld- work conducted at the Wind River Canopy Crane 21 21 that L. oregana may ®x up to 4.5 kg N2 ha yr (WRCC) Research Facility near Carson, Washington. The (Denison 1979; Pike 1978), over 50% of the annual crane site is located within the Wind River Experimental new N input to the forest's nutrient budget (Sollins Forest (458499 N, 1218559 W) in the Gifford Pinchot Na- et al. 1980). No further attempts to quantify N ®x- tional Forest. The 4-ha crane plot is centered on a Liebherr 2 550 HC construction crane. The crane is 87 m high, has ation by cyanolichens in Douglas-®r forests have a horizontal reach of 85 m, and provides access to 105 m3 been made since these initial estimates. of old-growth forest canopy. The dominant canopy trees The objective of this study was to quantify an- are Pseudotsuga menziesii (Mirb.) Franco and Tsuga het- nual N ®xation by L. oregana. Field measurements erophylla (Raf.) Sarg.; Thuja plicata Donn. is also com- 2 mon. Stand age is approximately 500 years, and the site and laboratory experiments were conducted in or- displays classic old-growth characteristics (Franklin & der to identify which parameters in¯uenced N2 ®x- Spies 1991). The non-vascular epiphyte community is ver- ation rates, and these parameters were combined tically strati®ed, with peak abundance of L. oregana oc- 0007-2745/04/$0.75/0 2004] ANTOINE: NITROGEN FIXATION 83 curring in the ``light transition zone'' of the middle canopy ment. Thalli were placed upon saturated sponges in a tray (McCune et al. 1997). of distilled water, and then misted at 5-min. intervals using Sampling protocol. Lobaria oregana was collected at a spray bottle. Thallus water content (WC) was expressed two-month intervals during winter and spring of 2000 and in absolute terms, and the ``sacri®cial'' method was used 2001 as well as fall of 2000. During each sampling trip, to correct mass to an oven-dried basis (McCune et al. the canopy crane was used to access collection sites at 1996). two heights (ca 13 and 35 m) on two individuals each of A laboratory-based temperature response curve for ni- P. menziesii, T. heterophylla, and T. plicata. Different trogenase activity was constructed using lichens collected trees were utilized on each sampling trip. Three thalli were in spring 2001. Thalli were re-hydrated for 60 min. at taken from each site, for a total of 36 thalli per sampling temperatures from 0±208C. Nitrogenase activity was mea- trip. sured at each 28C interval (n 5 3 per temperature level). Physiological measurements. Nitrogenase activity PAR levels were kept constant at 100 mEm22 sec.21 dur- was measured using the acetylene reduction assay (ARA) ing re-hydration and subsequent ARAs. (Hardy et al. 1973). Acetylene was generated by reacting The relationship between thallus WC and nitrogenase calcium carbide with water, then injected into 300-ml air- activity was determined using lichens collected in fall tight Plexiglass incubation chambers to a concentration of 2000. First, thalli were re-hydrated for 0, 5, 10, 30, 60, 10% by volume. The chambers were shaken vigorously, 120, and 180 min. (n 5 3 per hydration time) to determine vented to atmospheric pressure, and internal 12-V fans how fast re-hydration occurred. Next, thalli were hydrated were engaged. Lichen thalli were incubated for 60 min., using carefully timed periods of misting and air-drying to and empty control chambers were used to quantify back- achieve 300, 250, 200, 150, 100, and 50% WC (actual ground levels of C2H4 present in the C2H2. After the in- WC was typically 620% of target). Nitrogenase activity cubation period, syringes were used to withdraw three 1- was measured for each WC (n 5 6 per level). Temperature ml gas samples from each experimental and control cham- and PAR were kept constant at ca 138C and 100 mEm22 ber. The samples were immediately injected into septum- sec.21, respectively. topped autosampler vials in order to ensure leak-proof Modeling N2 ®xation. The model rested upon the fol- transport back to the laboratory. Ethylene content of each lowing set of simplifying assumptions derived from re- sample was determined using a Varian model 330 gas sults of the ®eld measurements and laboratory experi- chromatograph equipped with a 0.318 3 76 cm stainless ments summarized above. 1) All thalli had to be hydrated steel column of Poropak N and a ¯ame ionization detector. to be physiologically active. 2) Rainfall immediately hy- drated and activated all thalli. 3) When rain stopped, all The theoretical 4:1 conversion ratio between C2H2 reduc- thalli stayed hydrated and active for 60 min. 4) N ®xation tion and N2 reduction rates was used (Crawford et al. 2 2000). was independent of canopy position and host tree species. Field measurements. The ARA was used to measure 5) N2 ®xation was not limited by light. 6) N2 ®xation rates nitrogenase activity in each of the 36 Lobaria oregana were controlled by temperature. thalli collected per sampling trip. These measurements Temperature-dependent N2 ®xation rates (nmol N2 per were made on the ground under ambient conditions that kg dry mass of lichen) were generated for each 30-min.
Recommended publications
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • Genetic Variation Within and Among Populations of the Threatened Lichen Lobaria Pulmonaria in Switzerland and Implications for I
    MEC820.fm Page 2049 Saturday, December 18, 1999 1:20 PM Molecular Ecology (1999) 8, 2049–2059 GeneticBlackwell Science, Ltd variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation S. ZOLLER,* F. LUTZONI† and C. SCHEIDEGGER* *Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland, †Department of Botany, The Field Museum of Natural History, Chicago IL 60605, USA Abstract The foliose epiphytic lichen Lobaria pulmonaria has suffered a significant decline in European lowlands during the last decades and therefore is considered as endangered throughout Europe. An assessment of the genetic variability is necessary to formulate biologically sound conservation recommendations for this species. We investigated the genetic diversity of the fungal symbiont of L. pulmonaria using 143 specimens sampled from six populations (two small, one medium, three large) in the lowland, the Jura Moun- tains, the pre-Alps and the Alps of Switzerland. Among all nuclear and mitochondrial regions sequenced for this study, variability was found only in the internal transcribed spacer (ITS I), with three polymorphic sites, and in the nuclear ribosomal large subunit (nrLSU), with four polymorphic sites. The variable sites in the nrLSU are all located within a putative spliceosomal intron. We sequenced these two regions for 81 specimens and detected six genotypes. Two genotypes were common, two were found only in the more diverse populations and two were found only in one population each. There was no correlation between population size and genetic diversity. The highest genetic diversity was found in populations where the fungal symbiont is reproducing sexually.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Insights Into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont
    Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Katja Fedrowitz Faculty of Natural Resources and Agricultural Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2011 Acta Universitatis agriculturae Sueciae 2011:96 Cover: Lobaria pulmonaria, Nephroma bellum, and fallen bark in an old-growth forest in Finland with Populus tremula. Part of the tRNALeu (UAA) sequence in an alignment. (photos: K. Fedrowitz) ISSN 1652-6880 ISBN 978-91-576-7640-5 © 2011 Katja Fedrowitz, Uppsala Print: SLU Service/Repro, Uppsala 2011 Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Abstract Nature conservation requires an in-depth understanding of the ecological processes that influence species persistence in the different phases of a species life. In lichens, these phases comprise dispersal, establishment, and growth. This thesis aimed at increasing the knowledge on epiphytic cyanolichens by studying different aspects linked to these life stages, including species colonization extinction dynamics, survival and vitality of lichen transplants, and the genetic symbiont diversity in the genus Nephroma. Paper I reveals that local colonizations, stochastic, and deterministic extinctions occur in several epiphytic macrolichens. Species habitat-tracking metapopulation dynamics could partly be explained by habitat quality and size, spatial connectivity, and possibly facilitation by photobiont sharing. Simulations of species future persistence suggest stand-level extinction risk for some infrequent sexually dispersed species, especially when assuming low tree numbers and observed tree fall rates. Forestry practices influence the natural occurrence of species, and retention of trees at logging is one measure to maintain biodiversity. However, their long-term benefit for biodiversity is still discussed.
    [Show full text]
  • Distribution and Habitat Ecology of the Threatened Forest Lichen Lobaria Pulmonaria in Estonia
    Folia Cryptog. Estonica, Fasc. 46: 55–65 (2009) Distribution and habitat ecology of the threatened forest lichen Lobaria pulmonaria in Estonia Inga Jüriado & Jaan Liira Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Estonia, 40 Lai st., Tartu 51005, Estonia. E-mail: [email protected] Abstract: Lobaria pulmonaria is a widely used as an indicator species of undisturbed old-growth forests ecosystems, but the knowledge about its habitat ecology is still highly fragmented. To quantify the distribution, habitat preference and host tree specificity ofLobaria pulmonaria we utilised data from databases and field surveys in Estonia. The number ofL. pulmonaria localities is the highest in the densely forested regions, concentrated mainly in small forest patches defined as ‘ecologically highly valuable’. The species grows mostly on deciduous trees, particularly on aspen Populus( tremula). L. pulmonaria is most common in oligo-mesotrophic boreal, eutrophic boreo-nemoral and in eutrophic paludifying forests, and prefers forests with an average age of trees more than 100 years. In addition, we found that younger stands could be suitable habitats for L. pulmonaria if the structure of the stand is comparable to mature stands. In spite of the many localities of L. pulmonaria in Estonia, the species is still threatened because (1) the rotation period of tree stands is short, (2) it is abundant in forest types which are rare or under strong economic pressure, (3) and it prefers host trees which have a restricted distribution in Estonia or are not favoured in forest management practice. Kokkuvõte: Hariliku kopsusambliku (Lobaria pulmonaria), ohustatud metsasambliku levik ja kasvukohanõudlus Eestis.
    [Show full text]
  • Lichens of Alaska's South Coast
    United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways.
    [Show full text]
  • Càrnach Woodland Walk Càrnach Woodland Walk Càrnach with Stepping Stones
    WWW.APPLECROSSWALKS.ORG.UK CÀRNACH For further information on Càrnach and other walks on the Applecross peninsula please visit Atlantic Rainforest the website. ALPS believes that all information provided in this publication is correct at the time of printing but takes no responsibility for accuracy of information published. ©Andy Acton ©Sam Bridgewater Cover photograph: Lobaria virens Primroses Càrnach woodland walk Càrnach woodland walk The trail through Càrnach is narrow, unsurfaced and winds through rough, uneven sometimes slippery terrain strewn with boulders. There are some steep slopes (to 40°), pitched steps and areas with stepping stones. APPLECROSS 500m 40° Applecross Landscape Partnership Scheme (ALPS) Hodgkinson ©2012. ALPSLC1/12 Design: Valerie A’ CHOMRAICH the Sanctuary Càrnach Coppice CÀRNACH Place of stones Nature or nurture? Atlantic rainforest Càrnach means either a rocky or stony Preasarlach Coille-uisge a’ Chuain an Iar place, or a location abounding in cairns. Nàdar no buaidh? th The fourteen acres of Càrnach Estate maps dating to the start of the 19 Càrnach is classified as an Atlantic woodland form one of the century indicate that areas of Càrnach may hazel woodland, and is one of many once have been managed as woodland pasture. richest regional habitats for similar woodlands scattered across The woodland itself overlies an archaeological lichens and mosses. landscape of field enclosures and clearance piles, the west coast of Scotland. They Gloriously verdant, and with many and possible prehistoric structures have recently are all recognised as being of great secret knolls and boulder-strewn been noted within its confines. Hazel woodlands conservation interest. of this kind are believed to be of ancient origin, hollows, Càrnach has delighted Many of the hazel trees within Càrnach appear and can be considered relicts of an abundant generations and once supplied to have been cut and allowed to resprout and widespread vegetation type that thrived fuelwood and raw materials for (coppiced).
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Lichens of East Limestone Island
    Lichens of East Limestone Island Stu Crawford, May 2012 Platismatia Crumpled, messy-looking foliose lichens. This is a small genus, but the Pacific Northwest is a center of diversity for this genus. Out of the six species of Platismatia in North America, five are from the Pacific Northwest, and four are found in Haida Gwaii, all of which are on Limestone Island. Platismatia glauca (Ragbag lichen) This is the most common species of Platismatia, and is the only species that is widespread. In many areas, it is the most abundant lichen. Oddly, it is not the most abundant Platismatia on Limestone Island. It has soredia or isidia along the edges of its lobes, but not on the upper surface like P. norvegica. It also isn’t wrinkled like P. norvegica or P. lacunose. Platismatia norvegica It has large ridges or wrinkles on its surface. These ridges are covered in soredia or isidia, particularly close to the edges of the lobes. In the interior, it is restricted to old growth forests. It is less fussy in coastal rainforests, and really seems to like Limestone Island, where it is the most abundant Platismatia. Platismatia lacunosa (wrinkled rag lichen) This species also has large wrinkles on its surface, like P. norvegica. However, it doesn’t have soredia or isidia on top of these ridges. Instead, it has tiny black dots along the edges of its lobes which produce spores. It is also usually whiter than P. lacunosa. It is less common on Limestone Island. Platismatia herrei (tattered rag lichen) This species looks like P.
    [Show full text]
  • An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria Oregana
    The Bryologist 107(1), pp. 82 87 Copyright q 2004 by the American Bryological and Lichenological Society, Inc. An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria oregana MARIE E. ANTOINE Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A. e-mail: [email protected] Current address: Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, U.S.A. Abstract. Lobaria oregana is an epiphytic macrolichen associated with old-growth Douglas- ®r forests in the Paci®c Northwest. Nitrogen ®xation by this often-abundant cyanolichen provides an ecologically signi®cant input of new N to the forest ecosystem. This study estimates annual N2 ®xation by L. oregana using a model based on physiological ®eld measurements and laboratory experiments. Meteorological data from the Wind River Canopy Crane site and the H. J. Andrews Experimental Forest are used to calculate annual N2 ®xation rates, assuming that hydration and temperature are the two parameters controlling nitrogenase activity. At the crane site, estimated 21 annual N2 ®xation is 1.5 kg ha . In the H. J. Andrews Experimental Forest, L. oregana may ®x 21 21 2.6±16.5 kg N2 ha yr depending on its stand-level canopy biomass. The model's predictions are checked by using published growth rates and standing L. oregana biomass estimates to cal- culate independent values for annual N2 ®xation at each site. Keywords. Cyanolichens, Lobaria oregana, nitrogen ®xation, old-growth lichens. Cyanolichens dominate epiphyte assemblages in with meteorological data to model N2 ®xation. This wet old-growth, mid-elevation Douglas-®r forests approach was used to estimate annual N2 ®xation of Oregon and Washington (Neitlich 1993; Pike et by L.
    [Show full text]
  • Lichen Abundance and Biodiversity Along a Chronosequence from Young Managed Stands to Ancient Forest
    _ Lichen Abundance and Biodiversity Along a Chronosequence from Young Managed Stands to Ancient Forest By Peter N. Neitlich Submitted in Partial Fulfillment of Masters of Science Field Naturalist Program Department of Botany University of Vermont December 3, 1993 We, the members of Peter Nathan Neitlichs graduate committee, assert by our signatures that he has satisfied the requirements for graduation from the University of Vermonts Field Naturalist Program (Department of Botany). We recommend to the Graduate College of the University of Vermont that he be awarded the degree of Master of Science. v. 44 3 tte- Dr. 1:key Hughes, Advisor Date /7 4/a_ Ifn . Bruce McCune Date C we I c) NA., .7( to.e, i 9 Dr. Cathy Paris Date r) kly..t,t611 /553 Alicia Daniel Date TABLE OF CONTENTS List of Figures iii List of Tables iii List of Appendices iii Acknowledgements iv Abstract 1 Introduction 3 Methods 4 Study Area 4 Field Methods 11 Lab Analysis 13 Data Analysis 14 Results and Discussion 15 Effect of Stand Age on Lichen Species Composition 15 Effect of Stand Age on Lichen Abundance 20 Lichen Community Composition along a Chronosequence 29 Changes in Environmental Gradients through Time 34 Lichen Conservation and Forest Management 42 Amplifications 48 Invertebrates 48 Vertebrates 54 Nitrogen Fixation 56 Lichen Dispersal 58 References 63 Appendices 67 ii LIST OF FIGURES Fig. 1. Map of the study area 5 Fig. 2. Plant communities of the study area 6 Fig. 3. The effect of stand age on lichen species richness 15 Fig. 4. Epiphytic macrolichen biomass as a function of forest age 20 • Fig.
    [Show full text]
  • Modeling the Coevolutionary Dynamics in the Lobaria Pulmonaria Lichen Symbiosis
    Modeling the Coevolutionary Dynamics in the Lobaria pulmonaria Lichen Symbiosis Simon Carrignon1,2,*,‡, Aina Olle-Vila´ 2,3,*,‡, Salva Duran-Nebreda2,3,*,‡, and Julia N. Adams4 1Barcelona Supercomputing Center, Carrer de Jordi Girona, 29-31, 08034 Barcelona, Spain. 2Institucio´ Catalana per a la Recerca i Estudis Avanc¸ats-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain. 3Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Mar´ıtim de la Barceloneta 37, 08003 Barcelona, Spain. 4Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Panama, Republic of Panama ABSTRACT Lichenization is an evolutionarily and ecologically successful strategy for Ascomycete fungi, resulting in an estimated 18,000 lichen species. Although the nature of the lichen symbiosis is still widely debated, many sources agree that the lichen symbiosis represents an ecologically obligate mutualistic interaction whereby the net fitness of all partners is maximized. In order to elucidate the potential factors driving the evolution of the lichen symbiosis and the broader ecological and evolutionary interactions in the Lobaria pulmonaria model organism, an agent-based model was constructed using the ECHO framework. The ECHO tag system was used to model molecular recognition (receptors and physical embedding) between algal and fungal agents, two of the partners necessary to reconstitute the L. pulmonaria lichen symbiosis. We compared the simulations’ results with a bipartite reconstruction of L. pulmonaria microsatellite data and our model reproduced some features of this data. Molecular data have shown that the mode of reproduction significantly affects within-population genetic structure of L. pulmonaria, most likely contributing to the modular structure of this population.
    [Show full text]