Squalus Acanthias)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Incorporating Migration and Local Movement Patterns into Management Strategies for Spiny Dogfish (Squalus acanthias) by Jennifer Cudney Director of Dissertation: Roger A. Rulifson, Ph.D Major Department: Coastal Resources Management Ph.D Program December, 2015 ABSTRACT OF DISSERTATION The overall purpose of this dissertation is to increase understanding of migration and movement behaviors associated with a highly migratory elasmobranch species. In particular, I seek to determine whether sufficient evidence exists to warrant the separation of the northwest Atlantic Spiny Dogfish (Squalus acanthias) into separate management units. These management units are not genetically distinct, but rather would be based on unique behaviors adopted by hypothesized groups of dogfish that connect reproductive, feeding, and overwintering grounds (“contingents”). This dissertation includes an introductory chapter that introduces the reader to the Spiny Dogfish resource and recent management actions undertaken, followed by a chapter that provides technical and design recommendations based on a meta-analysis and a case study, which address the challenges of conducting behavioral research in dynamic environments through the use of acoustic telemtry. Approximately 30 percent of papers reviewed had no details on design specifications. Meta-analyses suggest that more fish were redetected when more acoustic equipment was deployed for longer periods of time, exemplifying the need for robust equipment that can withstand the rigors of an offshore, dynamic environment. In particular, we found that a heavy anchor, a subsurface float holding a mooring line, and a highflier-float system produced the best results in our case study. New behavioral information, derived from an analysis of data collected through a long-term conventional mark-recapture program and a multi-year acoustic tagging program, suggest that spiny dogfish tagged off North Carolina in overwintering grounds routinely make seasonal migrations to summer feeding habitats off southern New England (specifically, Massachusetts), but do not necessarily follow the same pathway each year. Sharks were often not detected on acoustic receivers for lengthy periods of time, and mark-recapture data indicated extremely lengthy times at liberty (1,000+ days). Spiny Dogfish were also noted to be locally abundant but exhibit short residency times on the Hatteras Bight acoustic array. An evaluation of potential environmental drivers of localized behavior in the southern extent of the Spiny Dogfish range noted that certain factors (i.e., water temperature and weather) had an effect on the presence and absence of dogfish in the Hatteras Bight. Finally, the dissertation discusses the Spiny Dogfish Contingent Hypothesis, which suggests that the northwestern Atlantic stock could comprise as many as five behaviorally distinct groups of Spiny Dogfish. The work presented in this dissertation identifies predictable behavioral patterns undertaken by individual Spiny Dogfish and inferred from recapture data, which can be used in context with future studies to further evaluate and refine the Spiny Dogfish Contingent Hypothesis. Despite many examples in the literature where Contingent Theory has been applied to describe spatially complex behavior in fish stocks, it is rarely applied in management plans. The current management structure in place for Spiny Dogfish is complex, has evolved to respond to fishery needs over the past 16 years, and involves multiple state and federal agencies, councils and commissions. Future research would likely need to quantify contingent “vital rates” and/or contribution to overall spawning stock biomass or fisheries to fully justify the development of a new management framework. Incorporating Migration and Local Movement Patterns into Management Strategies for Spiny Dogfish (Squalus acanthias) A Dissertation Presented To the Faculty of the Institute for Coastal Science and Policy East Carolina University In Partial Fulfillment of the Requirements for the Degree Doctorate of Philosophy in Coastal Resources Management Primary Concentration in Coastal and Estuarine Ecology Secondary Concentrations in Coastal Geosciences and Social Science & Coastal Policy by Jennifer L. Cudney December, 2015 © Jennifer Cudney 2015 Incorporating Migration and Local Movement Patterns into Management Strategies for Spiny Dogfish (Squalus acanthias) by Jennifer L. Cudney APPROVED BY: DIRECTOR OF DISSERTATION: _____________________________________________________ (Dr. Roger A. Rulifson, Ph.D COMMITTEE MEMBER: ______________________________________________ (Dr. Hans Vogelsong, Ph.D) COMMITTEE MEMBER: ______________________________________________ (Dr R. Wilson Laney, Ph.D) COMMITTEE MEMBER: ______________________________________________ (Dr Thomas Crawford, Ph.D) COMMITTEE MEMBER: ______________________________________________ (Dr. Ryan Mulligan, Ph.D) CHAIR OF THE DEPARTMENT OF COASTAL RESOURCES MANAGEMENT PH.D PROGRAM: _____________________________________ (Dr Siddhartha Mitra, Ph.D) DEAN OF THE GRADUATE SCHOOL: _______________________________________________ Paul J. Gemperline, PhD DEDICATION I dedicate this project, and all of the associated blood, sweat, tears, shark bites, sunburns, and sea-sickness, to my family and friends. And to my sister, because she asked me to do so. ACKNOWLEDGEMENTS Funding for this project was provided through North Carolina Sea Grant’s Fishery Resources Grant Program (08-FEG-11), the U.S. Fish and Wildlife Service, and East Carolina University. I would like to thank my advisor, Dr. Roger Rulifson, and my committee members (Dr. Tom Crawford, Dr. Ryan Mulligan, Dr. Hans Vogelsong, and Dr. R.Wilson Laney) for their guidance, assistance, and support through the development of this dissertation. This project could not have happened without fishermen Dewey Hemilright (Manteo, NC) and Chris Hickman (Hatteras, NC). I am forever grateful to them for welcoming me on their vessels and in their homes, and teaching me about their livelihoods. I am grateful to the faculty and staff in the ECU Institute for Coastal Science and Policy, the Coastal Resources Management Ph.D program, and the Departments of Biology, Geography, Geology and Physics; the ladies on the ECU IACUC that taught me all I needed to know about shark surgeries; and the staff in the Office of Diving and Water Safety, especially Captain Eric Diaddorio, for help with equipment preparation, field trials, and gear deployment. I am thankful for the assistance and friendship of so many of my fellow ECU students. I also thank my colleagues, peers, and supervisors in the federal government, and the National Sea Grant Office staff running the Knauss Fellowship, for giving me the opportunities that have changed my life. I am indebted to my family, friends, dance sisters and teachers, and especially my husband for their support, patience, and love these past eight years. TABLE OF CONTENTS CHAPTER 1: CHALLENGES OF MANAGING ELASMOBRANCH FISHERIES AT THE APPROPRIATE UNIT STOCK – THE CASE OF THE SPINY DOGFISH (SQUALUS ACANTHIAS) .... 1 Introduction ............................................................................................................................................... 1 Unique Challenges in Managing Elasmobranch Fisheries ........................................................................ 1 Elasmobranch Stock Identification. ...................................................................................................... 1 High Volume Elasmobranch Shark Fisheries. ...................................................................................... 4 Atlantic Spiny Dogfish Fisheries .............................................................................................................. 7 Spiny Dogfish Stock Assessments Imply A Stock Collapse and Rebuilding. ...................................... 9 Management Measures Adopted in Response to Spiny Dogfish Stock Assessment Results. ............ 13 Rapid Rebuilding of the Spiny Dogfish Stock. ................................................................................... 17 Research Objective ................................................................................................................................. 19 Dissertation Chapters .............................................................................................................................. 22 Preface/Introduction (Chapter 1): Challenges of Managing Elasmobranch Fisheries at the Appropriate Unit Stock - The Case of the Spiny Dogfish (Squalus acanthias). ................................. 22 Chapter 2: Design Considerations for Offshore Acoustic Arrays to Support Behavioral Research. .. 23 Chapter 3: Migration and Local Movement Patterns of Spiny Dogfish Overwintering in the Southern Mid-Atlantic Bight and off Cape Hatteras, North Carolina. ............................................................... 23 Chapter 4: Influence of Environmental Conditions on Overwintering Spiny Dogfish in the Hatteras Bight, North Carolina. ......................................................................................................................... 24 Chapter 5: The Spiny Dogfish Contingent Hypothesis – Proposed Delineation of Mid-Atlantic and Gulf of Maine Migratory Contingents. ............................................................................................... 25 Literature Cited ......................................................................................................................................
Recommended publications
  • Status of the Pacific Spiny Dogfish Shark Resource Off the Continental U.S

    Status of the Pacific Spiny Dogfish Shark Resource Off the Continental U.S

    Agenda Item G.5 Attachment 3 (Electronic Only) June 2021 DRAFT Disclaimer: These materials do not constitute a formal publication and are for information only. They are in a pre-review, pre-decisional state and should not be formally cited or reproduced. They are to be considered provisional and do not represent any determination or policy of NOAA or the Department of Commerce. Status of the Pacific Spiny Dogfish shark resource off the continental U.S. Pacific Coast in 2021 by Vladlena Gertseva1, Ian Taylor1, John Wallace1, and Sean E. Matson2 1Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle, Washington 98112, USA 2West Coast Region National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle, Washington 98115, USA 2021 1 This report may be cited as: Gertseva, V. Taylor, I.G., Wallace, J.R., Matson, S.E. 2021. Status of the Pacific Spiny Dogfish shark resource off the continental U.S. Pacific Coast in 2021. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/ 2 Table of Contents: Acronyms used in this document .............................................................................................. 6 Executive Summary................................................................................................................. 7 Stock ..................................................................................................................................
  • Estuarine Fish Diversity of Tamil Nadu, India

    Estuarine Fish Diversity of Tamil Nadu, India

    Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1.
  • 1 an Annotated Checklist of the Chondrichthyans of South Africa 1 2 3

    1 an Annotated Checklist of the Chondrichthyans of South Africa 1 2 3

    1 An annotated checklist of the chondrichthyans of South Africa 2 3 4 DAVID A. EBERT1, 2, 3, 6, SABINE P. WINTNER4 & PETER M. KYNE5 5 6 1 Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, 7 USA 8 2 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 9 3 Department of Ichthyology, California Academy of Sciences, San Francisco, USA 10 4 University of KwaZulu-Natal, School of Life Sciences, Durban, South Africa 11 5 Research Institute for the Environment and Livelihoods, Charles Darwin University, 12 Darwin, Australia 13 14 6 Corresponding author: E-mail: [email protected] 15 16 David A. Ebert ORCID ID 0000-0003-4604-8192 17 Sabine P. Wintner ORCID ID 0000-0001-7350-5999 18 Peter M. Kyne ORCID ID 0000-0003-4494-2625 19 20 21 1 1 Abstract 2 3 An annotated checklist of chondrichthyan fishes (sharks, batoids, and chimaeras) 4 occurring in South African waters is presented. The checklist is the result of decades of 5 research and on-going systematic revisions of the regional fauna. The chondrichthyan 6 fauna of South Africa is one of the richest in the world with 191 species, comprising 50 7 families and 103 genera. It consists of 30 families, 64 genera, and 111 species of sharks; 8 17 families, 36 genera, and 72 species of batoids; and, 3 families, 5 genera, and 8 species 9 of chimaeras. The most species-rich shark families are the whaler sharks Carcharhinidae 10 with 20 species followed by the deepwater catsharks Pentanchidae with 13 species.
  • Seafood Watch Seafood Report

    Seafood Watch Seafood Report

    Seafood Watch Seafood Report Sharks and Dogfish With a focus on: Blacktip shark (Carcharhinus limbatus) Common thresher shark (Alopias vulpinus) Dusky smoothhound/smooth dogfish (Mustelus canis) Sandbar shark (Carcharhinus plumbeus) Shortfin mako shark (Isurus oxyrinchus) Spiny dogfish (Squalus acanthias) © Monterey Bay Aquarium Final Report December 21, 2005 Stock Status Update June 9, 2011 Santi Roberts Fisheries Research Analyst Monterey Bay Aquarium SeafoodWatch® Sharks & DogfishReport June 9, 2010 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives,” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible.
  • TNP SOK 2011 Internet

    TNP SOK 2011 Internet

    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
  • A Retrospective Analysis of Shark Catches Made by Pelagic Longliners

    A Retrospective Analysis of Shark Catches Made by Pelagic Longliners

    OCEANOGRAPHIC RESEARCH INSTITUTE, DURBAN, SOUTH AFRICA, AFFILIATED WITH THE UNIVERSITY OF KWAZULU-NATAL A retrospective analysis of shark catches made by pelagic longliners off the east coast of South Africa and biology and life history of shortfin mako shark, Isurus oxyrinchus Submitted in fulfillment of the academic requirements for the degree of Master of Science in the Oceanographic Research Institute, affiliated with the School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban. By Alan Foulis February 2013 i i. Abstract Oceanic pelagic shark species are under threat worldwide as fishing effort increases and they are taken as both targeted and bycatch. It is widely recognized that the life history characteristics of sharks make them inherently susceptible to over- exploitation and as a result many shark-directed fisheries have collapsed. It is therefore essential that good-quality data are collected and analyzed in order to provide fisheries managers with the right information to manage these species sustainably. South Africa has a pelagic longline fishery which includes tuna-, swordfish-, and shark-directed vessels. This study analyzed logbook (1998 – 2010) and observer data (2002 – 2010) provided by the Department of Agriculture, Forestry and Fisheries in order to assess the catch composition and standardized catch-per-unit-effort (CPUE) of sharks captured as both targeted catch and bycatch. The study area consisted of four zones moving east of the 20°E meridian: the Agulhas Bank (20°E – 24°E), South Coast (25°E – 29°E), East Coast 1 (30°E – 32.8°E), and East Coast 2 (32.9°E – 36.5°E).
  • Thermoregulation Strategies of Deep Diving Ectothermic Sharks

    Thermoregulation Strategies of Deep Diving Ectothermic Sharks

    THERMOREGULATION STRATEGIES OF DEEP DIVING ECTOTHERMIC SHARKS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCOTOR OF PHILOSOPHY IN ZOOLOGY (MARINE BIOLOGY) AUGUST 2020 By. Mark A. Royer Dissertation Committee: Kim Holland, Chairperson Brian Bowen Carl Meyer Andre Seale Masato Yoshizawa Keywords: Ectothermic, Thermoregulation, Biologging, Hexanchus griseus, Syphrna lewini, Shark ACKNOWLEDGEMENTS Thank you to my advisor Dr. Kim Holland and to Dr. Carl Meyer for providing me the privilege to pursue a doctoral degree in your lab, which provided more experiences and opportunities than I could have ever imagined. The research environment you provided allowed me to pursue new frontiers in the field and take on challenging questions. Thank you to my committee members Dr. Brian Bowen, Dr. Andre Seale, and Dr. Masato Yoshizawa, for providing your ideas, thoughts, suggestions, support and encouragement through the development of my dissertation. I would like to give my sincere thanks to all of my committee members and to the Department of Biology for taking their time to provide their support and accommodation as I finished my degree during a rather unprecedented and uncertain time. I am very grateful to everyone at the HIMB Shark Lab including Dr. Melanie Hutchinson, Dr. James Anderson, Jeff Muir, and Dr. Daniel Coffey. I learned so much from all of you and we have shared several lifetimes worth of experiences. Thank you to Dr. James Anderson for exciting side projects we have attempted and will continue to pursue in the future. Thank you to Dr.
  • Black Sea Sharks at Risk

    Black Sea Sharks at Risk

    Black Sea Sharks at Risk The Black Sea is home to world’s biggest, most productive spiny dogfish sharks, but this remarkable, global species is in danger of extinction. CITES action is needed to curb unsustainable trade … before it’s too late. What is a spiny dogfish? The spiny dogfish (Squalus acanthias) is a small, slender shark found in temperate waters all around the world. Spiny dogfish have been fished for their meat and liver oil for more than a century. Once the most abundant shark, spiny dogfish are now included on the IUCN Red List of Threatened Species due to serious overfishing from intense, poorly regulated fisheries. Persistent European demand for meat fuels fishing and international trade. Black Sea spiny dogfish stand out Black Sea spiny dogfish are thought to be the largest and most productive in the world. For instance, they have been shown to grow up to 80 cm larger (180 cm total) and give birth to twice the number of pups (32) than their Atlantic counterparts. Atlantic and Pacific spiny dogfish are known to be pregnant for twice as long (nearly two years!) as those in the Black Sea. Despite these differences, all spiny dogfish are vulnerable. The species is among the slowest growing sharks on earth and therefore exceptionally susceptible to overexploitation and long lasting depletion. Dogfish fishing limits must be precautionary. Endangered populations A population assessment for Black Sea dogfish showed a 60% decline from 1981 to 1992. The population is less depleted than in Northeast Atlantic (where roughly 7% are left), but fishing pressure is expected to remain high and lead to further depletion.
  • Report on the Status of Mediterranean Chondrichthyan Species

    Report on the Status of Mediterranean Chondrichthyan Species

    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
  • Rapport (2.454Mb)

    Rapport (2.454Mb)

    NINA28 Report 55 Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management T.F. Næsje, A.R. Childs, P.D. Cowley, E.B. Thorstad, F. Økland, S. Weerts and P. Buthelezi Øvre venstre hjørne på konvolutt Øvre venstre hjørne på konvolutt Øvre venstre hjørne på konvolutt E6/5 T EAMWORK E NTHUSIASM I NTEGRITY Q UALITY Cooperation and expertise for a sustainable future . Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management T.F. Næsje1, A.R. Childs2, P.D. Cowley3, E.B. Thorstad1, F. Økland1, S. Weerts4 and P. Buthelezi4 1 Norwegian Institute for Nature Research (NINA), Tungasletta 2, NO-7485 Trondheim, Norway 2 Department of Ichthyology and Fisheries Science (DIFS), Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa 3 South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown, South Africa 4 Zoology Department, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa NINA Report 55 Næsje, T.F., Childs, A.R., Cowley, P.D., Thorstad, E.B., Økland, F., Weerts, S., and Buthelezi, P. 2005. Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management. - NINA Report 55. 46 pp. Trondheim, May 2005 ISSN: 1504-3312 ISBN: 82-426-1588-8 (pdf) COPYRIGHT © Norwegian Institute for Nature Reseach (NINA) and South African Institute for Aquatic Biodiversity (SAIAB). The publication may be freely cited where the source is acknowledged. AVAILABILITY Open QUALITY CONTROLLED BY Odd Terje Sandlund, NINA RESPONSIBLE SIGNATURE Research director Odd Terje Sandlund (sign.) CLIENT(S) The South Africa / Norway Programme on Research Collaboration (National Research Foundation of South Africa, and Research Council of Norway) PHOTOES T.
  • Database of Bibliography of Living/Fossil

    Database of Bibliography of Living/Fossil

    www.shark-references.com Version 16.01.2018 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2017 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 DOI: 10.13140/RG.2.2.32409.72801 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 16.01.2018 Abstract: This paper contains a collection of 817 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2017. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2017, list of descriptions of extinct and extant species from 2017, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide data information on the geographic and depth distribution of newly described species, i.e. the type specimens from the years 1990 to 2017 in a hot spot analysis. New in this year's POTY is the subheader "biodiversity" comprising a complete list of all valid chimaeriform, selachian and batoid species, as well as a list of the top 20 most researched chondrichthyan species. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, possible errors cannot entirely be excluded.
  • Status of Sharks in the United States Prepared by Sharon B

    Status of Sharks in the United States Prepared by Sharon B

    Status of Sharks in the United States Prepared by Sharon B. Young, Marine Issues Field Director Troubled Waters Worldwide, shark populations are in grave peril. The International Union for Conservation of Nature (IUCN) regularly updates a listing of species of concern. In 2009, the IUCN Shark Specialist group classified 32% of the 64 species of open ocean (pelagic) sharks as being in danger of extinction, primarily as a result of over-fishing. Over one fifth of the more than 500 species of sharks and rays evaluated by the IUCN were considered threatened with extinction. In the Atlantic, only 3 of the 11 most frequently caught species, were considered at a lower risk of extinction. White tip sharks are considered critically endangered. Porbeagle sharks are endangered and the once common skate, which was listed as endangered in 2000 by the IUCN was downgraded to critically endangered only 6 years later in 2006. Shark populations in the U.S. face significant threats, generally from overexploitation by commercial fisheries. They are uniquely vulnerable among fish because their life histories more closely resemble whales than fish. Sharks are long lived. Like whales, they are slow to reproduce and have very few young. Most are highly migratory. Sharks caught on one side of the ocean are often from the same population as those being exploited on the other side of the ocean basin. This can create conservation crises. Porbeagle sharks are the target of commercial shark fisheries in other countries and are also caught incidentally by U.S. fishermen. Even though the U.S. government has acknowledged that they have lost up to 90% of their breeding population, and has added them to a “Species of Concern” list, it gives them no special protection.