Protein Sequence Databases Rolf Apweiler1, , Amos Bairoch2 and Cathy H Wu3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Semantic Standard for Describing the Location of Nucleotide and Protein Feature Annotation Jerven T
Bolleman et al. Journal of Biomedical Semantics (2016) 7:39 DOI 10.1186/s13326-016-0067-z RESEARCH Open Access FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation Jerven T. Bolleman1*, Christopher J. Mungall2, Francesco Strozzi3, Joachim Baran4, Michel Dumontier5, Raoul J. P. Bonnal6, Robert Buels7, Robert Hoehndorf8, Takatomo Fujisawa9, Toshiaki Katayama10 and Peter J. A. Cock11 Abstract Background: Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. Description: We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Conclusions: Our ontology allows -
Visual Exploration Across Biomedical Databases
1 Visual Exploration Across Biomedical Databases Michael D. Lieberman∗†‡ Sima Taheri∗ Huimin Guo∗ Fatemeh Mir-Rashed∗ [email protected] [email protected] [email protected] [email protected] Inbal Yahav§ Aleks Aris∗ Ben Shneiderman∗† [email protected] [email protected] [email protected] Abstract—Though biomedical research often draws on knowl- mentioned in d. d may also have associations with other edge from a wide variety of fields, few visualization methods PubMed documents that cite d as a reference, as well as for biomedical data incorporate meaningful cross-database ex- associations to the PubMed documents that d itself cites. ploration. A new approach is offered for visualizing and explor- ∈ ing a query-based subset of multiple heterogeneous biomedical Furthermore, each gene g G could have associations with databases. Databases are modeled as an entity-relation graph the proteins for which g codes, or the DNA sequences in containing nodes (database records) and links (relationships which g’s code appears. Usually, the various types of records between records). Users specify a keyword search string to in these databases also have many attributes associated with retrieve an initial set of nodes, and then explore intra- and inter- them. For example, PubMed documents might be annotated database links. Results are visualized with user-defined semantic substrates to take advantage of the rich set of attributes usually with the date of publication, authors, and general topics, while present in biomedical data. Comments from domain experts gene records could be annotated with the relevant species, indicate that this visualization method is potentially advantageous location on chromosome, or function. -
Impact of the Protein Data Bank Across Scientific Disciplines.Data Science Journal, 19: 25, Pp
Feng, Z, et al. 2020. Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 19: 25, pp. 1–14. DOI: https://doi.org/10.5334/dsj-2020-025 RESEARCH PAPER Impact of the Protein Data Bank Across Scientific Disciplines Zukang Feng1,2, Natalie Verdiguel3, Luigi Di Costanzo1,4, David S. Goodsell1,5, John D. Westbrook1,2, Stephen K. Burley1,2,6,7,8 and Christine Zardecki1,2 1 Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ, US 2 Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, US 3 University of Central Florida, Orlando, Florida, US 4 Department of Agricultural Sciences, University of Naples Federico II, Portici, IT 5 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, US 6 Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, US 7 Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, US 8 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, US Corresponding author: Christine Zardecki ([email protected]) The Protein Data Bank archive (PDB) was established in 1971 as the 1st open access digital data resource for biology and medicine. Today, the PDB contains >160,000 atomic-level, experimentally-determined 3D biomolecular structures. PDB data are freely and publicly available for download, without restrictions. Each entry contains summary information about the structure and experiment, atomic coordinates, and in most cases, a citation to a corresponding scien- tific publication. -
HTG Data Input: Annotation File Output in DDBJ Flat File
HTG data Input: Annotation file Output in DDBJ flat file LOCUS ############ 123456 bp DNA linear HTG 30-SEP-2017 Entry Feature Location Qualifier Value DEFINITION Arabidopsis thaliana DNA, BAC clone: CIC5D1, chromosome 1, *** COMMON DATE hold_date 20191130 SEQUENCING IN PROGRESS *** SUBMITTER contact Hanako Mishima ACCESSION ############ ab_name Mishima,H. VERSION ############.1 ab_name Yamada,T. DBLINK ab_name Park,C.S. KEYWORDS HTG; HTGS_PHASE1. ab_name Liu,G.Q. SOURCE Arabidopsis thaliana (thale cress) email [email protected] ORGANISM Arabidopsis thaliana phone 81-55-981-6853 Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; fax 81-55-981-6849 Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons; institute National Institute of Genetics rosids; malvids; Brassicales; Brassicaceae; Camelineae; department DNA Data Bank of Japan Arabidopsis. country Japan REFERENCE 1 (bases 1 to 123456) state Shizuoka AUTHORS Mishima,H., ada,T., Park,C.S. and Liu,G.Q. city Mishima TITLE Direct Submission street Yata 1111 JOURNAL Submitted (dd-mmm-yyyy) to the DDBJ/EMBL/GenBank databases. zip 411-8540 Contact:Hanako Mishima REFERENCE ab_name Mishima,H. National Institute of Genetics, DNA Data Bank of Japan; Yata 1111, ab_name Yamada,T. Mishima, Shizuoka 411-8540, Japan ab_name Park,C.S. REFERENCE 2 ab_name Liu,G.Q. AUTHORS Mishima,H., ada,T., Park,C.S. and Liu,G.Q. title Arabidopsis thaliana DNA TITLE Arabidopsis thaliana Sequencing year 2017 JOURNAL Unpublished (2017) status Unpublished COMMENT Please visit our web site -
Nucleic Acid Databases on the Web Richard Peters and Robert S
© 1996 Nature Publishing Group http://www.nature.com/naturebiotechnology RESOURCES • WWWGUIDE Nucleic acid databases on the Web Richard Peters and Robert S. Sikorski For many researchers, searchable sequence data is The National Center for Biotechnology the Washington University (St. Louis, MO) bases on the Internet are becoming as indis Information (NCBI) site. Some of the things sequencing project. dbSTS is a database of pensable as pipettes. Especially in the fields of you can now find at their site include BLAST, genomic sequence tagged sites that serve as molecular and structural biology, many excel Genbank, Entrez, dbEST, dbSTS, OMIM, mapping landmarks in the human genome. lent online databases have cropped up in just and UniGene. A brief description of each of OMIM (Online Mendelian Inheritance in the past year. Despite this wealth of informa these tools demonstrates what we mean. Man) is a unique database that catalogs cur tion, it still requires considerable effort to sort BLAST is the standard program used for rent research and clinical information about through these myriad databases to find ones querying your DNA or protein sequence individual human genes. UniGene is a subset that are useful. Keeping this in mind, we started against all known sequences housed in data of GenBank that defines a collection of DNA by using our Net search tools to see if we could bases. You can even have the output sent to sequences likely to represent the transcrip winnow out the best of the Net. This month, we you by e-mail. Genbank is an annotated col tion products of distinct genes. -
Biological Databases
Biological Databases Biology Is A Data Science ● Hundreds of thousand of species ● Million of articles in scientific literature ● Genetic Information ○ Gene names ○ Phenotype of mutants ○ Location of genes/mutations on chromosomes ○ Linkage (relationships between genes) 2 Data and Metadata ● Data are “concrete” objects ○ e.g. number, tweet, nucleotide sequence ● Metadata describes properties of data ○ e.g. object is a number, each tweet has an author ● Database structure may contain metadata ○ Type of object (integer, float, string, etc) ○ Size of object (strings at most 4 characters long) ○ Relationships between data (chromosomes have zero or more genes) 3 What is a Database? ● A data collection that needs to be : ○ Organized ○ Searchable ○ Up-to-date ● Challenge: ○ change “meaningless” data into useful, accessible information 4 A spreadsheet can be a Database ● Rectangular data ● Structured ● No metadata ● Search tools: ○ Excel ○ grep ○ python/R 5 A filesystem can be a Database ● Hierarchical data ● Some metadata ○ File, symlink, etc ● Unstructured ● Search tools: ○ ls ○ find ○ locate 6 Organization and Types of Databases ● Every database has tools that: ○ Store ○ Extract ○ Modify ● Flat file databases (flat DBMS) ○ Simple, restrictive, table ● Hierarchical databases ○ Simple, restrictive, tables ● Relational databases (RDBMS) ○ Complex, versatile, tables ● Object-oriented databases (ODBMS) ● Data warehouses and distributed databases ● Unstructured databases (object store DBs) 7 Where do the data come from ? 8 Types of Biological Data -
Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases
Genomics Proteomics Bioinformatics 18 (2020) 91–103 Genomics Proteomics Bioinformatics www.elsevier.com/locate/gpb www.sciencedirect.com PERSPECTIVE Quality Matters: Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases Qingyu Chen 1,*, Ramona Britto 2, Ivan Erill 3, Constance J. Jeffery 4, Arthur Liberzon 5, Michele Magrane 2, Jun-ichi Onami 6,7, Marc Robinson-Rechavi 8,9, Jana Sponarova 10, Justin Zobel 1,*, Karin Verspoor 1,* 1 School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3010, Australia 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK 3 Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA 4 Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA 5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 6 Japan Science and Technology Agency, National Bioscience Database Center, Tokyo 102-8666, Japan 7 National Institute of Health Sciences, Tokyo 158-8501, Japan 8 Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland 9 Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 10 Nebion AG, 8048 Zurich, Switzerland Received 8 December 2017; revised 24 October 2018; accepted 14 December 2018 Available online 9 July 2020 Handled by Zhang Zhang Introduction assembled, annotated, and ultimately submitted to primary nucleotide databases such as GenBank [2], European Nucleo- tide Archive (ENA) [3], and DNA Data Bank of Japan Biological databases represent an extraordinary collective vol- (DDBJ) [4] (collectively known as the International Nucleotide ume of work. -
2021.03.02.433662V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433662; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Exploring bacterial diversity via a curated and searchable snapshot of archived DNA 2 sequences 3 4 Authors: Grace A. Blackwell1,2*, Martin Hunt1,3, Kerri M. Malone1, Leandro Lima1, Gal Horesh2#, 5 Blaise T.F. Alako1, Nicholas R Thomson2,4†* and Zamin Iqbal1†* 6 1EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United 7 Kingdom 8 2Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, 9 United Kingdom 10 3Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, United Kingdom 11 4London School of Hygiene & Tropical Medicine, London, United Kingdom † 12 Joint Authors 13 * To whom correspondence should be addressed: [email protected]; [email protected]; 14 [email protected] 15 16 #Current address: Chesterford Research Park, Cambridge, CB10 1XL 17 18 ORCIDs: 19 G.A.B.: 0000-0003-3921-3516 20 M.H.: 0000-0002-8060-4335 21 L.L.: 0000-0001-8976-2762 22 K.M.M.: 0000-0002-3974-0810 23 G.H.: 0000-0003-0342-0185 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433662; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Pdbefold Tutorial Tutorial Pdbefold Can May Be Accessed from Multiple Locations on the Pdbe Website
PDBe TUTORIAL PDBeFold (SSM: Secondary Structure Matching) http://pdbe.org/fold/ This PDBe tutorial introduces PDBeFold, an interactive service for comparing protein structures in 3D. This service provides: . Pairwise and multiple comparison and 3D alignment of protein structures . Examination of a protein structure for similarity with the whole Protein Data Bank (PDB) archive or SCOP. Best C -alignment of compared structures . Download and visualisation of best-superposed structures using various graphical packages PDBeFold structure alignment is based on identification of residues occupying “equivalent” geometrical positions. In other words, unlike sequence alignment, residue type is neglected. The PDBeFold service is a very powerful structure alignment tool which can perform both pairwise and multiple three dimensional alignment. In addition to this there are various options by which the results of the structural alignment query can be sorted. The results of the Secondary Structure Matching can be sorted based on the Q score (Cα- alignment), P score (taking into account RMSD, number of aligned residues, number of gaps, number of matched Secondary Structure Elements and the SSE match score), Z score (based on Gaussian Statistics), RMSD and % Sequence Identity. It is hoped that at the end of this tutorial users will be able to use PDbeFold for the analysis of their own uploaded structures or entries already in the PDB archive. Protein Data Bank in Europe http://pdbe.org PDBeFOLD Tutorial Tutorial PDBeFold can may be accessed from multiple locations on the PDBe website. From the PDBe home page (http://pdbe.org/), there are two access points for the program as shown below. -
DDBJ Progress Report
D44–D49 Nucleic Acids Research, 2014, Vol. 42, Database issue Published online 4 November 2013 doi:10.1093/nar/gkt1066 DDBJ progress report: a new submission system for leading to a correct annotation Takehide Kosuge1,*, Jun Mashima1, Yuichi Kodama1, Takatomo Fujisawa1, Eli Kaminuma1, Osamu Ogasawara1, Kousaku Okubo1, Toshihisa Takagi1,2 and Yasukazu Nakamura1,* 1DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan and 2National Bioscience Database Center, Japan Science and Technology Agency, Tokyo 102-8666, Japan Received September 13, 2013; Revised October 11, 2013; Accepted October 14, 2013 ABSTRACT We have already reported that our previous supercom- The DNA Data Bank of Japan (DDBJ; http://www. puter system has been totally replaced by a new commod- ddbj.nig.ac.jp) maintains and provides archival, re- ity-cluster-based system (1). Our services including Web trieval and analytical resources for biological infor- services, submission system, BLAST, CLUSTALW, WebAPI and databases are now running on a new super- mation. This database content is shared with the US computer system. In addition to a traditional assembled National Center for Biotechnology Information sequence archive, DDBJ provides the DDBJ Sequence (NCBI) and the European Bioinformatics Institute Read Archive (DRA) (5) and the DDBJ BioProject (6) (EBI) within the framework of the International for receiving short reads from next-generation sequencing Nucleotide Sequence Database Collaboration (NGS) machines and organizing the corresponding data (INSDC). DDBJ launched a new nucleotide obtained from research projects. In 2013, DDBJ has sequence submission system for receiving trad- started the BioSample database in collaboration with itional nucleotide sequence. -
EMBL-EBI-Overview.Pdf
EMBL-EBI Overview EMBL-EBI Overview Welcome Welcome to the European Bioinformatics Institute (EMBL-EBI), a global hub for big data in biology. We promote scientific progress by providing freely available data to the life-science research community, and by conducting exceptional research in computational biology. At EMBL-EBI, we manage public life-science data on a very large scale, offering a rich resource of carefully curated information. We make our data, tools and infrastructure openly available to an increasingly data-driven scientific community, adjusting to the changing needs of our users, researchers, trainees and industry partners. This proactive approach allows us to deliver relevant, up-to-date data and tools to the millions of scientists who depend on our services. We are a founding member of ELIXIR, the European infrastructure for biological information, and are central to global efforts to exchange information, set standards, develop new methods and curate complex information. Our core databases are produced in collaboration with other world leaders including the National Center for Biotechnology Information in the US, the National Institute of Genetics in Japan, SIB Swiss Institute of Bioinformatics and the Wellcome Trust Sanger Institute in the UK. We are also a world leader in computational biology research, and are well integrated with experimental and computational groups on all EMBL sites. Our research programme is highly collaborative and interdisciplinary, regularly producing high-impact works on sequence and structural alignment, genome analysis, basic biological breakthroughs, algorithms and methods of widespread importance. EMBL-EBI is an international treaty organisation, and we serve the global scientific community. -
Human Genetics 1990–2009
Portfolio Review Human Genetics 1990–2009 June 2010 Acknowledgements The Wellcome Trust would like to thank the many people who generously gave up their time to participate in this review. The project was led by Liz Allen, Michael Dunn and Claire Vaughan. Key input and support was provided by Dave Carr, Kevin Dolby, Audrey Duncanson, Katherine Littler, Suzi Morris, Annie Sanderson and Jo Scott (landscaping analysis), and Lois Reynolds and Tilli Tansey (Wellcome Trust Expert Group). We also would like to thank David Lynn for his ongoing support to the review. The views expressed in this report are those of the Wellcome Trust project team – drawing on the evidence compiled during the review. We are indebted to the independent Expert Group, who were pivotal in providing the assessments of the Wellcome Trust’s role in supporting human genetics and have informed ‘our’ speculations for the future. Finally, we would like to thank Professor Francis Collins, who provided valuable input to the development of the timelines. The Wellcome Trust is a charity registered in England and Wales, no. 210183. Contents Acknowledgements 2 Overview and key findings 4 Landmarks in human genetics 6 1. Introduction and background 8 2. Human genetics research: the global research landscape 9 2.1 Human genetics publication output: 1989–2008 10 3. Looking back: the Wellcome Trust and human genetics 14 3.1 Building research capacity and infrastructure 14 3.1.1 Wellcome Trust Sanger Institute (WTSI) 15 3.1.2 Wellcome Trust Centre for Human Genetics 15 3.1.3 Collaborations, consortia and partnerships 16 3.1.4 Research resources and data 16 3.2 Advancing knowledge and making discoveries 17 3.3 Advancing knowledge and making discoveries: within the field of human genetics 18 3.4 Advancing knowledge and making discoveries: beyond the field of human genetics – ‘ripple’ effects 19 Case studies 22 4.