Topoi and Logic

Total Page:16

File Type:pdf, Size:1020Kb

Topoi and Logic Appendix A Topoi and Logic In this section, we will explore the tight connection between topos theory and logic. In particular, to each topos there is associated a language for expressing the internal language of the topos. The converse is also true: given a language one can define a corresponding topos. A.1 First Order Languages A language, in its most raw definition, comprises a collection of atomic variables, and a collection of primitive operations called logical connectives, whose role is to combine together such primitive variables transforming them into formulas or sentences. Moreover, in order to reason with a given language, one also requires rules of inference, i.e. rules which allow you to generate other valid sentences from the given ones. The semantics or meaning of the logical connectives, however, is not given by the formulae and sentences themselves, but it is defined through a so called evaluation map, which is a map from the set of atomic variables and sentences to a set of truth values. Such a map enables one to determine when a formula is true and, thus, defines its semantics/meaning. In this perspective it turns out that the meaning of the logical connectives is given in terms of some set of objects which represent the truth values. The logic that a given language will exhibit will depend on what the set of truth values is considered to be. In fact, what was said above is a very abstract characterisation of what a language is. To actually use it as a deductive system of reasoning, one needs to define a mathematical context in which to represent this abstract language. In this way the elementary and compound propositions will be represented by certain mathematical objects and the set of truth values will itself be identified with an algebra. For example, in standard classical logic, the mathematical context used is Sets and the algebra of truth values is the Boolean algebra of subsets of a given set. C. Flori, A First Course in Topos Quantum Theory, Lecture Notes in Physics 868, 397 DOI 10.1007/978-3-642-35713-8, © Springer-Verlag Berlin Heidelberg 2013 398 A Topoi and Logic However, in a general topos, the internal logic/algebra will not be Boolean but will be a generalisation of it, namely a Heyting algebra. In order to get a better understanding of what a language is, we will start with a very simple language called propositional language P(l). A.2 Propositional Language The propositional language P(l) contains a set of symbols and a set of formation rules. Symbols of P(l) (i) An infinite list of symbols α0,α1,α2,...called primitive propositions. (ii) A set of symbols ¬, ∨, ∧, ⇒ which, for now, have no explicit meaning. (iii) Brackets ), (. Formation Rules (i) Each primitive proposition αi ∈ P(l)is a sentence. (ii) If α is a sentence, then so is ¬α. (iii) If α1 and α2 are sentences, then so are α1 ∧ α2, α1 ∨ α2 and α1 ⇒ α2. Note also that P(l) does not contain the quantifiers ∀ and ∃. This is because it is only a propositional language. To account for quantifiers one has to go to more complicated languages called higher-order languages, which will be described later. The inference rule present in P(l)is the modus ponens (the ‘rule of detachment’) which states that, from αi and αi ⇒ αj , the sentence αj may be derived. Symboli- cally this is written as αi,αi ⇒ αj . (A.1) αi We will see, later on, what exactly the above expression means. In order to use the language P(l) one needs to represent it in a mathematical context. The choice of such a context will depend on what type of system we want to reason about. For now we will consider a classical system, thus the mathematical context in which to represent the language P(l) will be Sets.InSets, the truth object (object in which the truth values lie) will be the Boolean set {0, 1}, thus the truth values will undergo a Boolean algebra. This, in turn, implies that the logic of the language P(l), as represented in Sets, will be Boolean. The rigorous definition of a representation of the language P(l)is as follows: Definition A.1 Given a language P(l)and a mathematical context τ , a representa- tion of P(l)in τ is a map π from the set of primitive propositions to elements in the algebra in question: α → π(α). A.2 Propositional Language 399 As we will see, the specification of the algebra will depend on what type of theory we are considering, i.e. classical or quantum. In classical physics, propositions are represented by the Boolean algebra of all (Borel) subsets of the classical state space, thus, given a representation π, we can define the semantics of P(l)as follows: π(αi ∨ αj ) := π(αi) ∨ π(αj ) π(αi ∧ αj ) := π(αi) ∧ π(αj ) (A.2) π(αi ⇒ αj ) := π(αi) ⇒ π(αj ) π(¬αi) := ¬ π(αi) where, on the left hand side, the symbols {¬, ∧, ∨, ⇒} are elements of the language P(l), while on the right hand side they are the logical connectives in algebra, in which the representation takes place. It is in such an algebra that the logical connec- tives acquire meaning. For the classical case, since the algebra in which a representation lives, is the Boolean algebra of subsets, the logical connectives on the right hand side of (A.2) are defined in terms of set-theoretic operations. In particular, we have the following associations: π(αi) ∨ π(αj ) := π(αi) ∪ π(αj ) (A.3) π(αi) ∧ π(αj ) := π(αi) ∩ π(αj ) c ¬ φ(αi) := π(αi) c π(αi) ⇒ π(αj ) := π(αi) ∪ π(αj ). (A.4) So far, we have seen how logical connectives are represented in the topos Sets. However, it is possible to give a general definition of logical connectives in terms of arrows. Such a definition would then be valid for any topos. To retrieve the logical connectives for the classical case, in which the topos is Sets, we then simply replace, in the definitions that will follow, the general truth object Ω with the set {0, 1}=2. Logical connectives in a general topos τ are defined as follows: • Negation We will now describe how to represent negation as an arrow in a given topos τ . Let us assume that the τ -arrow representing the value true is :1 → Ω, which is the arrow used in the definition of the sub-object classifier. Given such an arrow, negation is identified with the unique arrow ¬:Ω → Ω, such that the following 400 A Topoi and Logic diagram is a pullback: ⊥ 1 / Ω ¬ 1 / Ω Where ⊥ is the topos analogue of the arrow false in Sets,i.e.⊥ is the character of !1 : 0 → 1: !1 0 / 1 !1 ⊥ 1 / Ω • Conjunction Conjunction is identified with the following arrow: ∩:Ω × Ω → Ω which is the character of the product arrow , : 1 → Ω × Ω, such that the following diagram is a pullback: , 1 / Ω × Ω id1 ∩ 1 / Ω A.2 Propositional Language 401 where , is defined as follows: / q8 1 ΩO qqq I1 qq qq pr qqq 1 qq q , / 1 MM Ω × Ω MMM MMM MM pr2 MMM I1 M& 1 / Ω • Disjunction Disjunction is identified with the arrow ∪:Ω × Ω → Ω (A.5) which is the character of the image of the arrow , idΩ , idΩ , : Ω + Ω → Ω × Ω (A.6) such that the following diagram commutes: [ ,1Ω , 1Ω , ] Ω + Ω / Ω × Ω !Ω+Ω ∪ 1 / Ω • Implication Given two arrows ∩ / Ω × Ω / Ω pr1 their equaliser is some map e : ≤:= x,y|x ≤ y in Ω → Ω × Ω (A.7) ∩◦ = ◦ such that e pr1 e. Implication is then defined as the character of e,i.e.asthemap ⇒: Ω × Ω → Ω (A.8) 402 A Topoi and Logic such that the following diagram is a pullback: e ≤ / Ω × Ω !e ⇒ 1 / Ω In order to complete the definition of a propositional language in a general topos τ , we also need to define the valuation functions (which give us the semantics) in terms of arrows in that topos. We recall from the definition of the sub-object classifier that a truth value in a general topos τ is given by a map 1 → Ω (in Sets we have 1 →{0, 1}=2 = Ω). The collection of such arrows τ(1,Ω)represents the collection of all truth values. Thus, a valuation map in a general topos is defined to beamapV :{π(αi)}→τ(1,Ω)such that the following equalities hold: V ¬ π(αi) =¬◦V π(αi) (A.9) V π(αi) ∨ π(αj ) =∨◦ V π(αi) ,V π(αj ) (A.10) V π(αi) ∧ π(αj ) =∧◦ V π(αi) ,V π(αj ) (A.11) V π(αi) ⇒ π(αj ) =⇒◦V π(αi) ,V π(αj ) . (A.12) A.2.1 Example in Classical Physics We have stated above that classical physics uses the topos Sets. We now want to rep- resent, in Sets, the propositional language P(l), as defined for a classical system S. So now the elementary propositions will be propositions pertaining the physical sys- tem S. From now on, we will denote a language referred to a particular system S by P (l)(S). Since S is a (classical) physical system, the elementary propositions which P (l)(S) will contain will be of the form A ∈ Δ meaning “ the quantity A which represents some physical observable, has value in a set Δ”.
Recommended publications
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]
  • The Petit Topos of Globular Sets
    Journal of Pure and Applied Algebra 154 (2000) 299–315 www.elsevier.com/locate/jpaa View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The petit topos of globular sets Ross Street ∗ Macquarie University, N. S. W. 2109, Australia Communicated by M. Tierney Dedicated to Bill Lawvere Abstract There are now several deÿnitions of weak !-category [1,2,5,19]. What is pleasing is that they are not achieved by ad hoc combinatorics. In particular, the theory of higher operads which underlies Michael Batanin’s deÿnition is based on globular sets. The purpose of this paper is to show that many of the concepts of [2] (also see [17]) arise in the natural development of category theory internal to the petit 1 topos Glob of globular sets. For example, higher spans turn out to be internal sets, and, in a sense, trees turn out to be internal natural numbers. c 2000 Elsevier Science B.V. All rights reserved. MSC: 18D05 1. Globular objects and !-categories A globular set is an inÿnite-dimensional graph. To formalize this, let G denote the category whose objects are natural numbers and whose only non-identity arrows are m;m : m → n for all m¡n ∗ Tel.: +61-2-9850-8921; fax: 61-2-9850-8114. E-mail address: [email protected] (R. Street). 1 The distinction between toposes that are “space like” (or petit) and those which are “category-of-space like” (or gros) was investigated by Lawvere [9,10]. The gros topos of re exive globular sets has been studied extensively by Michael Roy [12].
    [Show full text]
  • The Trace Factorisation of Stable Functors
    The Trace Factorisation of Stable Functors Paul Taylor 1998 Abstract A functor is stable if it has a left adjoint on each slice. Such functors arise as forgetful functors from categories of models of disjunctive theories. A stable functor factorises as a functor with a (global) left adjoint followed by a fibration of groupoids; Diers [D79] showed that in many cases the corresponding indexation is a well-known spectrum. Independently, Berry [B78,B79] constructed a cartesian closed category of posets and stable functors, which Girard [G85] developed into a model of polymorphism; the proof of cartesian closure implicitly makes use of this factorisation. Girard [G81] had earlier developed a technique in proof theory involving dilators (stable endofunctors of the category of ordinals), also using the factorisation. Although Diers [D81] knew of the existence of this factorisation system, his work used an additional assumption of preserving equalisers. However Lamarche [L88] observed that examples such as algebraically closed fields can be incorporated if this assumption is dropped, and also that (in the the search for cartesian closed categories) evaluation does not preserve equalisers. We find that Diers' definitions can be modified in a simple and elegant way which also throws light on the General Adjoint Functor Theorem and on factorisation systems. In this paper the factorisation system is constructed in detail and related back to Girard's examples; following him we call the intermediate category the trace. We also consider nat- ural and cartesian transformations between stable functors. We find that the latter (which must be the morphisms of the \stable functor category") have a simple connection with the factorisation, and induce a rigid adjunction (whose unit and counit are cartesian) between traces.
    [Show full text]
  • Bernays–G Odel Type Theory
    Journal of Pure and Applied Algebra 178 (2003) 1–23 www.elsevier.com/locate/jpaa Bernays–G&odel type theory Carsten Butz∗ Department of Mathematics and Statistics, Burnside Hall, McGill University, 805 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6 Received 21 November 1999; received in revised form 3 April 2001 Communicated by P. Johnstone Dedicated to Saunders Mac Lane, on the occasion of his 90th birthday Abstract We study the type-theoretical analogue of Bernays–G&odel set-theory and its models in cate- gories. We introduce the notion of small structure on a category, and if small structure satisÿes certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a co-variant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple ÿxed points of this and related monads are shown to be models of intuitionistic Zermelo–Fraenkel set-theory (IZF). c 2002 Published by Elsevier Science B.V. MSC: Primary: 03E70; secondary: 03C90; 03F55 0. Introduction The foundations of mathematics accepted by most working mathematicians is Zermelo–Fraenkel set-theory (ZF). The basic notion is that of a set, the abstract model of a collection. There are other closely related systems, like for example that of Bernays and G&odel (BG) based on the distinction between sets and classes: every set is a class, but the only elements of classes are sets. The theory (BG) axiomatizes which classes behave well, that is, are sets. In fact, the philosophy of Bernays–G&odel set-theory is that small classes behave well.
    [Show full text]
  • The Category of Sheaves Is a Topos Part 2
    The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion.
    [Show full text]
  • Arxiv:2010.05167V1 [Cs.PL] 11 Oct 2020
    A Categorical Programming Language Tatsuya Hagino arXiv:2010.05167v1 [cs.PL] 11 Oct 2020 Doctor of Philosophy University of Edinburgh 1987 Author’s current address: Tatsuya Hagino Faculty of Environment and Information Studies Keio University Endoh 5322, Fujisawa city, Kanagawa Japan 252-0882 E-mail: [email protected] Abstract A theory of data types and a programming language based on category theory are presented. Data types play a crucial role in programming. They enable us to write programs easily and elegantly. Various programming languages have been developed, each of which may use different kinds of data types. Therefore, it becomes important to organize data types systematically so that we can understand the relationship between one data type and another and investigate future directions which lead us to discover exciting new data types. There have been several approaches to systematically organize data types: alge- braic specification methods using algebras, domain theory using complete par- tially ordered sets and type theory using the connection between logics and data types. Here, we use category theory. Category theory has proved to be remark- ably good at revealing the nature of mathematical objects, and we use it to understand the true nature of data types in programming. We organize data types under a new categorical notion of F,G-dialgebras which is an extension of the notion of adjunctions as well as that of T -algebras. T - algebras are also used in domain theory, but while domain theory needs some primitive data types, like products, to start with, we do not need any.
    [Show full text]
  • E(6,<F>) = {Geg1:(,(G) = <L>(G)}
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 1, January 1974 THE FIRST DERIVED EQUALISER OF A PAIR OF ABELIAN GROUP HOMOMORPHISMS TIM PORTER Abstract. In this note we attack the problem of classifying a pair of abelian group homomorphisms by introducing a con- struction which we call "the derived equaliser". After developing fairly simple methods for the calculation of these objects, we work an example in a simple case. Introduction. The simplicity of the classification, up to isomorphism, of group homomorphisms by their kernels and cokernels tends to over- shadow the problem for two or more homomorphisms. Recall that the First Isomorphism Theorem allows one to write any homomorphism as a composite of an epimorphism and an inclusion of a subgroup; the epi- morphism is determined (up to isomorphism of group homomorphisms) by its kernel, and the inclusion can either be regarded as an invariant itself or it can be determined by its cokernel. The diagram (1) Gi=*G* where d and <f>have isomorphic kernels and cokernels, may be very different indeed from the diagram, (2) <?i=*Gt where the two maps also have isomorphic kernels and cokernels. A first approximation to a classification of such pairs of homomorphisms is via their "equaliser" or "difference kernel" [1] which measures how much they differ. The equaliser of 6 and <f>in (1) is the subgroup E(6,<f>)= {geG1:(,(g)= <l>(g)}. This is by no means a complete invariant, but in this paper we will in- vestigate certain "derived invariants" of this for the case that Gr and G2 are abelian groups.
    [Show full text]
  • Ten Questions for Mathematics Teachers
    Teaching strategies Cognitive activation Lessons drawn Classroom climate Students’ attitudes Memorisation Pure & applied maths Control Socio-economic status Elaboration strategies Ten Questions for Mathematics Teachers ... and how PISA can help answer them PISA Ten Questions for Mathematics Teachers ... and how PISA can help answer them This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of the OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Please cite this publication as: OECD (2016), Ten Questions for Mathematics Teachers ... and how PISA can help answer them, PISA, OECD Publishing, Paris, http://dx.doi.or /10.1787/9789264265387-en. ISBN 978-9264-26537-0 (print) ISBN 978-9264-26538-7 (online) Series: PISA ISSN 1990-85 39 (print) ISSN 1996-3777 (online) The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Latvia was not an OECD member at the time of preparation of this publication. Accordingly, Latvia is not included in the OECD average. Corrigenda to OECD publications may be found on line at: www.oecd.org/publishing/corrigenda. © OECD 2016 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgement of OECD as source and copyright owner is given.
    [Show full text]
  • Toposes Toposes and Their Logic
    Building up to toposes Toposes and their logic Toposes James Leslie University of Edinurgh [email protected] April 2018 James Leslie Toposes Building up to toposes Toposes and their logic Overview 1 Building up to toposes Limits and colimits Exponenetiation Subobject classifiers 2 Toposes and their logic Toposes Heyting algebras James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Products Z f f1 f2 X × Y π1 π2 X Y James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Coproducts i i X 1 X + Y 2 Y f f1 f2 Z James Leslie Toposes e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z James Leslie Toposes The following is an equaliser diagram: f ker G i G H 0 Given a k such that following commutes: f K k G H ker G i G 0 k k K k : K ! ker(G), k(g) = k(g).
    [Show full text]
  • Category Theory and Diagrammatic Reasoning 3 Universal Properties, Limits and Colimits
    Category theory and diagrammatic reasoning 13th February 2019 Last updated: 7th February 2019 3 Universal properties, limits and colimits A division problem is a question of the following form: Given a and b, does there exist x such that a composed with x is equal to b? If it exists, is it unique? Such questions are ubiquitious in mathematics, from the solvability of systems of linear equations, to the existence of sections of fibre bundles. To make them precise, one needs additional information: • What types of objects are a and b? • Where can I look for x? • How do I compose a and x? Since category theory is, largely, a theory of composition, it also offers a unifying frame- work for the statement and classification of division problems. A fundamental notion in category theory is that of a universal property: roughly, a universal property of a states that for all b of a suitable form, certain division problems with a and b as parameters have a (possibly unique) solution. Let us start from universal properties of morphisms in a category. Consider the following division problem. Problem 1. Let F : Y ! X be a functor, x an object of X. Given a pair of morphisms F (y0) f 0 F (y) x , f does there exist a morphism g : y ! y0 in Y such that F (y0) F (g) f 0 F (y) x ? f If it exists, is it unique? 1 This has the form of a division problem where a and b are arbitrary morphisms in X (which need to have the same target), x is constrained to be in the image of a functor F , and composition is composition of morphisms.
    [Show full text]
  • Chapter 3 Category Theory
    Donald Sannella and Andrzej Tarlecki Foundations of Algebraic Specification and Formal Software Development September 29, 2010 Springer Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/18:05 Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/18:05 Contents 0 Introduction .................................................... 1 0.1 Modelling software systems as algebras . 1 0.2 Specifications . 5 0.3 Software development . 8 0.4 Generality and abstraction . 10 0.5 Formality . 12 0.6 Outlook . 14 1 Universal algebra .............................................. 15 1.1 Many-sorted sets . 15 1.2 Signatures and algebras . 18 1.3 Homomorphisms and congruences . 22 1.4 Term algebras . 27 1.5 Changing signatures . 32 1.5.1 Signature morphisms . 32 1.5.2 Derived signature morphisms . 36 1.6 Bibliographical remarks . 38 2 Simple equational specifications ................................. 41 2.1 Equations . 41 2.2 Flat specifications . 44 2.3 Theories . 50 2.4 Equational calculus . 54 2.5 Initial models . 58 2.6 Term rewriting . 66 2.7 Fiddling with the definitions . 72 2.7.1 Conditional equations . 72 2.7.2 Reachable semantics . 74 2.7.3 Dealing with partial functions: error algebras . 78 2.7.4 Dealing with partial functions: partial algebras . 84 2.7.5 Partial functions: order-sorted algebras . 87 xv xvi Contents 2.7.6 Other options . 91 2.8 Bibliographical remarks . 93 3 Category theory................................................ 97 3.1 Introducing categories. 99 3.1.1 Categories . 99 3.1.2 Constructing categories . 105 3.1.3 Category-theoretic definitions . 109 3.2 Limits and colimits . 111 3.2.1 Initial and terminal objects .
    [Show full text]
  • The Post Correspondence Problem and Equalisers for Certain
    The Post Correspondence Problem and Equalisers for Certain Free Group and Monoid Morphisms Laura Ciobanu Heriot-Watt University, Edinburgh, Scotland, UK [email protected] Alan D. Logan Heriot-Watt University, Edinburgh, Scotland, UK [email protected] Abstract A marked free monoid morphism is a morphism for which the image of each generator starts with a different letter, and immersions are the analogous maps in free groups. We show that the (simultaneous) PCP is decidable for immersions of free groups, and provide an algorithm to compute bases for the sets, called equalisers, on which the immersions take the same values. We also answer a question of Stallings about the rank of the equaliser. Analogous results are proven for marked morphisms of free monoids. 2012 ACM Subject Classification Theory of computation → Formal languages and automata theory; Theory of computation → Complexity classes; Mathematics of computing → Combinatorics on words; Mathematics of computing → Combinatorial algorithms Keywords and phrases Post Correspondence Problem, marked map, immersion, free group, free monoid Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.120 Category Track B: Automata, Logic, Semantics, and Theory of Programming Related Version https://arxiv.org/abs/2002.07574 Funding Research supported by EPSRC grant EP/R035814/1. 1 Introduction In this paper we prove results about the classical Post Correspondence Problem (PCPFM), which we state in terms of equalisers of free monoid morphisms, and the analogue problem PCPFG for free groups ([5], [19]), and we describe the solutions to PCPFM and PCPFG for certain classes of morphisms. While the classical PCPFM is famously undecidable for arbitrary maps of free monoids [21] (see also the survey [12] and the recent result of Neary [20]), PCPFG for free groups is an important open question [8, Problem 5.1.4].
    [Show full text]